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Abstract

We consider the deduction problem in the fragment of first-order logic
(FOL) composed of existentially closed conjunctions of literals (without func-
tions), denoted FOL{∃,∧,¬a}. This problem can be recast as several funda-
mental problems in artificial intelligence and databases, namely query con-
tainment for conjunctive queries with negation, clause entailment for clauses
without functions and query answering with incomplete information for boolean
conjunctive queries with negation over a fact base. Deduction in FOL{∃,∧,¬a}
is ΠP

2
-complete, whereas it is only NP-complete when the formulascontain

no negation. We investigate the role of specific literals in this complexity
increase. These literals have the property of being “exchangeable”, with this
notion taking the structure of the formulas into account. Tofocus on the
structure of formulas, we see them as labeled graphs. Graph homomorphism,
which provides a sound and complete proof procedure for positive formulas,
is at the core of this study. Let Deductionk be the following family of prob-
lems: given two formulasg andh in FOL{∃,∧,¬a}, such thatg has at most
k pairs of exchangeable literals, cang be deduced fromh? The main results
are that Deductionk is NP-complete ifk ≤ 1, and inPNP for any value ofk;
moreover, it is both NP-difficult and co-NP-difficult fork ≥ 3. As a corol-
lary of our proofs, we are able to classify exactly previous problems when
g is decomposable into a tree. Finally, several complementary results and
extensions are provided.

Keywords: Complexity, first-order logic, deduction, negation, graphs, homo-
morphism, query containment, clause implication, conceptual graphs.

Remark: A shorter version has been submitted for publication to a journal. This
shorter version does not integrate the alternative proofs of our results based on a
logical approach (Sect. 5) nor the extension to a preorder onthe set of predicates
(Sect. 6).
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1 Introduction

In this paper, we study the complexity of deduction checkingin the fragment of
first-order logic (FOL), composed of existentially closed conjunctions of literals.
Literals may contain constants but no other function symbols. FOL{∃,∧,¬a} de-
notes this fragment, and FOL{∃,∧} is the subfragment with positive literals only.
The DEDUCTION problem in a given fragment takes two formulasg andh of this
fragment as input, and asks ifg can be deduced fromh.

Equivalent problems. FOL{∃,∧,¬a}-DEDUCTION can be seen as a representa-
tive of several fundamental problems in artificial intelligence and databases. It can
be immediately recast as aquery containmentchecking problem, which is one of
the fundamental problems in databases. This problem takes two queriesq1 andq2

as input, and asks ifq1 is contained inq2, i.e. if the set of answers toq1 is included
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in the set of answers toq2 for all databases (e.g. [AHV95]). Algorithms based
on query containment can be used to solve various problems, such as query eval-
uation and optimization [CM77, ASU79], rewriting queries using views [Hal01],
detecting independance of queries from database updates [LS93], etc. The so-
called (positive)conjunctive queriesform a class of natural and frequently used
queries and are considered as the basic database queries [CM77, Ull89]. Their
expressive power is equivalent to the select-join-projectqueries of relational alge-
bra and to non-recursive Datalog rules. Conjunctive queries with negation extend
this class with negation on atoms. Query containment checking for conjunctive
queries with negation (resp. positive conjunctive queries) is essentially the same
problem as FOL{∃,∧,¬a}-DEDUCTION (resp. FOL{∃,∧}–DEDUCTION), in the
sense that there are natural polynomial reductions from oneto another, which pre-
serve the structure of the objects. Another related problemin artificial intelligence
is theclause entailmentproblem, a basic problem in inductive logic programming
[MR94]: given two clausesC1 andC2, doesC1 entail C2? If we consider first-
order clauses, i.e. universally closed disjunctions of literals, without function sym-
bols, by contraposition, we obtain an instance of FOL{∃,∧,¬a}-DEDUCTION. Let
us now look at this from a knowledge representation perspective. A key problem is
query answering, which, generally speaking, takes a knowledge base and a query
as input and asks for the set of answers to the query that can beretrieved from the
knowledge base. When the query is a boolean query, i.e. with ayes/no answer,
the problem can be recast as checking whether the query can bededuced from the
knowledge base. In the case where the knowledge base is simply composed of a set
of positive and negative facts, i.e. existentially closed conjunctions of literals, and
the query is a boolean conjunctive query with negation, we obtain FOL{∃,∧,¬a}-
DEDUCTION. Finally, even if this aspect is out of the scope of the present paper,
let us mention that a partial order on predicates, or more generally a preorder, can
be taken into account without increasing complexity. This allows to represent a
knowledge base with a light ontology and a set of facts built on this ontology. We
then obtain FOL{∃,∧,¬a}-DEDUCTION extended to preordered predicates, which
is exactly the deduction problem in a fragment of conceptualgraphs, calledpolar-
ized conceptual graphs[Ker01][ML07].

Complexity and “exchangeable” literals. Whereas FOL{∃,∧}-DEDUCTION is
“only” NP-complete, FOL{∃,∧,¬a}-DEDUCTION is ΠP

2 -complete1 (see Section
7). Some specific cases where FOL{∃,∧,¬a}-DEDUCTION has a lower com-
plexity are known but they enforce strong restrictions on the problem instances:

1ΠP

2 is (co-NP )NP .
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Figure 1: A polarized graph

briefly said, ifg does not contain any pair of opposite and unifiable literals2, then
FOL{∃,∧,¬a}-DEDUCTION becomes NP-complete (see Section 7). The aim of
this paper is to investigate the complexity gap between deduction checking in
FOL{∃,∧} and FOL{∃,∧,¬a}. For that, we study the role of specific pairs of
literals in the complexity increase. These literals have the property of being “ex-
changeable”, with this notion being relative not only to theliterals themselves, but
also to the structure of both formulas. We show that these literals are indeed respon-
sible for the complexity increase, in the sense that if the number of exchangeable
literals ing is bounded, then the complexity falls into lower classes of the polyno-
mial hierarchy. The complexity results proven in this papergeneralize the results
obtained in the various variants of the problem (for instance the query inclusion
problem or the clause implication problem).

Graph Tools. We shall see formulas as labeled graphs to focus on their structure
and rely on graph notions like paths, connectivity or cyclicity. These graphs are
called polarized graphs (PGs) (name borrowed to [Ker01] in the context of con-
ceptual graphs). More specifically, a FOL{∃,∧,¬a} formula is represented as a
bipartite graph with two kinds of nodes: relation nodes and term nodes. Each term
of the formula becomes a term node, labeled∗ if it is a variable, otherwise by the
constant itself. A positive (resp. negative) literal with predicate symbolr becomes
a relation node labeled+r (resp.−r) and it is linked to the nodes assigned to its
terms. The numbers on edges correspond to the position of each term in the literal.
See Figure 1 for an example. In the sequel of this section, formulas are denoted
by small letters (g andh) and the associated graphs by the corresponding capital
letters (G andH).

Homomorphism is a core notion in this study. Basically, a homomorphism

2i.e. in the formp(u) and¬p(v), wherep(u) andp(v) are unifiable.
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from one algebraic structure to another maps the elements ofthe first structure to
elements of the second structure while preserving the relations between elements.
A homomorphismπ from a graphG to a graphH is a mapping from nodes ofG
to nodes ofH, which preserves edges, i.e. ifxy is an edge ofG thenπ(x)π(y) is
an edge ofH. Since polarized graphs are labeled, there are additional conditions
on labels: a relation node is mapped to a node with the same label; a term node
can be mapped to any term node if it is labeled∗, otherwise it is mapped to a node
with the same constant. Numbers on edges are preserved. Let us point out that,
given two formulasg andh in FOL{∃,∧,¬a}, one can identify the notions of a
substitutionσ for variables ing, s.t. the literals ofσ(g) are contained inh, and
a PG homomorphism fromG to H. FOL{∃,∧}-DEDUCTION can be solved by a
substitution check, or equivalently by a homomorphism check on the PGs assigned
to the formulas. This homomorphism check still provides a sound procedure for
deduction in FOL{∃,∧,¬a}, i.e. the existence of a homomorphism fromG to
H implies thatg can be deduced fromh, but of course it is no longer complete,
i.e. g may be deducible fromh even if there is no homomorphism fromG to
H. FOL{∃,∧,¬a}-DEDUCTION can be recast as a problem on PGs involving a
number of homomorphism checks exponential in the size ofH.

Contributions of the paper. The results achieved in this paper can be summa-
rized as follows. We first point out that ifg hasnopair of exchangeable literals, then
FOL{∃,∧,¬a}-DEDUCTION has the same complexity as in the positive fragment
(indeed it can be computed by a homomorphism check, thus is NP-complete). It is
then proven that the problem remains NP-complete ifg hasonepair of exchange-
able literals. A natural question that arises is whether thecomplexity of deduction
checking decreases wheng has aboundednumber of exchangeable literals. Let
DEDUCTIONk be the following family of problems: given two formulasg andh in
FOL{∃,∧,¬a}, such thatg has at mostk pairs of exchangeable literals, cang be
deduced fromh? It is proven that, for anyk, DEDUCTIONk is in PNP , i.e. ∆P

2 .
A complementary result is that DEDUCTIONk is co-NP-difficult fork = 3. When
g represents a query andh a base of facts, criteria that decrease the complexity
and depend ong rather thanh are relevant, because the query can be considered as
small with respect to the fact base, and has generally a simple structure (while one
cannot expect the fact base to have a special structure). In particular, wheng has
a structure decomposable into a tree (we will precise this point later), then homo-
morphism checking is polynomial; in this case, we point out that FOL{∃,∧,¬a}-
DEDUCTION is co-NP-complete; moreover, a corollary of previous results’ proofs
is that in general DEDUCTIONk remains co-NP-complete for anyk ≥ 3 and is in
P if k ≤ 1. Table 1 summarizes these results. The recognition problemassoci-
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number of exchangeable arbitrary g g decomposable
pairs in g into a tree
not bounded ΠP

2
-complete (*) co-NP-complete

0 NP-complete P
1 (**) NP-complete P
bounded byk ≥ 3 NP-difficult co-NP-complete

co-NP-difficult
andPNP

(*) already known result
(**) or with an unbounded number of exchangeable pairs and a single positive (resp. neg-
ative) exchangeable literal

Table 1: Main complexity results

ated with DEDUCTIONk , i.e. whetherg possesses at mostk pairs of exchangeable
literals, is co-NP-complete. Note however that all resultsstill hold if we apply
weaker criteria that bound the number of potentially exchangeable literals and can
be checked in polynomial time.

Several complementary results and extensions are provided. First, we point
out that a FOL{∃,∧,¬a} formula can be partitioned into subsets of literals called
pieces(this notion is actually defined on PGs as it correspond to a graph decompo-
sition notion), such that the bound on the number of pairs of exchangeable literals
can be made relative to each piece ofg instead of the entireg, i.e. in all results,
condition “g has at mostk pairs of exchangeable literals” can be relaxed into “each
piece ofg has at mostk pairs of exchangeable literals”. Secondly, we provide
alternative proofs of our results based on a logical approach; as a side result, we
clarify the relationships between logical and graph notions involved in this study.
Finally, previous results are extended in two ways: we show that a preorder on the
set of predicates can be considered without complexity increasing, which allows
us to take a light ontology into account; we also refine several notions related to
exchangeable literals, which allows to further decrease their number.

Paper organization. Section 2 introduces the graph framework and known re-
sults. Section 3 studies properties of exchangeable literals. Section 4 contains our
main complexity results. Section 5 and Section 6 are respectively devoted to
the logical approach and to extensions. Section 7 synthesizes related works and
concludes on open problems.
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2 Preliminaries

Without loss of generality, we assume that logical formulasare in prenex form,
i.e. all quantifiers are at the beginning of the formula. Equality is not considered
but all results are easily extended to it (see in particular [LM06], which shows
how to include equality and inequality in the framework of polarized conceptual
graphs). Since we do not consider function symbols other than constants, alogical
languageis a pair(R,I), whereR is the set of predicates andI is the set of
constants. Thetermson (R,I) are thus constants inI or variables. Anatom
on (R,I) is of form p(t1, . . . , tk), wherep ∈ R and, for all j in 1..k, tj is a
term on(R,I). A literal is an atom (positive literal) or the negation of an atom
(negative literal). A FOL{∃,∧,¬a} formula on(R,I) is a closed formula in the
form ∃x1 . . . xq(l1 ∧ . . . ∧ lp), where, for alli in 1..p, li is a literal whose variables
are in{x1, . . . , xq}. Without loss of generality, we will sometimes view such a
formula as the set of its literals. A FOL{∃,∧} formula has only positive literals.
The set ofatoms of a formulais the set of atoms occurring positively or negatively
in its literals.

As explained in the introduction, it is convenient to see a FOL{∃,∧,¬a} for-
mula as a bipartite labeled graph, that we call a polarized graph (PG). The follow-
ing definitions and results about polarized graphs are mainly based on [LM07] and
[ML07].

Definition 1 (polarized graph) Let us consider a vocabularyV = (R,I) where
R is a finite set of relation names of any arity andI a set of individual names,
or constants. Apolarized graph(PG) is a finite undirected bipartite labeled multi-
graphG = (R, T, E, l) whereR andT are the (disjoint) sets of nodes, respec-
tively called set ofrelationnodes and set ofterm nodes,E is the family of edges
(there may be several edges with the same extremities, thus strictly speaking, a PG
is a multigraph and not a graph) andl is the label mapping. Forx ∈ R, l(x) = +r

(x is called a positive relation node) orl(x) = −r (x is called a negative relation
node) wherer ∈ R; the degree ofx (i.e. the number of edges incident to it) must
be equal to the arity ofr; furthermore, the edges incident tox are totally ordered,
which is represented by labeling edges from 1 to the degree ofx. An edge labeledi
between a relation nodex and a term nodet is denoted(x, i, t). For t ∈ T , either
l(t) = ∗ (t is called a variable node) orl(t) ∈ I (t is called a constant node).

A PG is said to benormal if each constant ofI appears at most once in it. In
the following, a PG is assumed to be normal unless otherwise specified. Moreover,
we assume that PGs do not have redundant relation nodes (i.e.with the same label
and the sameith neighbors).
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A FOL{∃,∧,¬a} formula g on a logical language(R,I), is translated into a
PG G on a vocabularyV = (R,I), with the following natural bijections: from
variables ing to variable nodes inG, from constants ing to constant nodes inG
(s.t. a constanta yields a node with labela), from positive (resp. negative) literals
in g to positive (resp. negative) relation nodes inG (s.t. the predicate and polarity
of a literal yield the label of the relation node). For each argumentti of a literal
l, there is an edge(x, i, t), wherex is the relation node assigned tol andt is the
term node assigned toti. There is thus a bijection from the set of FOL{∃,∧,¬a}
formulas on a logical language(R,I) to the set of normal PGs without isolated
term nodes3 on a vocabularyV = (R,I). This bijection is within an isomorphism
for graphs and within a variable renaming for formulas. In the following, since we
work on the graph representation of formulas, we will consider PGs as the basic
constructs, and see formulas as their logical meaning. The mapping from PGs
without isolated term nodes to formulas is calledΦ.

Notations. Let +r(t1, . . . , tk) (resp.−r(t1, . . . , tk)) denote the subgraph in-
duced by a positive (resp. negative) relation node with label +r (resp. −r) and
its list of neighborst1, . . . , tk. By analogy with its logical translationr(t1, . . . , tk)
(resp. ¬r(t1, . . . , tk)), in which ti denotes the term assigned to the term nodeti,
we also call it aliteral. ∼r denotes a label with relation namer, where∼ can be+
or−. Given a literal (resp. a relation label)l, l denotes thecomplementaryliteral
(resp. relation label) ofl, i.e. it is obtained froml by reversing its sign. Lettersu, v
andw are used to denote a tuple(t1, . . . , tk) of terms (or term nodes). Thus∼r(u)
denotes a literal of arbitrary sign and arity. The notationsl =∼r(u) andl are also
used for a logical literall equal tor(u) or ¬r(u).

If π is a mapping from a set of terms (or term nodes) to a set of terms(or
term nodes), then foru = (t1, . . . , tk), π(u) denotes the tuple(π(t1), . . . , π(tk)).
A substitutionof variables maps every variable to a term (variable or constant)
and every constant to itself. Removing a literal from a graphmeans removing its
relation node, so some term nodes of the removed literal may become isolated. If
L is a set of literals ofG thenG \ L is the subgraph ofG obtained fromG by
removing the literals inL. In a similar way, ifG′ is a subgraph ofG thenG \G′ is
the subgraph ofG obtained fromG by removing the literals inG′.

Definition 2 (PG homomorphism) A PG homomorphismπ fromG = (RG, TG, EG, lG)
to H = (RH , TH , EH , lH), both built on a vocabularyV = (R,I), is a mapping
from RG ∪ TG to RH ∪ TH , such that:

1. for all r ∈ RG, π(r) ∈ RH ; for all t ∈ TG, π(t) ∈ TH

(π preserves bipartition)
3A PG may have isolated term nodes, which cannot be obtained bythe previous translation of a

formula, but may arise for a subgraph of a PG.
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2. for all edge(r, i, t) in G, (π(r), i, π(t)) is in H

(π preserves edges and their ordering)

3. for all r ∈ RG, lH(π(r)) = lG(r)
(π preserves relation labels)

4. for all t ∈ TG, if lG(t) ∈ I then lH(π(t)) = lG(t), otherwise there is no
condition onlH(π(t))
(π may “instantiate” variables).

If there is a homomorphismπ from G to H, we say thatG (or a subgraph ofG)
is mappedto H by π. G is called thesourcegraph andH the targetgraph. Given
a literall composed of a relation noder ∈ RG, with label∼p, and list of neighbors
u, π(l) denotes the literal composed of the relation nodeπ(r) with list of neighbors
π(u), i.e., sinceπ preserves relation labels,π(l) is the literal∼p(π(u)) in H.

Definition 3 (inconsistent PG/set of literals) A PG (or set of literals) is said to be
inconsistentif it contains two complementary literals+r(u) and−r(u). Otherwise
it is said to beconsistent.

It can be immediately checked that inconsistent PGs correspond to unsatisfi-
able formulas. Positive PGs are translated into positive formulas; for this positive
fragment it has been proven that PG homomorphism is sound andcomplete w.r.t.
logical deduction, provided that the target graph is normal(basically [CM92], con-
sidering that positive PGs are a particular case of simple conceptual graphs).

x y

1 2

−p

* *

+p

2121

+p −p

a b c

a b c

+r +r +r

HG

Figure 2: Non-completeness of PG homomorphism

Property 1 (Substitution / PG Homomorphism Equivalence) Let G and H be
two PGs without isolated term nodes. There is a homomorphismfrom G to H if
and only if there is a substitutionσ of variables inΦ(G) into terms inΦ(H) such
that for each literal∼p(u) in Φ(G), ∼p(σ(u)) is a literal in Φ(H).

For general PGs, homomorphism is still sound:
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Figure 3: When the law of the excluded-middle intervenes

Property 2 Given two PGsG and H, if there is a homomorphism fromG to H

thenΦ(G) can be deduced fromΦ(H).

But homomorphism is no longer complete, as illustrated by Figure 2. In this
figure, the formulas assigned toG andH byΦ are respectivelyΦ(G) = ∃x∃y(p(x)∧
¬p(y) ∧ r(x, y)) andΦ(H) = p(a) ∧ r(a, b) ∧ r(b, c) ∧ ¬p(c). Φ(G) can be de-
duced fromΦ(H) using the tautologyp(b)∨¬p(b) (indeed, every model ofΦ(H)
satisfies eitherp(b) or ¬p(b); if it satisfiesp(b), thenx andy are interpreted asb
andc; in the opposite case,x andy are interpreted asa andb; thus every model of
Φ(H) is a model ofΦ(G)). However, there is no homomorphism fromG to H.

More generally, negation introduces disguised disjunctive information that can-
not be taken into account by homomorphism. This disjunctiveinformation is re-
lated to the law of the excluded-middle which holds in classical logic: given a
propositionP , eitherP is true, or¬P is true. This leads to reasoning by cases: if
a property or relation is not asserted, either it is true or its negation is true. We thus
have to consider all ways ofcompletingthe knowledge asserted by a PG. Let us
look again at the example in Figure 2.H does not say whetherp holds forb. We
thus have to consider two cases: either a relation node with label+p or a relation
node with label−p can be attached tob. Let H1 andH2 be the graphs respectively
obtained fromH (see Figure 3). There is a homomorphism fromG to H1 and there
is a homomorphism fromG to H2. We conclude thatG can be deduced fromH.

Definition 4 (Completion) A consistent PG defined on a vocabularyV = (RV ,IV)
is completew.r.t. a set of relation namesR ⊆ RV , if for eachr ∈ R with arity
k, for eachk-tuple of not necessarily distinct term nodes(t1, . . . , tk), it contains
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+r(t1, . . . , tk) or −r(t1, . . . , tk). If such a PGHc is obtained by adding relation
nodes to a PGH, it is called acompletionof H (w.r.t.R).

If a relation node∼r(u) with r ∈ R is added to a complete PG, either this rela-
tion node is redundant or it makes the PG inconsistent. A complete PG is obtained
from a consistent PGG by repeatedly adding positive and negative relation nodes
as long as a relation node bringing new information and not yielding an inconsis-
tency can be added. Since a PG is a finite graph defined over a finite set of relation
names, the number of different complete PGs that can be obtained from it is finite.
We can now define the deduction problem on PGs in terms of completion.

Definition 5 (PG-DEDUCTION ) PG-DEDUCTION takes two PGsG andH defined
on a vocabularyV = (RV ,IV) as input, withH being consistent, and asks whether
G can be PG-deduced fromH, i.e. whetherG can be mapped to each completion
of H w.r.t.RV .

The following theorem expresses thatPG-DEDUCTION is sound and complete
with respect to the deduction in FOL.

Theorem 1 [ML07] Let G andH be two PGs without isolated term nodes, withH

being consistent. ThenG can be PG-deduced fromH if and only ifΦ(H) � Φ(G).

In the rest of the paper, we will thus not distinguish betweenlogical deduction
in the FOL{∃,∧,¬a} fragment and PG-deduction, and use the expression “G is
deducible fromH”.

Let us outline a brute-force algorithm scheme forPG-DEDUCTION: all com-
pletions ofH w.r.t. relation names occurring inG are generated fromH, and for
each of them it is checked whetherG can be mapped to it. A complete graph to
which G cannot be mapped can be seen as a counter-example to the assertion that
G is deducible fromH. Actually, not all relation names occurring inG need to be
considered for completingH:

Property 3 [LM07] The relation names that do not have both positive and nega-
tive occurrences inG and inH, are not needed in the completions ofH (i.e. G is
deducible fromH if and only ifG can be mapped to each completion ofH w.r.t.
the set of relation names that have both positive and negative occurrences inG and
in H).

From now on, completions ofH are implicitly defined w.r.t. the set of relation
names that have both positive and negative occurrences inG and in H, unless
otherwise specified. This set of relation names will be referred to as thecompletion
vocabularyw.r.t. (G,H).
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3 Exchangeable literals and related properties

This section defines exchangeable literals and related notions, and provides the
basic theorems underlying the complexity results in Section 4.

Two literals are said to beoppositeif they have the same predicate and opposite
polarities. Let us identify specific opposite literals inG, which likely play a role
in the problem complexity, in the sense that they may lead to use the law of the
excluded-middle. We say that two opposite literals ofG are “exchangeable” if their
arguments can have the same images by homomorphisms fromG to (necessarily
distinct) completions ofH. More precisely:

Definition 6 (Exchangeable pair/literal w.r.t. (G,H)) A pair{+p(u),−p(v)} of
opposite literals inG is exchangeablew.r.t. (G,H) if there are two completions of
H, sayH1 andH2, and two homomorphismsπ1 andπ2, respectively fromG to H1

and fromG to H2, such thatπ1(u) = π2(v). A literal in G is exchangeablew.r.t.
(G,H) if it belongs to an exchangeable pair w.r.t.(G,H).

In the following, exchangeable pairs and exchangeable literals are implicitly
defined “w.r.t.(G,H)” if not otherwise specified4.

See for instanceG in Figure 2. Let us consider the pair{+p(x),−p(y)} of op-
posite literals inG. This pair is exchangeable, as can be seen in Figure 3: there is a
homomorphismπ1 from G to a completionH1 of H and there is a homomorphism
π2 from G to another completionH2 of H, such thatπ1(x) = π2(y) (and is the
node inH with labelb).

If a pair of literals{l1, l2} is exchangeable thenl1 andl2 can be unified (after a
renaming of their common variables), but the reverse is not generally true because
the notion of exchangeable pair takes both structures ofG andH into account. See
for instance Figure 4, wherel1 andl2 are unifiable, as well asl1 andl3. {l1, l2} is
an exchangeable pair, which can be seen with the following two completions ofH
(note that the completion vocabulary is restricted top): in one completion, sayH1,
−p(b) is added (and a homomorphism fromG to H1 mapsl2 to−p(b); in another
completion, sayH2, +p(b) and−p(d) are added (and a homomorphism fromG to
H2 mapsl1 to +p(b). It can be checked that{l1, l3} is not an exchangeable pair:
there are no two completions such that their argument can be mapped to the same
node5.

4Note that “w.r.t.H” would not be sufficient. Indeed, a subgraphG′ of G may contain literals
that are exchangeable w.r.t.(G′, H) but not w.r.t.(G, H). In particular, the property “being without
exchangeable pair of literals” is not inherited by the subgraphs.

5The restriction to relation names of the completion vocabulary (see Property 3) in completions
of H is important; in the previous example,{l1, l3} would be an exchangeable pair if the relation
namer was considered in completions ofH .
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Figure 4: Exchangeable versus unifiable literals

We will now consider the subgraphs ofG that do not contain any exchange-
able pair w.r.t.(G,H). A subgraph ofG without exchangeable pair w.r.t.(G,H)
is a subgraph ofG containing at most one literal of each exchangeable pair w.r.t.
(G,H). A particular case is thesocleof G (w.r.t. H) which contains no exchange-
able literal w.r.t.(G,H) at all.

Definition 7 (SocleGs) Given two PGsG andH, thesocleof G w.r.t. H, denoted
Gs, is the subgraph ofG obtained fromG by removing all exchangeable literals.

We recall that removing a literal means removing its relation node. Thus the
socle ofG contains all term nodes inG. See Figure 2:G has one exchangeable pair
{+p(x),−p(y)}. The subgraphs ofG without exchangeable pair are the subgraphs
of G not containing+p(x) or not containing−p(y). Gs is the subgraph ofG
obtained by removing both relation nodes.

The following theorem is a key technical result, which underlies the main forth-
coming results:

Theorem 2 LetG andH be two PGs, withH being consistent. IfG is deducible
from H, then, foreachcompletionHc of H, there is a homomorphism fromG to
Hc that mapsGs to H.

Proof: Assuming thatG is deducible fromH, let Hc be a completion ofH. Let
R be the set of literalsl in Hc \H such that there is a homomorphism fromG to
Hc mapping a literal ofGs to l. R is consistent since it is a set of literals inHc.
Let Hc′ be the completion ofH obtained fromHc by replacing every literal ofR
by its complementary literal, and letπ be a homomorphism fromG to Hc′ (such

13



a homomorphism exists sinceG is deducible fromH). Let us show thatπ is a
homomorphism fromG to Hc that mapsGs to H. No literal ofG can be mapped
by π to the complementary literal of a literal ofR (otherwise this literal would be
exchangeable with a literal ofGs, which contradicts the definition ofGs). Thusπ

is a homomorphism fromG to Hc. Therefore, by definition ofR, every literal of
Gs is mapped byπ to eitherH or R. However, asπ is a homomorphism fromG
to Hc′ , which contains no literal ofR, no literal ofGs can be mapped toR, thusπ

mapsGs to H. �

Let Hc+ (resp.Hc−) be the positive (resp. negative) completion ofH obtained
by adding only positive (resp. negative) literals. As a corollary of the previous
theorem, we obtain:

Property 4 Let G and H be two PGs, withH being consistent. LetG− (resp.
G+) be the subgraph ofG defined by adding toGs all negative (resp. positive)
exchangeable literals inG. If G is deducible fromH, then there is a homomor-
phism fromG to Hc+, the positive completion ofH (resp. toHc−, the negative
completion ofH), that mapsG− (resp.G+) to H.

Proof: Let us prove the property forG− andHc+ (the proof forG+ andHc− is
symmetric). IfG is deducible fromH, Theorem 2 ensures that there is a homo-
morphism, sayπ, from G to Hc+ that mapsGs to H. SinceHc+ is obtained from
H by adding positive literals,π maps all negative literals ofG to H. Thusπ maps
G− to H. �

If we consider any subgraph ofG without exchangeable pair (w.r.t.(G,H)),
we have a weaker relationship between this subgraph and completions ofH:

Theorem 3 Let G andH be two PGs, withH being consistent. LetG′ be a sub-
graph ofG without exchangeable pair w.r.t.(G,H). If G is deducible fromH,
then there is a completionHc of H and a homomorphism fromG to Hc that maps
G′ to H.

Proof: We suppose thatG is deducible fromH. Let R be the set of literalsl such
that there is a completionHc of H such thatl is a literal in Hc \ H and there
is a homomorphism fromG to Hc mapping a literal ofG′ to l. R is consistent
sinceG′ contains no exchangeable pair w.r.t.(G,H). Let Hc be a completion
of H containing the complementary literals of all literals ofR (such a completion
exists sinceR is consistent), and letπ be a homomorphism fromG to Hc (such
a homomorphism exists sinceG is deducible fromH). Let us show thatπ maps
G′ to H. By definition ofR, every literal ofG′ is mapped byπ to eitherH or R.
However, asπ is a homomorphism fromG to Hc, which contains no literal ofR,
no literal ofG′ can be mapped toR, soπ mapsG′ to H. �
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Theorem 3 can be rephrased as follows: ifG is deducible fromH, then each
subgraphG′ of G without exchangeable pair can be mapped toH by a homomor-
phism that can be extended to a homomorphism fromG to a completion ofH. We
give the following definitions and property for this notion of extensibility.

Definition 8 (Ground subgraph of G) A groundsubgraph ofG (w.r.t. H) is a
graph obtained fromG by removing some literals whose relation name belongs to
the completion vocabulary (w.r.t.(G,H)).

Note thatGs is a ground subgraph ofG.

Definition 9 (Extensible homomorphism) A homomorphismπ from a ground sub-
graphG′ of G to H is extensible(w.r.t. (G,H)) if it satisfies

1. for any literal∼r(u) in G \G′,∼r(π(u)) is not inH;

2. for any opposite literals+r(u) and−r(v) in G \G′, π(u) 6= π(v).

Note that, asG′ is a ground subgraph ofG, G′ contains all term nodes ofG, so
π(u) is defined for any literal∼r(u) in G \G′.

Property 5 A homomorphismπ from a ground subgraphG′ ofG toH is extensible
(w.r.t. (G,H)) if and only if it can be extended to a homomorphism fromG to a
completion ofH.

Proof: Let π be a homomorphism fromG′ to H. Conditions 1 and 2 are obviously
necessary forπ to be extendable to a homomorphism fromG to a completion of
H. Let us show that they are sufficient. We suppose thatπ satisfies conditions 1
and 2. LetH ′ be the graph obtained fromH by adding the literal∼r(π(u)) for
every literal∼ r(u) in G \ G′ such that∼ r(π(u)) is not already present inH.
For each added literall, the literall is not inH by condition 1, and is not another
added literal by condition 2. ThusH ′ is consistent. Moreover, asG′ is a ground
subgraph ofG, the relation name of each literal inG\G′ belongs to the completion
vocabulary. It follows thatH ′ can be completed into a completionHc of H and
thatπ can be extended to a homomorphism fromG to Hc. �

We obtain the following corollary of Theorem 3 and Property 5.

Corollary 1 Let G and H be two PGs, withH being consistent. LetG′ be a
ground subgraph ofG without exchangeable pair w.r.t.(G,H). If G is deducible
from H, then there is an extensible homomorphism fromG′ to H.

15



Previous properties provide necessary deducibility conditions, and therefore
sufficient non-deducibility conditions. For instance, by Corollary 1, if we find a
ground subgraph ofG without exchangeable pair w.r.t.(G,H) such that there is
no extensible homomorphism fromG′ to H then we know thatG is not deducible
from H.

The problem of checking whether there is an extensible homomorphism from
G′ to H (given PGsG andH and a ground subgraphG′ of G) is NP-complete. It
is in NP since an extensible homomorphism fromG′ to H provides a polynomial
certificate, and it is complete for NP since in the case whereG′ = G, it is equivalent
to the NP-complete problem of checking homomorphism fromG to H.

4 Main complexity Results

We now focus on the role of exchangeable literals in the problem complexity. It
follows immediately from previous properties that the problem complexity falls
into NP if G has no exchangeable pair (see also Section 4.2). A natural question
that arises then is whether a bounded number of exchangeablepairs affects the
complexity. The answer is yes, as we will show it.

To study this question, let us define the following family of problems, wherek
is the maximal number of exchangeable pairs inG, and is fixed for each problem.

DEDUCTIONk

Input: two PGsG andH, with H being consistent andG possessing (at most)k
exchangeable pairs w.r.t.(G,H).
Question:Is G deducible fromH?

For any integersk and k′ such thatk < k′, DEDUCTIONk′ is at least as diffi-
cult as DEDUCTIONk , since any graphG possessing at mostk exchangeable pairs
also possesses at mostk′ exchangeable pairs.

Please note for the following results that we make the usual assumption that
the arity of predicates is bounded by a constant.

4.1 Complexity of the recognition problem

A desirable property is that recognizing exchangeable literals is not difficult com-
pared toPG-DEDUCTION complexity, which is indeed the case:

Property 6 Let EXCHANGEABLE be the problem that takes two PGsG andH as
input and asks ifG possesses an exchangeable pair w.r.t.(G,H). EXCHANGE-
ABLE is NP-complete.
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Proof: EXCHANGEABLE is in NP: a polynomial certificate is given by a pair of two
opposite literals inG, and the proof that it is exchangeable, i.e. two completionsof
H and two homomorphisms fromG to these completions which map the literals
to the “same place”. For NP-completeness, a reduction is built from positivePG-
HOMOMORPHISM (given two positive PGsG1 andG2, is there a homomorphism
from G1 to G2 ?). LetG1 andG2 be two positive PGs. “Gadgets” are added to
G1 andG2, yielding G′

1 andG′
2 respectively, such that there is a homomorphism

from G1 to G2 if and only if G′
1 possesses an exchangeable pair w.r.t.(G′

1, G
′
2).

Take, for instance, the graphsG andH in Figure 2, and choose the relation names
r andp such that they do not occur inG1 andG2. G′

1 (resp. G′
2) is obtained by

making the disjoint sum6 of G1 andG (resp. ofG2 andH). The only candidate
exchangeable pair inG′

1 is {+p(x),−p(y)}. �

The polynomial certificate used in the previous proof can be extended in a
straightforward way to a polynomial certificate for the problem of deciding whether
a graph possesses “at leastk exchangeable pairs” (wherek is fixed). It follows that
this problem is NP-complete too. Thus, the problem of deciding whether a graph
possesses at mostk exchangeable pairs, i.e. the recognition problem associated
with DEDUCTIONk , is co-NP-complete.

Property 7 The problem that takes two PGsG and H as input and asks ifG
possesses at mostk exchangeable pairs w.r.t.(G,H) is co-NP-complete.

The complexity of the recognition problem associated with DEDUCTIONk may
be seen as restricting practical use of the results in this paper. However, besides the
fact that recognizing exchangeable pairs may be easier in practice than in theory,
most of these results can be used in a weaker form by replacingexchangeable pairs
by pairs of opposite (or opposite and unifiable) literals, which can be recognized in
linear time. For instance, Theorem 2 still holds ifGs is replaced by the subgraph
of G obtained fromG by removing all pairs of opposite and unifiable literals, since
this graph is a subgraph ofGs.

4.2 DEDUCTION0 and DEDUCTION1

It follows from previous results thatDEDUCTION0 is NP-complete. We will show
that DEDUCTION1 is also NP-complete.

Property 8 Let G andH be two PGs, withG having no exchangeable pair w.r.t.
(G,H), andH being consistent.G is deducible fromH if and only if there is a
homomorphism fromG to H.

6The disjoint sum of two graphsA andB is the graph obtained by making the union of two
disjoint copies ofA and ofB.
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Figure 5: Illustration of Algorithm 1

Proof: If there is a homomorphism fromG to H then G is deducible fromH

by Property 2. The converse follows from Theorem 2 sinceGs = G (or from
Theorem 3 withG′ = G). �

Property 9 The problemDEDUCTION0 is NP-complete.

It can be immediately checked thatDEDUCTION1 is NP-difficult: it is at least
as difficult as the NP-complete problem DEDUCTION0 . It remains to prove that
DEDUCTION1 is in NP.

Let us first explain the ideas of the proof on Figure 5.G possesses one ex-
changeable pair{+p(x),−p(y)}. There is no homomorphism fromG to H. But
G can be mapped to every completion ofH that contains−p(b) (with x andy

being respectively mapped toa andb). If a completion does not contain−p(b),
then it contains+p(b), thus it remains to check thatG is deducible fromH1 =
H + {+p(b)}. The same reasoning is applied onH1: there is no homomorphism
from G to H1, butG can be mapped to every completion ofH1 that contains−p(c)
(with x andy being respectively mapped tob andc); it remains to check thatG
is deducible fromH2 = H1 + {+p(c)}, which is the case since there is a homo-
morphism fromG to H2. G can thus be seen as “sliding” on a growingH, from a
place allowing to mapG\{−p(y)} to a place allowing to mapG\{+p(x)}. Each
step after the first one uses the literal added at the preceding step. We are sure that
this sliding process will succeed after a finite number of steps sinceH cannot grow
infinitely.

These ideas directly lead to Algorithm 1.

Property 10 The algorithmDEDUCTION1 is correct.

Proof: We first check that the recursive call satisfies the precondition, i.e. that
if there is at most one exchangeable pair w.r.t.(G,H) then there is at most one
exchangeable pair w.r.t.(G,H + {∼p(π(u))}) and the precondition on∼ p(u)
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Algorithm 1 : DEDUCTION1

Data: G andH two PGs;H is consistent;G possesses at most one
exchangeable pair; if it has one,∼p(u) is an exchangeable literal inG
otherwise∼p(u) is a literal inG such that relation namep belongs to
the completion vocabulary w.r.t.(G,H).

Result: true if G is deducible fromH, false otherwise
begin

if there is no extensible homomorphism fromG \ {∼p(u)} to H then
return false

else
let π be such a homomorphism
if ∼p(π(u)) is in H then

return true
else

return DEDUCTION1(G,H + {∼p(π(u))},∼p(u))

end

still holds. It is indeed the case, since any exchangeable pair w.r.t. (G,H +
{∼p(π(u))}) is also an exchangeable pair w.r.t.(G,H), as any completion of
H + {∼p(π(u))} is also a completion ofH (note that the completions ofH and
of H + {∼p(π(u))} are defined w.r.t. the same set of relation names since relation
namep belongs to the completion vocabulary w.r.t.(G,H)).
We also check that the number of recursive calls is finite, as the number of nodes of
H is incremented at each recursive call (the added literal∼p(π(u)) is not already
present inH sinceπ is extensible7), and is bounded by the number of literals in a
completion ofH.
Let us show by induction on the numberk of recursive calls that DEDUCTION1(G,H,∼
p(u)) returns true ifG is deducible fromH, and false otherwise. Ifk = 0, i.e. if
there is no recursive call, then either there is no extensible homomorphism from
G \ {∼ p(u)} to H (and then by Corollary 1G is not deducible fromH) and
DEDUCTION1(G,H,∼p(u)) returns false, or∼p(π(u)) is in H (and thenπ can
be extended to a homomorphism fromG to H, soG is deducible fromH) and
DEDUCTION1(G,H,∼p(u)) returns true. Thus the property is true fork = 0. We
suppose that it is true fork recursive calls. Let us show that it is true fork + 1
recursive calls. As there is at least one recursive call, DEDUCTION1(G,H,∼p(u))
returns true iff DEDUCTION1(G,H + {∼p(π(u))},∼p(u)) returns true, i.e., by

7Here, asG \ G′ is restricted to literal∼p(u), conditions 1 and 2 of extensibility are restricted
to: ∼p(π(u)) is not inH .
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induction hypothesis, iffG is deducible fromH +{∼p(π(u))}. It remains to show
that G is deducible fromH iff G is deducible fromH + {∼p(π(u))}. If G is
deducible fromH thenG is deducible fromH + {∼p(π(u))} since every com-
pletion ofH + {∼p(π(u))} is a completion ofH. Conversely, we suppose thatG

is deducible fromH + {∼p(π(u))}. As π is an extensible homomorphism from
G \ {∼p(u)} to H, it can be extended to a homomorphism fromG to H + {∼
p(π(u))}. ThusG can be mapped to every completion ofH + {+p(π(u))} and
to every completion ofH + {−p(π(u))}, and therefore to every completion ofH

(since any completion ofH contains eitherH + {+p(π(u))} or H + {−p(π(u))}.
HenceG is deducible fromH. �

The following property immediately follows from Algorithm1.

Property 11 LetG andH be two PGs such thatG has (at most) one exchangeable
pair, containing literal∼p(u) andH is consistent.G is deducible fromH if and
only if there is a sequence(πi)i∈1..m such that:

1. π1 is an extensible homomorphism fromG \ {∼p(u)} to H1 = H

2. ∀i ∈ 2..m− 1,
πi is an extensible homomorphism fromG \ {∼ p(u)} to Hi = Hi−1 +
{∼p(πi−1(u))}

3. πm is a homomorphism fromG to Hm = Hm−1 + {∼p(πm−1(u))}.

We are now able to prove the NP-completeness ofDEDUCTION1.

Theorem 4 The problemDEDUCTION1 is NP-complete.

Proof: The polynomial certificate follows directly from Property 11. Indeed, the
lengthm of the sequence is bounded by(nH)k, wherenH is the number of term
nodes inH andk is the arity ofr (which is considered as bounded by a constant).

�

4.3 DEDUCTIONk

Let us now show that DEDUCTIONk falls into PNP for any value of parameter
k. The technique used to show that Deduction1 is in NP does not seem to be
generalizable tok ≥ 2. Instead, we will rely on Theorem 2. We first deduce from
this theorem a necessary and sufficient deducibility condition (Property 12), which
will be used in subsequent complexity proofs, and is also interesting for itself.

Let us provide an idea of this condition on examples of Figures 2 and 5. For
the graphs in Figure 2, ifp(b) is known to be true (i.e. if literal+p(b) is added to
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H) thenG can be deduced (i.e.G can be mapped toH + {+p(b)}), and ifp(b) is
known to be false thenG can be deduced too (i.e.G can also be mapped toH +
{−p(b)}). Thus there are two extensible homomorphisms fromGs to H, which
can be extended to homomorphisms fromG to H + {+p(b)} andH + {−p(b)}
respectively, with the propositionp(b)∨¬p(b) being a tautology. Similarly, for the
graphs in Figure 5, there are three extensible homomorphisms π1, π2 andπ3 from
Gs to H mappingGs to +r(a, b), +r(b, c) and+r(c, d) respectively, that can be
extended to homomorphisms fromG to H + {−p(b)}, H + {+p(b),−p(c)} and
H + {+p(c)} respectively, with the proposition¬p(b) ∨ (p(b) ∧ ¬p(c)) ∨ p(c)
being a tautology. We will build from the set of extensible homomorphisms from
any ground subgraphG′ of G contained inGs to H a propositional formula that is
a tautology if and only ifG is deducible fromH.

Notations 1 Let G andH be two PGs, withH being consistent, and letG′ be a
ground subgraph ofG.
PH denotes the set of atoms ofΦ(Hc \ H), whereHc is an arbitrary completion
of H, seen as the set of atoms of a language in propositional logic.
For any extensible homomorphismπ from G′ to H, LG′(π) denotes the set of lit-
erals l such thatl =∼p(π(u)) for some literal∼p(u) in G and l is not inH, and
CG′(π) denotes the conjunction of the literals inLG′(π) seen as a proposition on
PH .
DG′(G,H) denotes the disjunction of the propositionsCG′(π) for all extensible
homomorphismsπ fromG′ to H.
Omission of subscriptG′ means thatG′ is equal toGs.

For instance, in the previous example of Figure 5, withPH = {p(b), p(c)}
andG′ = Gs, L(π1) = {−p(b)}, L(π2) = {+p(b),−p(c)}, L(π3) = {+p(c)},
C(π1) = ¬p(b), C(π2) = p(b) ∧ ¬p(c), C(π3) = p(c), D(G,H) = ¬p(b) ∨
(p(b) ∧ ¬p(c)) ∨ p(c).
LG′(π) is the set of literals "missing" inH for π to be extendable to a homomor-
phism fromG to H, and therefore it is the set of literals that have to be in any
completionHc of H such thatπ can be extended to a homomorphism fromG to
Hc. This is stated in following Lemma 1.

Lemma 1 Let G and H be two PGs, letHc be a completion ofH, let G′ be a
ground subgraph ofG, and letπ be an extensible homomorphism fromG′ to H. π

can be extended to a homomorphism fromG to Hc if and only ifLG′(π) is a set of
literals in Hc.

Lemma 2 expresses the straightforward correspondence between the comple-
tions ofH and the truth assignments onPH .
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Lemma 2 There is a bijectionf from the set of completions ofH to the set of truth
assignments onPH such that for any completionHc of H, any ground subgraph
G′ of G and any extensible homomorphismπ from G′ to H, LG′(π) is a set of
literals in Hc if and only iff(Hc) satisfiesCG′(π).

Proof: Let f be the mapping from the set of completions ofH to the set of truth
assignments onPH defined by: for every completionHc of H, f(Hc) assigns the
value true to an atomp(u) in PH if +p(u) is a literal inHc, and false otherwise
(i.e. if −p(u) is a literal inHc). f clearly satisfies the desired conditions. �

Property 12 Let G and H be two PGs, withH being consistent, and letG′ be
a ground subgraph ofG contained inGs. G is deducible fromH if and only if
DG′(G,H) is a tautology.

Proof: By Theorem 2 (sinceG′ is contained inGs) and Property 5 (sinceG′ is
a ground subgraph ofG), G is deducible fromH iff for each completionHc of
H, there is an extensible homomorphism fromG′ to H that can be extended to a
homomorphism fromG to Hc. By Lemmas 1 and 2, the latter proposition can be
rephrased as: for each truth assignmentv on PH , there is an extensible homomor-
phismπ from G′ to H such thatv satisfiesCG′(π), i.e. DG′(G,H) is a tautology.
�

In order to prove that DEDUCTIONk is in PNP , we show how to compute
D(G,H) without explicitly computing all extensible homomorphisms from Gs

to H, whose number may be exponential in the size ofG. Let E be the set of
exchangeable literals, andTE be the set of term nodes occurring inE . The main
idea is that, for any extensible homomorphism fromGs to H, the setL(π), and
therefore propositionC(π), only depend on the restriction ofπ to TE . Thus, we
can defineL(ϕ) andC(ϕ) for any mappingϕ from TE to the setTH of term nodes
in H, andD(G,H) is the disjunction of the propositionsC(ϕ) for every mapping
ϕ from TE to TH that can be extended8 to an extensible homomorphism fromGs

to H. Algorithm 2 computesD(G,H) to determine whetherG is deducible from
H, using Property 12.

If the number of exchangeable pairs is bounded by a constantk, then the num-
ber of mappings fromTE to the set of term nodes inH becomes polynomial, which
makes DEDUCTIONk fall into PNP .

Theorem 5 For any integerk ≥ 0, the problemDEDUCTIONk is in PNP .

8A mappingϕ from TE to TH can be extended to an extensible homomorphism fromGs to H

iff it satisfies both following independent conditions: 1)ϕ can be extended to a homomorphism, say
π, from Gs to H and 2)ϕ satisfies conditions 1 and 2 of extensibility, which only depend on the
restriction ofπ to TE , i.e. onϕ itself.
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Algorithm 2 : Deductionk(G,H)

Data: G andH two PGs, such thatH is consistent
Result: true if G is deducible fromH, false otherwise
begin

Let E be the set of exchangeable literals w.r.t.(G,H)
Let TE be the set of term nodes occurring inE
Let Gs = G \ E
Φ← false

for every mappingϕ fromTE to the set of term nodes inH do
if ϕ can be extended to an extensible homomorphism fromGs to H

then
Φ← Φ ∨ C(ϕ)

return Tautology(Φ)
end

Proof: It is sufficient to show that if the number of exchangeable pairs is bounded
by k then Algorithm 2 can be executed in polynomial time with a polynomial
number of calls to a NP oracle. This is indeed the case since:
- to computeE , it is sufficient to determine for each pair of opposite literals ofG
(whose number is polynomial) if it is exchangeable, which isin NP,
- |TE | ≤ 2kr, wherer is the maximal arity of a relation name, so the number of
mappings fromTE to the set of term nodes inH is bounded byn2kr

H , and therefore
is polynomial,
- determining if such a mappingϕ can be extended to an extensible homomorphism
from Gs to H is in NP (such an extension provides a polynomial certificate),
- determining if a proposition is not a tautology is in NP. �

4.4 DEDUCTION3

Let us now prove that DEDUCTIONk is co-NP-difficult for anyk ≥ 3. As it is also
NP-difficult, it is not likely in NP nor in co-NP.

Theorem 6 The problemDEDUCTION3 is co-NP-difficult.

Proof: To prove that DEDUCTION3 is co-NP-difficult, we define a reduction from
the co-NP-complete problem 3-DNF Tautology to DEDUCTION3.
3-DNF Tautology
Input: a 3-DNF propositional formulaΦ, i.e. a propositionΦ in disjunctive normal
form (disjunction of conjunctions of literals) such that each conjunction inΦ has
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at most 3 literals.
Question:Is Φ a tautology?

The reduction uses Property 12. LetΦ be a 3-DNF proposition. By Property 12, it
is sufficient to build two PGsG andH in polynomial time, withH consistent and
with at most 3 exchangeable pairs, such that for some ground subgraphG′ of G

contained inGs, DG′(G,H) is a tautology iffΦ also is.
It is rather easy to build such PGsG andH with at most 9 exchangeable pairs. To
ensure that they have at most 3 exchangeable pairs, we have torefine the construc-
tion. For this, we introduce the notion ofcorrectmapping w.r.t.Φ.
Let P be the set of atoms inΦ. A mappingα from P to {1, 2, 3} is said to be
correct (w.r.t. Φ) if for any conjunctionC in Φ and any positive literalsp andp′

(resp. negative literals¬p and¬p′) in C, α(p) 6= α(p′).
For instance, ifΦ = (¬p ∧ ¬s) ∨ (s ∧ ¬q ∧ ¬r) ∨ (p ∧ q ∧ r) then the mapping
α = {(p, 1), (q, 2), (r, 3), (s, 2)} is correct. Note that there may be no correct map-
ping w.r.t. a givenΦ. For instance, ifΦ = (p∧ q ∧ r)∨ (p∧ q ∧ s)∨ (r ∧ s) then a
correct mappingα should satisfyα(r) = α(s) from the two first conjunctions, and
α(r) 6= α(s) from the third conjunction.
In the first step of the proof, we will describe how to build in polynomial time from
a 3-DNF propositionΦ both a 3-DNF propositionΦ′, such thatΦ′ is a tautology iff
Φ is, and a correct mappingα w.r.t. Φ′ (which will necessarily exist). In the sec-
ond step, we will describe how to build PGsG andH with at most 3 exchangeable
pairs from a 3-DNFΦ and a correct mapping w.r.t.Φ, such that for some ground
subgraphG′ of G contained inGs, DG′(G,H) is a tautology iffΦ is.

1. Construction of Φ′ and α

For each atomp in P , let h be the number of occurrences ofp in Φ, theseh oc-
currences are replaced byh new atomsp1, p2, . . . , ph, and the 3-DNF formula
NEQ(p1, . . . , ph) = (p1 ∧¬p2)∨ (p2 ∧¬p3)∨ . . . ∨ (ph−1 ∧¬ph) ∨ (ph ∧ ¬p1)
is added to the disjunction.Φ′ is the obtained formula. For instance, ifΦ =
(¬p∧¬s)∨ (s∧¬q∧¬r)∨ (p∧q∧r) thenΦ′ = (¬p1∧¬s1)∨ (s2∧¬q1∧¬r1)∨
(p2 ∧ q2 ∧ r2) ∨ NEQ(p1, p2) ∨ NEQ(q1, q2) ∨ NEQ(r1, r2) ∨ NEQ(s1, s2).
Note that a truth assignment satisfiesNEQ(p1, . . . , ph) iff it does not assign the
same truth value top1, . . . , ph. It follows thatΦ′ is a tautology iff it is satisfied by
each truth assignment assigning the same truth value top1, . . . , ph. ThusΦ′ is a
tautology iffΦ is.
A correct mappingα w.r.t. Φ′ is built as follows: for each conjunction inΦ′ com-
ing from a conjunction inΦ (considered independently from the others), atoms of
positive (resp. negative) literals are mapped to consecutive integers starting from
1; α is the union of the mappings obtained for these conjunctions. For instance,

24



if Φ′ = (¬p1 ∧ ¬s1) ∨ (s2 ∧ ¬q1 ∧ ¬r1) ∨ (p2 ∧ q2 ∧ r2) ∨ NEQ(p1, p2) ∨
NEQ(q1, q2)∨NEQ(r1, r2)∨NEQ(s1, s2) then we independently defineα1 =
{(p1, 1), (s1, 2)}, α2 = {(s2, 1), (q1, 1), (r1, 2)} andα3 = {(p2, 1), (q2, 2), (r2, 3)},
andα = α1 ∪ α2 ∪ α3. It is easy to check thatΦ′ andα can be computed in poly-
nomial time and thatα is correct w.r.t.Φ′.

2. Construction of G and H

Let Φ be a 3-DNF formula andα be a correct mapping w.r.t.Φ. PGsG andH are
defined as follows (see Figure 6 for an illustration).
G is independent fromΦ andα. It has 6 variable nodesx1, x2, x3, y1, y2 andy3,
and 7 literals:+r(x1, x2, x3, y1, y2, y3) and, for alli in 1..3, +p(xi) and−p(yi).
H depends fromΦ andα. Let p1, . . . , ph be the atoms inΦ, and letC1, . . . , Cq

be the conjunctions inΦ. H hash + 2 constant nodes labeled witha1, . . . , ah, c

andd, and it hasq + 2 literals: +p(c), −p(d) and, for alli in 1..q, +r(ui), with
ui = (si,1, si,2, si,3, ti,1, ti,2, ti,3) being defined as follows. For alli in 1..q and all
j in 1..3:
- if j = α(pk) for some positive literalpk in Ci (there is at most one such literalpk

sinceα is correct) thensi,j = ak elsesi,j = c,
- if j = α(pk) for some negative literal¬pk in Ci (there is at most one such literal
¬pk sinceα is correct) thenti,j = ak elseti,j = d.
For instance, consider the formula of the previous example(¬p ∧¬s)∨ (s ∧ ¬q ∧
¬r) ∨ (p ∧ q ∧ r). Let us renamep, q, r and s into p1, p2, p3 and p4 respec-
tively. We obtainΦ = (¬p1 ∧ ¬p4) ∨ (p4 ∧ ¬p2 ∧ ¬p3) ∨ (p1 ∧ p2 ∧ p3). Let
α = {(p1, 1), (p2, 2), (p3, 3), (p4, 2)}. Then the literals ofH labeled with+r are
+r(c, c, c, a1, a4, d), +r(c, a4, c, d, a2, a3) and+r(a1, a2, a3, d, d, d), as pictured
in Figure 6.
G andH can be constructed in polynomial time. The completion vocabulary is re-

stricted to{p}. LetG′ be the subgraph ofG restricted to its literal+r(x1, x2, x3, y1, y2, y3).
G′ is a ground subgraph ofG contained inGs. It is easy to check thatDG′(G,H)
is obtained fromΦ by replacing each atompi by atomp(ai). For instance, in the
example of Figure 6, there are 3 extensible homomorphisms from G′ to H, and
DG′(G,H) = (¬p(a1)∧¬p(a4))∨ (p(a4)∧¬p(a2)∧¬p(a3))∨ (p(a1)∧p(a2)∧
p(a3)). ThusDG′(G,H) is a tautology iffΦ is.
It remains to show that there are at most 3 exchangeable pairsw.r.t. (G,H). There
are 9 pairs of opposite literals inG, namely the pairs{+p(xi),−p(yj)} for i, j in
1..3. However, ifxi andyj are mapped to the same nodew in H by two homo-
morphisms fromG to completions ofH, then there is an integerk in 1..h such
that w is labeledak, with i = j = α(pk). Thus, each exchangeable pair is in
the form{+p(xi),−p(yi)}, with i in 1..3. As announced at the beginning of this
proof, using a correct mapping w.r.t.Φ to defineH allows to bound the number of
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Figure 6: Reduction from 3-DNF Tautology to DEDUCTION3

26



exchangeable pairs to 3 instead of 9. �

4.5 When homomorphism checking is polynomial

Homomorphism checking becomes polynomial in the particular case whereG is
decomposable into a tree, for instance ifG is a graph with treewidth less than a
fixed integerk (and in this case it corresponds to a formula of thek-variables frag-
ment of FOL [KV00]); if G is seen as a hypergraph, with relation nodes becoming
hyperedges, another polynomial case is obtained ifG is a hypergraph with hyper-
treewidth at most a fixed integerk (and in this case it corresponds to a formula of
thek-guarded fragment of FOL) [GLS01]. These particular cases are specially rel-
evant in a query answering context, whereG represents a query andH represents
a knowledge base composed of a set of facts. Indeed, one may reasonably assume
that the query has a simple structure with respect to that of the base.

Interestingly, our previous proofs allow us to completely classify the complex-
ity of DEDUCTION and DEDUCTIONk in the above special cases (except fork = 2
for which the complexity in the general case is unknown):

Theorem 7 WhenG has a special structure that makes homomorphism checking
polynomial, the following complexity results hold:

• DEDUCTION is co-NP-complete

• DEDUCTION0 andDEDUCTION1 are in P

• DEDUCTIONk is co-NP-complete for anyk ≥ 3.

Proof: DEDUCTION is in co-NP since a completionHc of H to which G can-
not be mapped is a polynomial certificate of the complementary problem,NON-
DEDUCTION (the size ofHc is polynomial in the size ofH and the absence of
homomorphism fromG to Hc can be checked in polynomial time by hypothesis).
DEDUCTION is complete for this complexity class because the proof of Theorem 6
shows that DEDUCTION3 remains co-NP-difficult when homomorphism checking
from G to any graph is polynomial (in the reduction, the graphG built is a tree).
Hence, DEDUCTIONk is also co-NP-complete for anyk ≥ 3. That DEDUCTION0

and DEDUCTION1 are inP follows immediately from Property 8 and Algorithm 1
respectively. �

4.6 Pieces

We will now take advantage of some simple graph properties toextend previous
results. First note thatG is deducible fromH if and only if each connected com-
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ponent ofG is deducible fromH. Secondly, by splitting9 constant nodes inG into
several nodes (in this caseG is no longer normal), we do not change the logical
semantics ofG and we preserve the existence or not of a homomorphism fromG

to any normal graph.
Let us define particular subgraphs that we call thepiecesof G w.r.t. its constant

nodes. Let∼= be the following equivalence relation: givenr ands two relation
nodes inG, r ∼= s if there is a path inG betweenr ands that does not go through
a constant node, i.e. a pathx0(= r) . . . xk(= s) such that, for0 < i < k, xi is not
a constant node. The pieces ofG are the subgraphs composed of the literals whose
relation nodes are in the same equivalence class for∼=. This definition is extended
to isolated term nodes by considering that each isolated node form its own piece.
See Figure 7, which shows a PG on the left and its pieces on the right. The pieces
of G can be computed in linear time by a traversal ofG.

Property 13 Let G andH be two PGs, withH being consistent.G is deducible
from H if and only if each piece ofG is deducible fromH.

The constant nodes in pieces ofG can themselves be further split without any
impact on the existence of a homomorphism fromG to H. Some cycles in pieces

9Splitting a term nodex into n nodes, according to a partition{E1, . . . , En} of the edges incident
to x, consists of deletingx, creatingn term nodesx1, . . . , xn with the same label asx, and attaching
to eachxi the edges inEi, i.e. for each edge(x, j, r) in Ei, an edge(xi, j, r) is created.
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can thus be broken. Homomorphism checking becomes polynomial in the partic-
ular case where all pieces ofG can be split to yield a graph decomposable into a
tree (cf. Section 4.5).

See for instance Figure 7:G has 9 pairs of opposite literals, which may yield
9 pairs of exchangeable literals (depending onH and on edge labels inG, that
are omitted in Figure 7); each piece ofG has no opposite literals,a fortiori no
exchangeable literals, thus to check whetherG can be deduced fromH, one just
has to check if each piece ofG can be mapped toH. Furthermore, each piece of
G can be transformed into a logically equivalent tree by splitting constant nodes,
thus this instance of the Deduction problem belongs to the polynomial cases.

In all previous complexity results,k can be seen as representing the maximum
number of exchangeable pairs in a piece ofG instead of inG.

5 Logical approach through resolution trees

In this section, we follow a logical approach and prove againfundamental results of
this paper, namely Theorems 2 and 3 and Property 12, using theresolution method
in propositional logic. These new proofs will be used in Section 6.1 to show that
these results (hence the complexity results built on them) still hold when a preorder
on predicates is considered. Besides this use, the new proofs are interesting in
themselves, because they establish links between the resolution method, which is
one of the main proof method in logics, and our method based onhomomorphism
and completions. The notion of a PG-resolution tree is defined, which allows to
clarify these links. In particular, all logical literals used in a resolution tree “come
from” exchangeable literals inG (see property 16 and its proof for details).

Let G andH be two PGs,withH being consistent. By Theorem 1,G can be
deduced fromH if and only if Φ(H) � Φ(G), or equivalently,Φ(H) ∧ ¬Φ(G)
is unsatisfiable. By Herbrand Theorem,Φ(H) ∧ ¬Φ(G) is unsatisfiable if and
only if the setF of propositional formulas defined as follows is unsatisfiable.
The set of atoms of the propositional language on whichF is defined is the set
of atomsp(u) wherep is a relation name inR and u is a tuple of terms that
are terms inΦ(H). F is the set of clauses (disjunctions of literals) equal to
CH ∪ CG, whereCH is the set of clausesΦ(H) (each clause is restricted to
a literal) andCG is the set of all clauses in the formσ(c(G)) where c(G) is
the disjunction of the complementary literals of the literals in Φ(G) and σ is a
substitution of the variables ofc(G) by terms ofΦ(H). As usually done, we
represent a clause by the set of its literals. For instance, if G and H are the
PGs shown in Figure 5,CH = {{p(a)}, {r(a, b)}, {r(b, c)}, {r(c, d)}, {¬p(d)}},
c(G) = {¬p(x),¬r(x, y), p(y)} andCG is the set of all clauses obtained from
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c(G) by replacingx andy by elements of{a, b, c, d}. We recall a classical prop-
erty of unsatisfiable sets of propositional clauses.

Definition 10 (Resolution tree) A resolution tree of a setF of propositional clauses
is an anti-rooted binary treeT (each internal node ofT has exactly two parents
in T ) labeled with propositional clauses such that the anti-root of T is labeled
with the empty clause, each leaf ofT is labeled with a clause ofF and for each
internal nodey of T whose parents inT have respective labelsc1 and c2, there
is a literal l in c1 such thatl is a literal in c2 and label(y) = Res(c1, c2, l) =
(c1 \ {l}) ∪ (c2 \ {l}).

Property 14 (Resolution) A set of propositional clauses is unsatisfiable if and
only if it has a resolution tree.

In the following we suppose thatG is deducible fromH and we consider a resolu-
tion tree ofF = CG ∪CH . Note that ifc2 is restricted to{l} thenRes(c1, c2, l) =
c1 \{l}. Thus, clauses ofCH allow to eliminate literals from clauses not belonging
to CH (sinceH is consistent) without adding any literal. We may assume w.l.o.g.
that resolution operations involving clauses ofCH are performed first, hence there
is a resolution tree whose leaves are labeled with clauses obtained from clauses of
CG by removing some literalsl such that{l} is a clause ofCH . Moreover, we may
assume thatall literals l such that{l} is a clause ofCH are removed from these
clauses, since removing some literals from some clauses of an unsatisfiable set of
clauses preserves its unsatisfiability, and therefore preserves the existence of a res-
olution tree of this set of clauses10. We may also assume that none of these clauses
contains complementary literals since such a clause is a tautology and removing
a tautology from an unsatisfiable set of formulas preserves its unsatisfiability. We
obtain a resolution tree whose leaves are labeled with clauses obtained from clauses
of CG by removing all literals complementary to literals of clauses ofCH , and con-
taining no complementary literals. For instance, ifG andH are the PGs shown in
Figure 5, such a resolution tree is given in Figure 8. Note that the complementary
tree of a resolution treeT , i.e. the tree obtained fromT by replacing in each label
each literall by l, is still a resolution tree. The labels of this resolution tree contain
literals ofΦ(G) instead of their negation. Moreover, in order to come back tothe
PG point of view, we replace in labels of the obtained resolution tree logical literals
by PG literals.

Definition 11 (PG-resolution tree) A PG-resolution treeis a treeT whose nodes
are labeled with sets of PG literals and such that the tree obtained fromT by

10Please note that a clause that becomes empty is kept in the set.
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{  p(b), p(c)}

{  p(c))}

{p(b)}

{p(c)}

{}

Figure 8: A resolution tree

replacing in each label each PG literal+p(u) (resp.−p(u)) by the logical literal
p(u) (resp. ¬p(u)) is a resolution tree. Resolution operationRes(c1, c2, l) is
renamed into PG-resolution operationPG-Res(c1, c2, l).

For instance, the PG-resolution tree obtained from the complementary tree of the
resolution tree shown in Figure 8 is given in Figure 9 The anti-root of a PG-

{}T

{−p(b)} {+p(b), −p(c)}

{−p(c)} {+p(c)}

Figure 9: A PG-resolution tree

resolution treeT is denoted byar(T ), and the set of its leaves is denoted byL(T ).
We will use the following property of (PG-)resolution trees.

Lemma 3 In any PG-resolution treeT , for any literal l in the label of a node of
L(T ), l is also a literal in the label of a node ofL(T ).

Proof: Let x be a node ofL(T ) and letl be a literal inlabel(x). Let µ be the path
in T from x to ar(T ), let y be the first node ofµ from x such thatl is not a literal
in label(y), and letc = label(y) (y exists sincear(T ) is labeled with the empty
clause, andy 6= x sincel is a literal inlabel(x)). Let y1 andy2 be the parents of
y in T , with y1 on µ, labeled withc1 andc2 respectively. Asl is a literal inc1 but
not in c, c = PG-Res(c1, c2, l) andl is a literal inc2, and therefore in the label of
some node ofL(T ). �

In the same way as we identify term nodes of a PGG with the terms associated
with this node inΦ(G), we identify for each clauseσ(c(G)) of CG the substitution
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σ of variables ofΦ(G) by terms ofΦ(H) with a mapping from the setTG of term
nodes ofG to the setTH of term nodes ofH (mapping each constant node ofG to
the constant node ofH having the same label). Thus, we associate with each node
x of L(T ) a mappingπx from TG to TH such thatlabel(x) can be defined fromπx

as follows.

Definition 12 (PG-resolution tree of(G,H)) Let G and H be two PGs. APG-
resolution tree of(G,H) is a structure(T, (πx)x∈L(T )) whereT is a PG-resolution
tree such that for each nodex of L(T ), label(x) is consistent andπx is a mapping
from TG to TH such thatlabel(x) = {∼p(πx(u)) | ∼p(u) is a literal in G and
∼p(πx(u)) is not a literal inH}.

For instance the treeT shown in Figure 9 is a PG-resolution tree of(G,H),
whereG andH are the PGs shown in Figure 5: ifz is the node ofL(T ) labeled
with {−p(b)} (resp. {+p(b),−p(c)}, {+p(c)}) thenπz is the mapping fromTG

to TH mapping term nodesx andy to a andb (resp.b andc, c andd).

Property 15 (PG-resolution) LetG andH be two PGs, withH being consistent.
G is deducible fromH if and only if there is a PG-resolution tree of(G,H).

Proof: This follows from the discussion above:G is deducible fromH iff the
setF equal toCG ∪ CH is unsatisfiable; by Property 14,F is unsatisfiable iff it
has a resolution tree, and there is a resolution tree ofF if and only if there is a
PG-resolution tree of(G,H). �

Property 16 LetG andH be two PGs, and let(T, (πx)x∈L(T )) be a PG-resolution
tree of(G,H). For any nodex of L(T ), πx can be extended to a homomorphism
from G to a completion ofH, and any such homomorphism mapsGs to H.

Proof: Let x be a node ofL(T ). Let us show thatπx can be extended to a ho-
momorphism fromG to a completion ofH, i.e that there is a completionHc of
H such that for any literal∼p(u) in G such that∼p(πx(u)) is not a literal inH,
∼p(πx(u)) is a literal inHc. This is still equivalent to: there is a completionHc

of H such thatlabel(x) is a set of literals inHc. To prove this, it is is sufficient to
show that the following propositions a) and b) hold:
a)H + label(x) is consistent,
b) each relation name inlabel(x) is in the completion vocabulary w.r.t.(G,H).
Let us show Proposition a). AsH and label(x) are consistent, it is sufficient to
show that for any literall in label(x), l is not a literal inH. Let l be a literal in
label(x). By Lemma 3,l is in the label of a node ofL(T ), and therefore is not a
literal in H.
Let us show Proposition b). Letp be a relation name inlabel(x). Let us show
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that+p and−p have occurrences inG and inH. By Lemma 3,+p and−p have
occurrences in labels of nodes ofL(T ), and therefore inG. Since by Property 15
G is deducible fromH, every node ofG labeled with+p (resp. −p) is mapped
by a homomorphism fromG to Hc− (resp.Hc+) to a node ofH labeled with+p

(resp.−p). Hence Proposition b) holds, which completes the proof that πx can be
extended to a homomorphism fromG to a completion ofH.
Let π′

x be a homomorphism fromG to a completion ofH extendingπx. Let us
show thatπ′

x mapsGs to H, i.e that each literal∼p(u) in G such that∼p(π′
x(u)) is

not a literal inH is exchangeable. Let∼p(u) be a literal inG such that∼p(π′
x(u))

is not a literal inH. Then∼p(π′
x(u)) is a literal inlabel(x). By Lemma 3, there is

a nodey of L(T ) such that∼p(π′
x(u)) is a literal inlabel(y). So there is a literal

∼p(v) in G and a homomorphismπ′
y (extendingπy) from G to a completion ofH

such thatπ′
x(u) = π′

y(v). It follows that{∼p(u),∼p(v)} is an exchangeable pair,
hence∼p(u) is exchangeable. �

We are now ready to give new proofs of Theorems 2 and 3.

Lemma 4 Let G and H be two PGs. If there is a PG-resolution tree of(G,H)
then, foreachcompletionHc of H, there is a homomorphism fromG to Hc that
mapsGs to H.

Proof: We suppose that there is a PG-resolution tree(T, (πx)x∈L(T )) of (G,H).
Let Hc be a completion ofH. Let us show that there is a homomorphism fromG

to Hc that mapsGs to H. By Property 16, it is sufficient to show that there is a
nodex of L(T ) such thatπx can be extended to a homomorphism fromG to Hc,
i.e. such thatlabel(x) is a set of literals inHc. For any nodey of T , let P (y)
denote the property:
P (y): label(y) is a set of literals inHc.
In order to prove that there is a nodex of L(T ) such thatP (x) holds, we build
a pathµ from ar(T ) to a leafx of T , µ = (ar(T ) = y0, y1, ..., yp = x) such
that for eachi from 0 top, P (yi) holds. We defineyi and proveP (yi) by induc-
tion on i. For i = 0, y0 = ar(T ) andP (y0) trivially holds. We suppose that
(ar(T ) = y0, y1, ..., yi) is a path inT from ar(T ) towards a leaf ofT such that
P (yi) holds andyi is not a leaf ofT . Let z andz′ be the parents ofyi labeled
with c andc′ resp., and+p(w) such thatlabel(yi) = PG-Res(c, c′,+p(w)). Thus
label(z) ⊆ label(yi)∪{+p(w)} andlabel(z′) ⊆ label(yi)∪{−p(w)}. Moreover,
either+p(w) or−p(w) is a literal inHc since by Property 16,+p(w) is a literal in
H ′ \H for some completionH ′ of H. We defineyi+1 asz if +p(w) is a literal in
Hc, andz′ otherwise. It follows fromP (yi) and the definition ofyi+1 thatP (yi+1)
also holds. Hence there is a nodex of L(T ) such thatP (x) holds. �
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Theorem 2 Let G and H be two PGs, withH being consistent. IfG is de-
ducible fromH, then, foreachcompletionHc of H, there is a homomorphism from
G to Hc that mapsGs to H.

Proof: This follows immediately from Property 15 and Lemma 4. �

Lemma 5 LetG andH be two PGs. LetG′ be a subgraph ofG without exchange-
able pair w.r.t.(G,H). If there is a PG-resolution tree of(G,H) then there are a
completionHc of H and a homomorphism fromG to Hc that mapsG′ to H.

Proof: We suppose that there is a PG-resolution tree(T, (πx)x∈L(T )) of (G,H).
Let us show that there is a completionHc of H and a homomorphism fromG to
Hc that mapsG′ to H. By Property 16, it is sufficient to show that there is a node
x of L(T ) such that for any literal∼p(u) in G′,∼p(πx(u)) is a literal inH (since
in that case any homomorphism fromG to a completion ofH extendingπx maps
G′ to H), i.e. such that for any literal∼p(u) in G′, ∼p(πx(u)) is not a literal in
label(x). For this, it is sufficient to show that there is a nodex of L(T ) such that a
stronger propertyP (x) holds, whereP (y) is defined for any nodey of T by:
P (y): for any literal∼p(u) in G′ and any homomorphismπ from G to a comple-
tion of H,∼p(π(u)) is not a literal inlabel(y).
In order to prove that there is a nodex of L(T ) such thatP (x) holds, we build
a pathµ from ar(T ) to a leafx of T , µ = (ar(T ) = y0, y1, ..., yp = x) such
that for eachi from 0 top, P (yi) holds. We defineyi and proveP (yi) by induc-
tion on i. For i = 0, y0 = ar(T ) andP (y0) trivially holds. We suppose that
(ar(T ) = y0, y1, ..., yi) is a path inT from ar(T ) towards a leaf ofT such that
P (yi) holds andyi is not a leaf ofT . Let z andz′ be the parents ofyi labeled
with c andc′ resp., and+p(w) such thatlabel(yi) = PG-Res(c, c′,+p(w)). Thus
label(z) ⊆ label(yi)∪{+p(w)} andlabel(z′) ⊆ label(yi)∪{−p(w)}. Moreover
asG′ is without exchangeable pair, if there are a literal+p(u) in G′ and a homo-
morphismπ from G to a completion ofH such thatπ(u) = w then for any literal
−p(u) in G′ and any homomorphismπ from G to a completion ofH, π(u) 6= w,
and therefore−p(π(u)) 6= −p(w). We defineyi+1 asz′ if there are a literal+p(u)
in G′ and a homomorphismπ from G to a completion ofH such thatπ(u) = w,
and asz otherwise. It follows fromP (yi) and the definition ofyi+1 thatP (yi+1)
also holds. Hence, there is a nodex of L(T ) such thatP (x) holds. �

Theorem 3 Let G andH be two PGs, withH being consistent. LetG′ be a
subgraph ofG without exchangeable pair w.r.t.(G,H). If G is deducible from
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H, then there are a completionHc of H and a homomorphism fromG to Hc that
mapsG′ to H.

Proof: This follows immediately from Property 15 and Lemma 5. �

Note. The new proof of Theorem 2 (resp. Theorem 3) provides an algorithm to
find from a PG-resolution treeT of (G,H) a homomorphism fromG to a given
completion ofH that mapsGs toH (resp. a completion ofH and a homomorphism
from G to this completion that maps a given subgraph ofG without exchangeable
pair to H) by construction of a path inT from its anti-root to one of its leaves.
The algorithm induced by the proof of Theorem 2 is simple since we only have to
decide at each step if a given literal is in the given completion or not. The algorithm
induced by the proof of Theorem 3 is more delicate since we must decide at each
step if there are a literall in G′ and a homomorphism fromG to a completion ofH
mappingl to a given literal, which is an NP-complete problem. But computing a
PG-resolution tree of(G,H) is itself difficult, as the size of the setCG of clauses
is exponential in the number of variable nodes inG.

In Section 4, we deduced Property 12 from Theorem 2, using Lemmas 1 and 2
to translate PG-deduction into conditions on propositional formulas. We present a
new proof of Property 12 from Properties 15 and 16, using the natural correspon-
dence between a PG-resolution tree and the associated resolution tree to translate
PG-deduction into conditions on propositional formulas.

Lemma 6 Let G andH be two PGs, and letG′ be a ground subgraph ofG con-
tained inGs. There is a PG-resolution tree of(G,H) iff DG′(G,H) is a tautology.

Proof: We suppose that there is a PG-resolution tree(T, (πx)x∈L(T )) of (G,H).
Let us show thatDG′(G,H) is a tautology. By Properties 5 and 16 for any node
x of L(T ), πx can be extended to an extensible homomorphismπ′

x from G′ to
H, and thereforelabel(x) = LG′(π′

x). It follows that the setF of labels of the
leaves of the complementary treeT ′ of the resolution tree associated withT is the
set of clauses¬CG′(π′

x) for all nodesx of L(T ). As T ′ is a resolution tree, by
Property 14F is unsatisfiable, so the negation of the conjunction of the clauses
¬CG′(π′

x) in F , i.e. the disjunctions of propositionsCG′(π′
x) for all nodesx of

L(T ), is a tautology. HenceDG′(G,H) is a tautology.
Conversely, we suppose thatDG′(G,H) is a tautology. Let us show that there is a
PG-resolution tree of(G,H). LetF be the set of clauses¬CG′(π) for all extensible
homomorphismsπ from G′ to H. AsDG′(G,H) is a tautology,F is unsatisfiable,
and therefore has a resolution treeT by Property 14. LetT ′ be the PG-resolution
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tree associated with the complementary tree ofT . For each nodex of L(T ′) there
is an extensible homomorphismπ from G′ to H such thatlabel(x) = LG′(π), and
thereforelabel(x) satisfies the condition required on labels of a PG-resolution tree
of (G,H), with πx equal to the restriction ofπ to TG. Hence(T ′, (πx)x∈L(T ′)) is
a PG-resolution tree of(G,H). �

Property 12 Let G and H be two PGs, withH being consistent, and letG′ be
a ground subgraph ofG contained inGs. G is deducible fromH iff DG′(G,H) is
a tautology.

Proof: This follows immediately from Property 15 and Lemma 6. �

6 Extensions

This section presents two extensions of previous results, on one hand by integrating
a preorder on relation names, which allows to take a light ontology into account,
and on the other hand by refining the notion of exchangeable literals in order to
reduce their number.

6.1 Preordered predicates

In knowledge-based systems, an ontology describes the categories (or classes of
objects) of an application domain, called concepts, and thepossible relations be-
tween instances of these concepts. The set of concepts is usually provided with a
so-called subsumption or generalization/specializationrelation, which is a partial
order, or a preorder in the case where several concepts can beequivalent. The set
of relations can also be structured in the same way.

We show in this section that previous results can be extendedto take a light
ontologyO = (C,R,I) into account, whereC andR are preordered sets of con-
cepts and relations, respectively, andI is a set of individual names; only relations
with the same arity are comparable according to this preorder. This ontology is
said to be light, because concepts and relations are atomic (in the sense that they
do not have a definition) and the only relationship among themis the preorder
(noted≤). t2 ≤ t1 means thatt2 is a specialization oft1, or t2 is subsumed byt1.
A light ontology can be seen as the vocabulary (also calledsupport) in conceptual
graphs, and as aTBoxcomposed of inclusions between atomic concepts and binary
relations, called roles, in description logics.

Concepts are logically translated into unary predicates and relations of arity
k into k-ary predicates. For simplicity, we use the same name for a concept or
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relation t and its predicate, and keep the symbol≤ for the induced preorder on
predicates. The set of logical formulasΦ(O) assigned to a light ontologyO is as
follows: for all predicatest1 andt2 with the same arityk, if t2 ≤ t1, one has the
formula∀x1 . . . xk(t2(x1 . . . xk)→ t1(x1 . . . xk)).

All notions presented in Section 2 can be extended to a light ontology [ML07].
Let LO = (C ∪ R,I) be the logical language associated with a light ontologyO.
There are several ways of extending PGs to encode FOL{∃,∧,¬a} formulas on
LO. A literal of form∼t(e), wheret is a concept predicate, can be represented in
the label of the term node assigned toe; in this case a term node is labeled by a
pair ({∼t1 . . . ∼tp},m), wheret1 . . . tp is a set of concepts andm ∈ {∗} ∪ I. For
this translation, we must extend the label comparison and adapt the piece notion. A
simpler translation involves considering concept predicates as unary relations and
leaving the labels of term nodes unchanged. For simplicity we choose this second
representation in this paper, and we callRO the set of relation names available in
PG labels. Thus, ifO = (C,R,I) thenRO = C ∪ R.

Relation node labels are preordered as follows:+r1 ≤ +r2 (resp.−r2 ≤ −r1)
if r1 ≤ r2, and+r1 and−r2 are incomparable. The definition of a homomor-
phism takes this order into account. In a PG homomorphismπ, we now have
lH(π(r)) ≤ lG(r). Let us point out that the preorder can be compiled, so that
labels can be compared in constant (or almost constant) time; thus the preorder
does not introduce overhead complexity. Property 1 still holds, with “∼p(σ(u)) is
a literal inΦ(H)” being replaced with “there is a literal∼q(σ(u)) in Φ(H) with
∼ q ≤∼ p”. A PG is consistent if it does not contain contradictory literals, i.e.
+r(u) and−s(u) with r ≤ s. Given this extended definition of consistency, the
definitions of a complete PG and of a completion of a consistent PG w.r.t. a set of
relation namesR as well as the definition of PG-deduction are unchanged. Theo-
rem 1 still holds withΦ(H) |= Φ(G) being replaced withΦ(O),Φ(H) |= Φ(G).
We have to adapt the definitions of opposite literals and of the completion vocabu-
lary w.r.t. (G,H). We first give the following definition and Lemmas.

Definition 13 (HO) LetH be a consistent PG on a light ontologyO. HO denotes
the PG obtained fromH by adding each literal∼q(u) not already present inH
such that there is a literal∼p(u) in H with∼p ≤∼q.

Lemma 7 Let H be a consistent PG on a light ontologyO, and letL be a con-
sistent set of literals such that for any literall in L, l is not a literal inHO. Then
HO + L is consistent.

Proof: We assume for contradiction thatHO + L is inconsistent. Letl andl′ be
contradictory literals inHO + L. As L is consistent, at least one ofl andl′, sayl,
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is in HO. Let l =∼p(u), thenl′ = ∼q(u) for someq such that∼p ≤∼q. Hence
l′ is in HO and thereforel′ in not in L. It follows that l′ is also inHO. As l and
l′ are inHO, there are literals∼p1(u) and∼q1(u) in H with ∼p1 ≤∼p ≤∼q ≤∼
q1, so∼p1(u) and∼q1(u) are contradictory literals inH, which contradicts the
consistency ofH. �

Lemma 8 LetH be a consistent PG on a light ontologyO, and letR be a subset
ofRO. LetHc+

R
(resp.Hc−

R
) be the PG obtained fromH by adding for each atom

p(u) not already occurring inH such thatp is inR andu is anarity(p)-tuple in
H:
+p(u) if +p(u) is a literal in HO,
−p(u) if −p(u) is a literal in HO,
+p(u) (resp.−p(u)) if neither+p(u) nor−p(u) is a literal in HO.
ThenHc+

R
(resp.Hc−

R
) is a completion ofH w.r.t.R.

Proof: Let Hc = Hc+
R

(resp.Hc−
R

). It is sufficient to show thatHc is consistent,
which immediately follows from Lemma 7 withL being the set of literals inHc \
HO (L is consistent since it contains only positive (resp. negative) literals). �

It follows from Lemma 8 that for any subsetR of RO, a consistent PGH has
at least one completion w.r.t.R.

Lemma 9 Let G andH be two PGs on a light ontologyO, with H being consis-
tent. IfG is deducible fromH then each relation node label inG is also a label in
HO.

Proof: Let ∼p be a label inG, let Hc = Hc−
RO

if ∼p = +p andHc+
RO

otherwise.
By Lemma 8,Hc is a completion ofH w.r.t.RO. Let π be a homomorphism from
G to Hc. As the polarity of∼p is opposite to that of the literals inHc \HO, each
node ofG with label∼p is mapped to a node ofHO, and therefore∼p is a label in
HO. �

Definition 14 (Weakly and strongly opposite literals) Letr ands be relation names
with r ≤ s. Labels−r and+s (resp. literals−r(u) and+s(v)) are saidweakly
opposite, and labels+r and−s (resp. literals+r(u) and−s(v)) are saidstrongly
opposite.

Note that ifu = v then strongly opposite literals+r(u) and−s(u) are contra-
dictory, which is not the case for weakly opposite literals−r(u) and+s(u). We
can now give the definition of the completion vocabulary w.r.t. (G,H,O).
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Definition 15 (Completion vocabulary w.r.t. (G,H,O)) LetG andH be two PGs
on a light ontologyO. Thecompletion vocabulary w.r.t.(G,H,O) is the set of re-
lation names appearing in a pair of weakly opposite labels{−r,+s} such that
both−r and+s have occurrences inG and inHO.

G

21 r c

−p

21 ra b 21 r d

+q

1 2

−p

r* *

+q

x y

a b c d

H

p ≤ q

Figure 10: PGs with preordered relation names

For instance, ifG andH are the PGs shown in Figure 10 withp ≤ q then the
completion vocabulary w.r.t.(G,H,O) is the setR = {p, q}. G can be mapped to
each completionHc of H w.r.t. R: if Hc contains the literal−p(b) thenx andy

can be mapped toa andb, otherwise ifHc contains the literal−p(c) thenx andy

can be mapped tob andc, and otherwise toc andd. We will show that this holds if
and only ifG is deducible fromH, which justifies the definition of the completion
vocabulary w.r.t.(G,H,O). Note that if we had the orderq ≤ p, then{+q,−p}
would be a pair of strongly opposite labels and the completion vocabulary would
be empty, which is in accordance with the fact thatG would not be deducible from
H.

Property 17 Let G andH be two PGs on a light ontologyO, with H being con-
sistent, and letR be the completion vocabulary w.r.t.(G,H,O). G is deducible
from H if and only ifG can be mapped to each completion ofH w.r.t.R.

Proof: We have to show thatG can be mapped to each completion ofH w.r.t.RO

iff G can be mapped to each completion ofH w.r.t.R. The implication from right
to left holds sinceR ⊆ RO. We suppose thatG can be mapped to each completion
of H w.r.t. RO. Let Hc be a completion ofH w.r.t.R. Let us show thatG can be
mapped toHc. For this we define fromHc a completionH ′ of H w.r.t. RO, and
we will define from a homomorphismπ′ from G to H ′ a homomorphismπ from
G to Hc.
Let H ′ be the PG obtained fromHc by adding for each atomp(u) not already
present inHc such thatp is inRO andu is anarity(p)-tuple inH:
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+p(u) if +p(u) is a literal in(Hc)O,
−p(u) if −p(u) is a literal in(Hc)O,
otherwise,+p(u) if there isr ∈ RO such thatr ≤ p and−r is a label inG, and
−p(u) if there is no suchr.
Let us show thatH ′ is a completion ofH w.r.t. RO. It is sufficient to show that
H ′ is consistent.Hc is consistent and for any literall in H ′ \ (Hc)O, l is not in
(Hc)O, so by Lemma 7 it is sufficient to prove thatH ′ \ (Hc)O is consistent. We
suppose for contradiction thatH ′ \ (Hc)O is inconsistent. Let+p(u) and−q(u)
be contradictory literals inH ′ \(Hc)O, i.e. withp ≤ q. As+p(u) is in H ′ \(Hc)O

there isr ∈ RO such thatr ≤ p and−r is a label inG, sor ≤ q and therefore
−q(u) is not inH ′ \ (Hc)O, a contradiction. ThusH ′ is a completion ofH w.r.t.
RO.
Let π′ be a homomorphism fromG to H ′. We define fromπ′ a homomorphism
π from G to Hc as follows. For any term nodet of G, π(t) = π′(t). Let l be a
literal in G, andl′ = π(l) =∼p(v). If l′ is in (Hc)O then there is a literal∼q(v)
in Hc with ∼ q ≤∼p, and we defineπ(l) =∼ q(v). We suppose now thatl′ is
not in (Hc)O. l′ 6= −p(v), otherwisel would be in the form−r(u) with r ≤ p,
so−r would be a label inG and−p(v) would not be a literal inH ′ \ (Hc)O.
So l′ = +p(v), andl is in the form+s(u) with p ≤ s. As +p(v) is a literal in
H ′ \ (Hc)O, there isr ∈ RO such thatr ≤ p and−r is a label inG. By Lemma 9,
−r and+s are also labels inHO. It follows that {−r,+s} is a pair of weakly
opposite labels such that both−r and+s have occurrences inG and inHO, so
s is in R, and therefore either+s(v) or −s(v) is a literal inHc. −s(v) is not a
literal in Hc, otherwise+p(v) and−s(v) would be contradictory literals inH ′.
So+s(v) is a literal inHc, and we defineπ(l) = +s(v). Thus we have defined a
homomorphismπ from G to Hc. �

From now on, completions consider implicitly the completion vocabulary w.r.t.
(G,H,O). The definition of an exchangeable pair is extended as follows.

Definition 16 (Exchangeable pair w.r.t.(G,H,O)) An exchangeablepair w.r.t.
(G,H,O) is a pair {−r(u),+s(v)} of weakly opposite literals inG, such that
there are two completions ofH, sayH1 andH2, and two homomorphismsπ1 and
π2, respectively fromG to H1 and fromG to H2, with π1(u) = π2(v), −r(π1(u))
is a literal in H1 and+r(π2(v)) is a literal in H2.

For instance, ifG andH are the PGs in Figure 10 withp ≤ q, then{+q(x),−p(y)}
is an exchangeable pair, sincex andy can be mapped tob by homomorphisms from
G to completions ofH containing+p(b) and−p(b) respectively.

This definition calls for a few comments. First, condition “−r(π1(u)) is a lit-
eral inH1 and+r(π1(u)) is a literal inH2” could be replaced by “−s(π1(u)) is
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a literal inH1 and+s(π1(u)) is a literal inH2” or, for a symmetrical definition,
by the disjunction of these two conditions. As we aim at reducing the number of
exchangeable pairs as much as possible, we choose this non-symmetrical but more
restrictive definition. Secondly, a weaker definition of an exchangeable pair could
have been considered: it is obtained from the flat case (Definition 6) by simply re-
placing “opposite” with “weakly opposite”, i.e. without adding the condition that
−r(π1(u)) is a literal inH1 and+r(π1(u)) is a literal inH2. This weaker def-
inition is not equivalent to the above Definition 16, even if we add the condition
that neither−r(π1(u)) nor +r(π1(u)) is a literal inH. For instance, ifG and
H are the PGs shown in Figure 11 withp ≤ q, then the pair{+q(x),−p(y)} is

HG

1 2

−p

o* *
a b cx y

21 o oa b c
2

1

−p+q +q

p ≤ q

Figure 11: Weak exchangeability

“weakly” exchangeable but is not exchangeable. It is weaklyexchangeable since
x andy can be mapped toc by a homomorphism fromG to a completion ofH
obtained by adding−p(c) and+q(c) (in this case,H1 = H2). It is not exchange-
able becausex andy are necessarily both mapped toc by π1 (or by π2), thusH2

necessarily contains+p(c) and the only way of mapping−p(y) is to have−p(c)
or−q(c)in H2, which makes it inconsistent. Intuitively, the weaker definition of an
exchangeable pair seems to be insufficient since it does not necessarily involve the
law of the excluded-middle, which was the motivation for introducing exchange-
able pairs. This intuition is confirmed by the logical resolution approach, in which
exchangeable pairs are represented by pairs of complementary literals involved in
resolution operations.

Given the extended definition of an exchangeable pair, the definitions of an
exchangeable literal (w.r.t.(G,H,O)) and of the socleGs of G (w.r.t. (H,O))
are unchanged. Property 4 still holds, withHc+ (resp.Hc−) becomingHc+

R
(resp.

Hc−
R

) defined in Lemma 8, whereR is the completion vocabulary w.r.t.(G,H,O).
Given the extended definitions of the completion vocabulary(w.r.t. (G,H,O)),
the definition of a ground subgraph ofG (w.r.t. (H,O)) is unchanged, and the
definition of an extensible homomorphism is extended as follows.

Definition 17 (Extensible homomorphism w.r.t.(G,H,O)) A homomorphismπ
from a ground subgraphG′ of G to H is extensible(w.r.t. (G,H,O)) if it satisfies
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1. for any literal∼r(u) in G \G′,∼r(π(u)) is not inHO;

2. for all strongly opposite literals+r(u) and−s(v) in G \G′, π(u) 6= π(v).

Property 5 still holds, with the following modification of the proof that condi-
tions 1 and 2 are sufficient forπ to be extendable to a homomorphism fromG to
a completion ofH. We suppose thatπ satisfies conditions 1 and 2. LetL be the
set of literals∼r(π(u)) for every literal∼r(u) in G \ G′ such that∼r(π(u)) is
not already present inH. By condition 1, for any literal inL, l is not a literal in
HO, and by condition 2L is consistent. It follows by Lemma 7 thatHO + L is
consistent, and thereforeH + L is consistent. Hence, by Lemma 8,H + L has a
completionHc, which is also a completion ofH sinceG′ is a ground subgraph of
G, andπ can be extended to a homomorphism fromG to Hc.

Let us now consider Theorems 2 and 3, which are fundamental for the complex-
ity results. The proofs of these theorems given in Section 3 extend to preordered
relation names with the weak definition of exchangeable pairs, but they do not
with the above Definition 16. The reason is that the set of complementary literals
of the literals inR (with R being consistent) is no longer necessarily consistent,
sinceR may contain weakly opposite literals in the form−r(u) and+s(u), whose
complementary literals are contradictory. However, thesetheorems still hold. To
show it, we extend the proofs given in Section 5, which use a PG-resolution tree of
(G,H), as follows. SinceΦ(H) |= Φ(G) is replaced withΦ(O),Φ(H) |= Φ(G),
the setF = CG ∪ CH is replaced withCG ∪ CH ∪ CO, whereCO is the set of all
clauses in the form{¬r(u), s(u)} with r ≤ s. In a resolution tree, clauses ofCO

allow to increase literals, i.e. to replace a literal∼p(u) by ∼q(u) with ∼p ≤∼q,
in clauses not belonging toCO (such an operation on a clause ofCO would result
into a clause ofCO and therefore would be useless). We may assume w.l.o.g. that
resolution operations involving clauses ofCH or CO are performed first, so there
is a resolution tree whose leaves are labeled with clauses obtained from clauses of
CG by removing all literalsl such thatl is a literal inΦ(HO) and increasing the
remaining literals. Thus, for any resolution operationRes(c, c′, p(w)) performed
in this resolution tree,c contains the literalp(w) obtained by increasing some lit-
eralr(w) with r ≤ p andc′ contains the literal¬p(w) obtained by increasing some
literal ¬s(w) with p ≤ s. Instead of increasingr(w) to p(w) and¬s(w) to¬p(w),
we can leaver(w) unchanged and increase¬s(w) to¬r(w), and do the resolution
operation w.r.t. the literalr(w). In other words, we can increase only negative
literals. Let us show that moreover, there is such a resolution treeT such that
none of the clauses labeling its leaves contains a clause ofCO (which is needed
to assure label consistency of the leaves in the PG-resolution tree associated with
the complementary tree ofT ). Let T be a resolution tree whose leaves are labeled
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with clauses obtained from clauses ofCG by removing all literalsl such thatl is a
literal in Φ(HO) and increasing the remaining negative literals, with the minimum
number of clauses labeling the leaves, letF be the set of clauses labeling the leaves
of T , and letc be a clause inF . Let us show thatc does not contain any clause of
CO. We suppose for contradiction thatc contains a clausec′ of CO. Then the set
(F \ {c}) ∪ {c′} is also unsatisfiable, and therefore has a resolution treeT ′. If c′

labels some leaves ofT ′, we can remove these leaves and increase some negative
literals forT ′ to remain a resolution tree. We obtain a resolution tree of the desired
form whose leaves are labeled with clauses ofF \ {c}, which contradicts the def-
inition of T . Thus, the definition of a PG-resolution tree of(G,H) is extended as
follows.

Definition 18 (PG-resolution tree of(G,H,O)) Let G and H be two PGs. A
PG-resolution tree of(G,H,O) is a structure(T, (πx)x∈L(T )) whereT is a PG-
resolution tree such that for each nodex of L(T ), label(x) is consistent and
πx is a mapping fromTG to TH such thatlabel(x) is obtained from the set{∼
p(πx(u)) | ∼p(u) is a literal in G and∼p(πx(u)) is not a literal inHO} by re-
placing each positive literal+p(πx(u)) with a literal in the form+r(πx(u)) with
r ≤ p.

For instance, ifG andH are the PGs shown in Figure 10 withp ≤ q then the
tree given in Figure 9 is a PG-resolution tree of(G,H,O). Property 15 still holds,
and Property 16 is extended as follows.

Property 18 LetG andH be two PGs on a light ontologyO, and let(T, (πx)x∈L(T ))
be a PG-resolution tree of(G,H,O). For any nodex of L(T ), πx can be ex-
tended to a homomorphism fromG to a completion ofH containing each literal in
label(x), and any such homomorphism mapsGs to H.

Proof: Let x be a node ofL(T ). Let us show thatπx can be extended to a ho-
momorphism fromG to a completion ofH containinglabel(x). For this, it is
sufficient to show that there is a completion ofH containinglabel(x). To prove
this, it is sufficient to show that the following Propositions a) and b) hold:
a)H + label(x) is consistent,
b) each relation name inlabel(x) is in the completion vocabulary w.r.t.(G,H,O),
since it follows from Proposition a) and Lemma 8 thatH + label(x) has a comple-
tion, which is also a completion ofH by Proposition b).
Let us show Proposition a).H and label(x) are consistent and by Lemma 3, for
any literal l in label(x), l is in the label of a node ofL(T ), and therefore is not a
literal in HO, so by Lemma 7H + label(x) is consistent.
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Let us show Proposition b). Letr be a relation name inlabel(x). By Lemma 3,
+r and−r have occurrences in labels of nodes ofL(T ), and therefore there is a
relation namep with r ≤ p such that+p and−r have occurrences inG. By Prop-
erty 15 and Lemma 9,+p and−r also have occurrences inHO. Hence Proposition
b) holds, which completes the proof thatπx can be extended to a homomorphism
from G to a completion ofH containinglabel(x).
Let π′

x be a homomorphism extendingπx from G to a completionH ′
x of H con-

taininglabel(x). Let us show thatπ′
x mapsGs toH, i.e that each literal∼p(u) in G

such that∼p(π′
x(u)) is not a literal inHO is exchangeable. Let∼p(u) be a literal

in G such that∼p(π′
x(u)) is not a literal inHO. Then there is a literal∼r(π′

x(u))
in label(x) with ∼r ≤∼p (andr = p if ∼p = −p). By Lemma 3, there is a nodey
of L(T ) such that∼r(π′

x(u)) is a literal inlabel(y). So there is a literal∼q(v) in
G with ∼q ≤∼r (andr = q if ∼p = +p) and a homomorphismπ′

y (extendingπy)
from G to a completionH ′

y of H containinglabel(y) such thatπ′
x(u) = π′

y(v).
As ∼q ≤∼r and∼r ≤∼p, ∼q ≤∼p, so∼q(v) and∼p(u) are weakly opposite
literals inG, and asH ′

x containslabel(x) andH ′
y containslabel(y), ∼r(π′

x(u)) is
a literal inH ′

x and∼r(π′
x(u)) is a literal inH ′

y, with −r being the negative label
in {∼q,∼p}. It follows that{∼q(v),∼p(u)} is an exchangeable pair, hence∼p(u)
is exchangeable. �

Property 18 is indeed an extension of Property 16 since the added condition that the
considered completion ofH contains each literal inlabel(x) is implicitly satisfied
in absence of preorder on relation names. This condition is necessary to prove that
an extension ofπx mapsGs to H because of the condition in the definition of an
exchangeable pair that−r(π1(u)) is a literal inH1 and+r(π1(u)) is a literal in
H2, which is also implicitly satisfied in absence of preorder onrelation names.

The proofs of Theorems 2 and 3 using PG-resolution trees still hold, if we re-
place in the proof of Lemma 5 the definition ofP (y) by:
P (y): for any literal∼p(w) in label(y), any literal∼q(u) in G′ with p ≤ q if
∼p = +p andp = q otherwise, and any homomorphismπ from G to a completion
of H containing the literal∼p(w), π(u) 6= w.
and the definition ofyi+1 by:
yi+1 is defined asz′ if there are a literal+q(u) in G′ with p ≤ q and a homomor-
phismπ from G to a completion ofH containing+p(w) such thatπ(u) = w, and
z otherwise.

Property 4 still holds, withHc+ (resp.Hc−) being the completionHc+
R

(resp.
Hc−

R
) defined in Lemma 8, whereR is the completion vocabulary w.r.t.(G,H,O).

Property 12 is extended by replacing formulaDG′(G,H) with DG′(G,H,O).
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Notations 2 Let G andH be two PGs on a light ontologyO, with H being con-
sistent, and letG′ be a ground subgraph ofG.
PH,O denotes the set of atoms ofΦ(Hc \HO), whereHc is an arbitrary comple-
tion ofH, seen as the set of atoms of a language in propositional logic.
For any extensible homomorphismπ fromG′ to H, LG′(π) denotes the set of liter-
als l such thatl =∼p(π(u)) for some literal∼p(u) in G and l is not inHO, and
CG′(π) denotes the conjunction of the literals inLG′(π) seen as a proposition on
PH,O.
DG′(G,H,O) = DG′(G,H) ∨D(O), whereDG′(G,H) denotes the disjunction
of the propositionsCG′(π) for all extensible homomorphismsπ from G′ to H and
D(O) denotes the disjunction of the conjunctionsr(u) ∧ ¬s(u) for all atomsr(u)
ands(u) in PH,O such thatr ≤ s.
Omission of subscriptG′ means thatG′ is equal toGs.

For instance, ifG andH are the PGs shown in Figure 10 withp ≤ q then
D(G,H,O) is a disjunction in the form¬p(b) ∨ (q(b) ∧ ¬p(c)) ∨ q(c) ∨ (p(b) ∧
¬q(b)) ∨ (p(c) ∧ ¬q(c)) ∨D′, and therefore is a tautology.

Lemma 10 Let G and H be two PGs on a light ontologyO, and letG′ be a
ground subgraph ofG contained inGs. There is a PG-resolution tree of(G,H,O)
iff DG′(G,H,O) is a tautology.

Proof: Assuming that there is a PG-resolution tree(T, (πx)x∈L(T )) of (G,H,O),
let us show thatDG′(G,H,O) is a tautology. For any nodex of L(T ), πx can be
extended to an extensible homomorphismπ′

x from G′ to H, such thatlabel(x) is
obtained fromLG′(π′

x) by decreasing positive labels. LetT ′ be the complemen-
tary tree of the resolution tree associated withT . Each leaf ofT ′ is labeled with a
clause obtained from a clause in the form¬CG′(π′

x) by increasing negative pred-
icates. Then there is a resolution treeT ′′ whose leaves are labeled with clauses
in the form¬CG′(π′

x) and clauses ofCO, that are negations of conjunctions in
D(O). As the set of labels of the leaves ofT ′′ is unsatisfiable by Property 14,
DG′(G,H,O) is a tautology.
Conversely, we assume thatDG′(G,H,O) is a tautology. Let us show that there
is a PG-resolution tree of(G,H,O). Let F be the unsatisfiable set of clauses such
that¬DG′(G,H,O) is the conjunction of the clauses inF . As discussed in the
paragraph preceding Definition 18, we can build from a resolution tree ofF a PG-
resolution tree of(G,H,O). �
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Property 19 Let G andH be two PGs on a light ontologyO, with H being con-
sistent, and letG′ be a ground subgraph ofG contained inGs. G is deducible from
H iff DG′(G,H,O) is a tautology.

Complexity results of Section 4 are preserved since they follow from Theo-
rems 2 and 3 and Property 12, from the NP-completeness of PG-homomorphism,
which is also preserved when relation names are preordered,and from the fact that
any problem is at least as difficult as in absence of preorder on relation names (in
particular DEDUCTION3 is still co-NP-difficult).

6.2 Refining Completions and Exchangeability

In this section we see how to reduce the set of literals added to H to obtain a
completion ofH, which in turn reduces the number of exchangeable pairs. We
already restricted the set of literals added by defining the completion vocabulary
w.r.t. (G,H). The idea is that the obtained completions ofH must satisfy the
following fundamental property, denoted byCompletion Property: G is deducible
from H if and only if G can be mapped to each completion ofH. By Theorem 2,
it is sufficient to add toH literals l such that at least one exchangeable literal inG

can potentially be mapped tol. It follows that any literall in a completion ofH
that is not inH and such that no exchangeable literal inG can be mapped tol can
be removed from this completion. This restriction on completions ofH induces a
reduction of the set of homomorphisms fromG to completions ofH, and therefore
of the set of exchangeable pairs, so that new literals in completions ofH become
useless and can be removed. This operation can be repeated, reducing both the
set of literals added in completions ofH and the set of exchangeable pairs until
stability is obtained. We first refine the notion of completion vocabulary, then we
introduce exchangeable triples.

6.2.1 Completion Vocabulary

We defined the completion vocabulary w.r.t.(G,H) as the set of relation names
with positive and negative occurrences inG and inH, with an extension of this
definition and the proof of Completion Property (Property 17) in the case of pre-
ordered predicates. We will give a general process leading to an inclusion-smaller
completion vocabulary (and therefore an inclusion-smaller set of exchangeable
pairs) with a more general and simpler proof of Completion Property.

The idea is that if a relation name in the completion vocabulary does not appear
in any exchangeable literal then it can be removed from the completion vocabulary
R, which in turn will reduce the set of exchangeable literals w.r.t. (G,H,R),
i.e. defined with completions ofH w.r.t. R. Thus, we can successively restrict
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the completion vocabulary until it only contains relation names of exchangeable
literals w.r.t.(G,H,R). The refined completion vocabulary, denoted byR(G,H),
is defined by Algorithm 3.

Algorithm 3 : R(G,H)

Data: G andH two PGs, withH being consistent.
Result: the refined completion vocabularyR(G,H).
begin

LetR be the set of relation names that have both positive and negative
occurrences inG and inH

repeat
R1 ←R
LetR be the set of relation names in exchangeable literals w.r.t.
(G,H,R)

until R = R1 ;
returnR

end

For instance, ifG andH are the PGs shown in Figure 4,R is initialized with
{p} and is unchanged after one iteration of the repeat loop, thus{p} is the returned
value; in that caseR(G,H) is equal to the completion vocabulary as previously de-
fined (the refinement will be effective at the second step described in Section 6.2.2).
In the general case,R is initialized with the completion vocabulary w.r.t.(G,H)
and strictly decreases at each iteration of the repeat loop,except the last one where
R is unchanged.

Let us show that all results of this paper still hold with thisnew definition of the
completion vocabulary. It is sufficient to show that the proofs given in Section 5
still hold (remember that they extend to preordered predicates). For this, we need
the following definition.

Definition 19 (PG-resolution tree of(G,H) onR) Let G and H be two PGs,
and letR be a set of relation names. APG-resolution tree of(G,H) onR is a
PG-resolution tree of(G,H) such that each relation name appearing in labels of
nodes ofL(T ) is inR.

Property 16 and Lemmas 4, 5 and 6 still hold if we replace PG-resolution tree
of (G,H) by PG-resolution tree of(G,H) onR and if completions, exchangeable
pairs, Gs and ground subgraphs are defined w.r.t.R instead of the previously
defined completion vocabulary, whereR is a arbitrary set of relation names. In the
proof of Property 16, Proposition b) becomes: "each relation name inlabel(x) is
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in R", which immediately follows from the definition of a PG-resolution tree of
(G,H) onR. The rest of the proofs is unchanged. Thus, to show that all results of
this paper still hold with the refined completion vocabularyR(G,H) (as well as
the Completion Property, which is a consequence of Theorem 2), it only remains
to prove that Property 15 also extends, i.e. that the following Property holds.

Property 20 (PG-resolution onR(G,H)) LetG andH be two PGs, withH be-
ing consistent.G is deducible fromH if and only if there is a PG-resolution tree
of (G,H) onR(G,H).

Proof: By Property 15 it is sufficient to show that there is a PG-resolution tree of
(G,H) if and only if there is a PG-resolution tree of(G,H) onR(G,H). The
implication from right to left is evident. Let(T, (πx)x∈L(T )) be a PG-resolution
tree of(G,H). Let us show that it is a PG-resolution tree of(G,H) onR(G,H),
i.e. that each relation name in labels of nodes ofL(T ) is inR(G,H). Let P (R)
be the property defined by:
P (R): each relation name in labels of nodes ofL(T ) is inR.
Let us show thatP (R) is an invariant of the repeat loop in Algorithm 3.P (R)
trivially holds at the initialization of the loop. We suppose thatP (R) holds. Let
R′ be the set of relation names in exchangeable literals w.r.t.(G,H,R). Let us
show thatP (R′) holds. AsP (R) holds,(T, (πx)x∈L(T )) is a PG-resolution tree of
(G,H) onR, so by the proof of extended Lemma 4 each relation name in labels
of nodes ofL(T ) is a relation name in some exchangeable literal w.r.t.(G,H,R),
and therefore is inR′. HenceP (R) is an invariant of the loop, and(T, (πx)x∈L(T ))
be a PG-resolution tree of(G,H) onR(G,H). �

It follows that all results of this paper still hold withR(G,H) as completion
vocabulary. The definition ofR(G,H) is unchanged in case of preordered pred-
icates. Note that the preceding proofs still hold if we replaceR(G,H) by one of
its supersets, and in particular by the completion vocabulary as previously defined.
Thus they provide a new and simpler proof of Property 17.

In practice, computingR(G,H) may be too costly (remember that deciding
whetherG has an exchangeable pair is NP-complete), but it may be possible to
identify some relation names that cannot be in any exchangeable literal. For in-
stance, if the literal−r(e, e) is added toG and toH in the example of Figure 4,
r becomes an element of the initial setR in Algorithm 3, but it is easy to see that
it is not the relation name of an exchangeable literal and canbe removed fromR.
Thus the repeat loop can be replaced by a while loop in the form:
while a relation namer that is in no exchangeable literal w.r.t.(G,H,R) can be
“found” do

remover fromR
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The while loop stops when no such relation namer can be detected, which does
not mean that there is none. Hence, the obtained completion vocabulary may be
only partially refined, but is in any case at least as good as the initial completion
vocabulary.

6.2.2 Exchangeable triples

So far we have restricted the relation names of literals added in completions ofH,
but not their arguments. We will now take these arguments into account in order to
further reduce the set of added literals.

Definition 20 (Triple w.r.t. (G,H)) A triple w.r.t. (G,H) is a set{+p(u),−p(v), w}
where+p(u) and−p(v) are opposite literals inG andw is anarity(p)-tuple of
term nodes ofH such that neither+p(w) nor−p(w) is a literal in H.

Definition 21 (completion w.r.t. T ) LetG andH be two PGs, withH being con-
sistent, and letT be a set of triples w.r.t.(G,H). A completion ofH w.r.t. T is
a consistent PG obtained fromH by adding, for each triple{+p(u),−p(v), w} in
T , either the literal+p(w) or −p(w).

Definition 22 (Exchangeable triple/pair w.r.t. (G,H,T )) Let G and H be two
PGs, withH being consistent, and letT be a set of triples w.r.t.(G,H). An ex-
changeable triple w.r.t.(G,H,T ) is a triple {+p(u),−p(v), w} w.r.t. (G,H)
such that there are two completions ofH w.r.t. T , say H1 and H2, and two
homomorphismsπ1 and π2, respectively fromG to H1 and fromG to H2 such
that π1(u) = π2(v) = w. An exchangeable pair w.r.t.(G,H,T ) is a pair
{+p(u),−p(v)} that is a subset of an exchangeable triple w.r.t.(G,H,T ).

The setT (G,H), which is at the same time the setT of triples such that
completions ofH are defined w.r.t.T and the set of exchangeable triples w.r.t.
(G,H,T ), is defined by Algorithm 4.

Let us illustrate Algorithm 4 on the PGsG andH pictured in Figure 4.T
is initialized with {{l1, l2, b}, {l1, l2, d}}. It becomes{{l1, l2, b}} after the first
iteration of the repeat loop, and becomes empty after the second one, sincel1 can
no longer be mapped to+p(b) by a homomorphism fromG to a completion ofH
w.r.t. T since no such completion ofH contains the literal−p(d). Hence, there is
no exchangeable pair w.r.t.(G,H,T (G,H)), and since there is no homomorphism
from G to H, it follows thatG is not deducible fromH (provided that Property 8
still holds, which is checked below).

We prove that all results of this paper still hold in a similarway as forR(G,H),
replacingR(G,H) by T (G,H) and defining a PG-resolution tree of(G,H) onT
as follows.
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Algorithm 4 : T (G,H)

Data: G andH two PGs, withH being consistent.
Result: the setT (G,H).
begin

Let T be the set of triples{+p(u),−p(v), w} w.r.t. (G,H) such that
{+p(u),−p(v)} is an exchangeable pair w.r.t.(G,H,R(G,H))
repeat
T1 ← T
Let T be the set of exchangeable triples w.r.t.(G,H,T )

until T = T1 ;
returnT

end

Definition 23 (PG-resolution tree of(G,H) on T ) LetG andH be two PGs, and
let T be a set of triples w.r.t.(G,H). A PG-resolution tree of(G,H) on T is a
PG-resolution tree of(G,H) such that for each literall in labels of nodes ofL(T ),
there is a triple{+p(u),−p(v), w} in T such thatl is either equal to+p(w) or to
−p(w).

These results extend to preordered predicates, where a triple w.r.t. (G,H)
is in the form{−r(u),+s(v), w} with −r(u) and+s(v) being weakly opposite
literals inG, and the definition of an exchangeable triple is obtained from that of
an exchangeable pair as above.

Note that, in Algorithm 4,T can be initialized with any superset of the given
initialization set. In practice, we obtain a partially refined set of exchangeable
triples by successively removing triples that can be recognized as non exchange-
able. For instance, in the example of Figure 4,{l1, l2, d} is clearly non exchange-
able, and removing it makes{l1, l2, b} clearly non exchangeable.

7 Related Works and Conclusion

Let us now relate the present complexity results to previousresults obtained on the
various forms of FOL{∃,∧,¬a}-DEDUCTION.

Clause entailment. When the logical language includes function symbols, clause
entailment is undecidable [SS88], even if both clauses are Horn-clauses (i.e. with at
most one positive literal) [MP92]. In [Got87], a sufficient condition under which a
“subsumption test” (which can be identified with a homomorphism check) is com-
plete is exhibited. Translated intoDEDUCTION, it says that if (1)h does not contain
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opposite literals, or (2)h is consistent andg does not contain opposite unifiable lit-
erals, theng can be deduced fromh if and only if g can be mapped toh. On one
hand, functions are allowed in this result, on the other handif we exclude func-
tions, we obtain particular cases ofDEDUCTION0. To the best of our knowledge,
the ΠP

2 -completeness of clause entailment for clauses without functions had not
been pointed out.

Query containment. In database query languages, function symbols are natu-
rally excluded. The undecidability of query containment for several kinds of Data-
log programs/queries has long been shown (see [Shm87] for the first results). Con-
cerning the specific case of conjunctive queries with negation, theΠP

2 -completeness
of the containment problem is claimed in several papers and proven in [FNTU07]11,
with a reduction from the validity problem of quantified boolean formulas in the
form ∀∗∃∗conj, whereconj is a conjunction of 3-clauses. It was also proven in
the framework of polarized graphs by Bagan (2004), with a reduction from a graph
problem called Generalized Ramsey Number [SU02] and this proof is reported in
[Mug07] [CM08]. In [LM07], it is proven that homomorphism checking is suffi-
cient wheng has nodependentliterals, i.e. opposite literalsl1 and l2 s.t. l1 and
l2 can be unified after a renaming of their common variables. We obtain again a
particular case ofDEDUCTION0. Notions close to our extensible homomorphism
were used in algorithms for query containment checking in [WL03] and defined in
[LM07].

As far as we know, the notion of exchangeable literals generalize all particular
cases exhibited so far. As already mentioned, weaker criteria that yield an upper
bound for the number of exchangeable pairs and can be checkedin polynomial
time can be used instead of exchangeability. In previous results, if the notion of an
“exchangeable pair” is replaced by a “pair of opposite and unifiable literals”, these
results are weaker but on the other hand any pair of term nodescan be checked
in constant time. With this weaker condition, all complexity results are still new,
except forDEDUCTION0.

Finally, let us mention that exchangeable literals can be exploited in algorithms
solvingDEDUCTION for general FOL{∃,∧,¬a} formulas. In [LM07] an algorithm
is proposed for deciding inclusion of conjunctive queries with negation. Since
queries are seen as PGs, this algorithm can be used without change for deciding on

11Bibliographical note: several database papers wrongly mention that [LS93] proves theΠP

2 -
completeness of the query inclusion problem for conjunctive queries with negation. More precisely,
the ΠP

2 -completeness result reported in [LS93] is for “conjunctive queries with order constraints”
(and this result is due to van der Meyden). However, there is no straightforward proof that would
translate this result into one for conjunctive queries withnegation.

51



deduction in FOL{∃,∧,¬a}. It explores a space of graphs leading fromH to its
completions. This space is ordered as follows: given two graphsH1 andH2 in this
space,H2 ≤ H1 if H1 is a subgraph ofH2. The question “is there a homomor-
phism fromG to each completionHc” is reformulated as “is there acovering set
of completions, that is a subset of incomparable graphs of this space{H1, . . . ,Hk}
such that (1) there is a homomorphism fromG to eachHi ; (2) for eachHc there
is aHi with Hc ≤ Hi”. Some special subgraphs ofG, that are necessarily mapped
to H if G is deducible fromH, are used both in a filtering step (if one of these sub-
graphs cannot be mapped toH, then it can be concluded thatG is not deducible
from H) and to guide the space exploration. These subgraphs are without oppo-
site literals. They can be replaced by subgraphs without exchangeable pairs (see
Theorem 3). Moreover, the set of relation names considered in completions is re-
stricted to relation names occurring both positively and negatively inG andH (see
Property 3): this set can be further restricted to relation names occurring in ex-
changeable literals ofG (Property 20), and the notion of completion can be further
refined, using exchangeable triples.

In this paper, we have solved the main issues concerning the role of exchange-
able literals in the complexity of FOL{∃,∧,¬a}-DEDUCTION. We have shown
that, as soon as the number of exchangeable pairs is bounded,the complexity falls
into PNP , and becomes even NP-complete if the bound is 1. However, to complete
the picture, some open issues remain to be solved: IsDEDUCTIONk complete for
PNP ? What is the complexity ofDEDUCTION2?
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