
Specification of a Component-based Domotic System to Support

User-Defined Scenarios

Fady Hamoui, Christelle Urtado, Sylvain Vauttier
LGI2P / Ecole des Mines d’Alès

Parc scientifique G. Besse
F30035 Nı̂mes - France

<First>.<Last>@ema.fr

Marianne Huchard
LIRMM, UMR 5506

CNRS and Univ. Montpellier 2
34095 Montpellier, France

huchard@lirmm.fr

Abstract

Many studies have been conducted in order to de-
velop systems that respond to user requirements in do-
motic environments. These systems generally offer pre-
defined scenarios corresponding to general requirements
and enable users to select those he/she wants to trig-
ger. We claim that such behaviors cannot be hardwired:
user scenario definition should be supported. In this ar-
ticle, we propose the specification of a component-based
domotic system that tackles this issue. This system au-
tomatically detects available devices in the environment
and offers users high level Guis to define their own
scenarios from functionalities of the detected devices.
These scenarios are then automatically implemented by
the system: components are generated from device de-
scriptors, assembled as prescribed by the scenarios and
the resulting software is run by a rule execution engine.

1 Introduction

Domotic environments are composed of electri-
cal / electronic devices connected to a network and con-
trolled by a domotic system that uses software and
telecommunication technologies to have the devices
satisfy user requirements. Each device provides a set of
services. Each of them in turn offers a set of functional-
ities. A domotic system can thus be seen as both a set
of distributed services and a system that manipulates
these services to achieve user requirements. Users may
simply use existing functionalities or need to combine
them in a more complex scenario.
The context of use of a domotic environment varies
from a user to another. As it is not possible to hard-
wire all possible user scenarios, users must be given
the capability to define their own scenarios. Further-

more, scenario integration in the system should be au-
tomatic and dynamic, in order not to interrupt system
execution [7, 11] and scenario execution must rely on
some technical solution that coordinates the execution
of several services.
Service Component Architecture (Sca) [20] is a good
candidate solution to this issue. It provides a model for
the composition of services used to build applications
based on a Service Oriented Architecture (Soa) [18].
Software components are the best means to achieve
this. They expose interfaces that describe functional-
ities [21, 10]. Each interface represents a service [5].
Software components can be dynamically assembled to
achieve dynamic service connection [5, 7, 17, 10]. This
enables to assemble components during the execution
of the system without disrupting it [6].
Such systems have been developed by industry or aca-
demics (see Sect. 6). The systems are generally in-
cluded in a fixed or mobile housing of control that al-
lows to act on home devices such as shutters and lights.
Few systems support more complex users requirements,
but are based on predefined scenarios and do not offer
the capability to add new scenarios.
Our goal is to specify a self-configurable system [18]
that handles the services of devices discovered in its
environment. This system should also be autonomous
to seamlessly integrate user-defined scenarios without
disrupting its execution.
The remainder of this article is as follows. Section 2
lists qualities that we expect from a domotic system.
Section 3 describes our domotic system from the user
point of view: it shows how users can describe their
own scenarios. Sections 4 and 5 further describe our
system by respectively providing its meta-model (as
its structural view) and its process-oriented two-phased
description (as its dynamical view). Section 6 compares

1



to state-of-the-art proposals while Section 7 concludes
and draws perspectives to this work.

2 Target qualities for domotic systems

Let us consider a domotic environment composed
of the shutter, radiator and clock devices. All devices
provide services to control them. Some also emit events
that reflect a change of their parameter values. For
instance, the clock provides a service to set or get time
and an event that indicates time change and contains
the new time. In this context, the user must have the
capability to define the following evening scenario: at
07:00 PM, if the living-room temperature is below 17✵C,
the shutter should be closed and the radiator turned on
at level 6. In order to support such scenarios, domotic
systems should have the following qualities [4, 3]:

• Decentralization makes the software spatial struc-
ture stick to the physical distribution of devices. It
also increases software quality and availability by
distributing the load on several units and reducing
the impact of failures.

• Ability to define requirements allows users to add
custom scenarios at any time.

• Dynamic evolution makes the system reactive to
changes without impacting service continuity.

• Autonomicity limits user intervention to scenario
definition. Technical steps that are needed to im-
plement the defined scenarios (component genera-
tion and system assembly and deployment) should
be supported without human intervention.

3 User requirement-oriented functions

To meet these requirements, our system is com-
posed of software agents built from software compo-
nents. Agents are autonomous and collaborative enti-
ties. They have a flexible internal structure that allows
dynamic (re)configuration through the (re)assembly of
components. We identified two types of agents: Gui
agents and device control agents (Dcas). Gui agents
are a software mediator between devices and users.
They enable users to customize the domotic system
and define their requirements. Dcas are responsible
for the detection of devices that are available in the
environment and for the execution of user-defined sce-
narios through their ability to control devices. Users
can explicit their requirements using services provided
by the available devices by either selecting a particular
service or defining a complex scenario. To do so, Gui

agents make graphical user interfaces that represent
the domotic environment available to users.

3.1 Service selection

Using the dedicated Gui, users can select a device
to display its provided services and select one. Each
service in turn offers a set of parameterized operations.
Users select such an operation and provide adequate
parameter values. The system then invokes the re-
quired functionality. For example, the user can select
the clock to view its provided services. A single service
is available that provides the set time and get time op-
erations. The choice of the set time operation enables
the user to specify the new time as shown on the sim-
ple Gui of Fig. 1. This Gui is automatically generated
from the descriptors of detected devices.

Figure 1. Service selection GUI

3.2 User scenario definition

Using the dedicated Gui, users can define new
complex scenarios. A scenario is defined by several
Event / Condition /Action (Eca) rules [1, 8] that com-
bine various operations. Eca rules enable the coordi-
nation of services as they are active (their execution
is automatically triggered by event occurrence), ex-
press alternatives (with their condition clause) but are
declarative (easier to read) and still interpretable [13].
Users must successively define the three clauses of the
new rule as illustrated by Fig. 2 for the evening sce-
nario example.

Event clause. An event is a pre-condition for trig-
gering action executions. The Gui displays a list of all
available events (the sum of all events that can be emit-
ted by all detected devices) among which user choose
the one that suits their needs. In the evening scenario
example, the event would be at 07:00 PM and would be
obtained by comparing with the = operator the 07:00
PM parameter value to the time provided by the Time
change event.

Condition clause. The condition clause defines in
which cases the rule will be triggered. It is not manda-
tory. A condition is a boolean function with at least
two parameters, provided by either the user or mea-
surement functions offered by sensor devices. Thus,



Figure 2. Scenario definition GUI

the Gui displays all measure services available. The
user chooses such a service and a comparison operator.
He then provides a value to compare to. In the evening
scenario example, the condition would be if the tem-
perature in the living room is below 17 ✵C where the
temperature of the living-room is provided as a service
by a sensor device, ↕ is a comparison operator and 17
✵C is a parameter value provided by the user.

Action clause. The action clause contains one or
more service operations that perform actions on de-
vices. The user selects a device, chooses an available
operation and, if needed, specifies values for its pa-
rameters. This process can be repeated as needed. In
the evening scenario example, the actions would be the
shutter should be closed (no parameter) and the radi-
ator should be turned on at level 6 (6 is a parameter
value). At the end of a scenario definition, a coordina-
tion descriptor is generated. It contains data relative
to the Eca rule that corresponds to the scenario. This
descriptor stored by the Gui agents and is assigned to a
device control agent that implements the scenario. The
system also contains predefined (or previously defined)
scenarios users can choose to execute directly.

4 Meta model of the component-based

domotic system

This section aims to describe more precisely the pro-
posed system by providing its meta-model. For read-
ability’s sake, the meta-model representation is divided

into three views. The first view presents our service
typology and the correspondence between services and
Eca rule clauses. The second view shows what scenar-
ios are and how services that compose a scenario are
advertised in the service directory. The last view is
devoted to showing how the agents that compose the
system are made from software components and com-
ponent connections.

4.1 Service typology

We have identified five service categories (see Fig. 3).
Sensor services provide measures that come from sen-
sor devices. They are used to provide measures in the
condition clause of rules. Event services provide events
that come from sensor devices. They are used to detect
changes in the environment and thus form the event
clause of rules. Action services perform operations on
actuator devices thus providing services to users. They
are used in the action clause of rules. Comparison ser-
vices are technical services that provide (a wide range
of) comparison methods for all primitive types. These
services are mostly predefined and participate in the
definition of condition clauses. Coordination services
enable scenario execution. As scenarios are defined by
Eca rules, they integrate a rule execution engine.

Figure 3. Service typology

4.2 Service directory and user scenarios

Agents have access to a service directory that en-
ables inter-agent cooperation without hard-coding the
underlying dependencies (decoupling). This directory
(see Fig. 4) contains:

• information on the services offered by devices of
the environment (Service class). A service has a
single type, represented by the Interface class. It



Figure 4. Service directory and user scenarios

can provided by several service providers. Each
service provider is bound to concrete component
interfaces (often represented as a lollipop in com-
ponent models, as shown on Fig. 8), represented
by the FunctionalInterface class.

• information on the events emitted by devices of
the environment. They are represented by the
EventService class as a specialization of the Ser-
vice class. As for general services, an event is of a
certain event type and can be provided by several
event providers. Each event provider is bound to
concrete event interfaces (sometimes represented
as a triangle in component models, as shown on
Fig. 8), represented by the EventInterface class.

• information on the parameter types that are en-
countered in operations offered by devices of the
environment. They are represented by the Param-
TypeInfo class. Primitive types (numbers, strings,
dates, times, etc.) are instances of the Parameter-
Type class.

User scenarios (see Fig. 4) are defined by one or more
Eca rules that are composed of an event, a condition
and of one or more actions. These rule clause elements
refer to the corresponding service advertisements (as
shown back up in Fig. 3) and are further mapped to
corresponding concrete component interfaces (events to
event interfaces, conditions and actions to functional
interfaces) when the providers of the needed services
have been found / chosen. Parameter values defined
by users during rule condition or action definition are
mapped to parameter type information from the direc-
tory. When the condition clause is built from measure
services (as results of some sensor service execution)
the condition clause of the rule is linked to the func-
tional interface that corresponds to this sensor service.

4.3 Component-based software agents

In our proposal, agents are built from components
(see Fig. 5). The meta-model proposed here for com-
ponent assembly (see Fig. 6) inspires from our previous
work on self-assembling components [10, 9].
The two agent categories we have identified in our sys-
tem (Gui agents and Dcas) specialize general agents
made from components (Agent abstract class). Each
agent has access to a service directory. Gui agents en-
able users to define their requirements in the form of
scenarios (stored as their scenarioList). Dcas detect
services and events provided by available devices and
execute scenarios. To do so, Dcas are composed of
four types of components that mostly follow the ty-
pology of services provided in Sect. 4.1. Sensor com-
ponents retrieve measures provided by sensor devices.
Action components perform actions on actuator de-
vices. Comparison components execute comparison
services on primitive parameter types. Finally, coor-

Figure 5. Component-based software agents



Figure 6. Component typology and external description

dination components control and coordinate the three
previous component types to execute a scenario. These
components all are generated by Dcas from device de-
scriptors and built-in information on data types.
Software components export their requirements and
provisions through interfaces, represented by the Con-
nectableInterface class. Two components interact
through the assembly of two interfaces, one provided by
a component and the other required by the second com-
ponent. Components export both functional interfaces
and event interfaces (modeled as specializations of the
ConnectableInterface class). Whatever its direction,
the type of a functional interface is defined by an inter-
face (Interface class) that can be compared to those of
programming languages such as Java. These interfaces
group operation declarations (modeled by the Opera-
tion class) each of which involves any number of input
parameter types and at most an output type.
Sensor components export one or more provided event
interfaces. Whatever its direction, an event interface is
typed by an event type. An event interface is a chan-
nel through which events are emitted when the value
measured by some sensor changes. The event contains
the new measured value. For example, an event can
be emitted when the temperature of a room changes
or when the TV turns on. Coordination components
export one or more required functional interfaces and
an event interface.

5 Domotic system dynamics

The dynamics of the domotic system can schemati-
cally be decomposed into two phases.

5.1 Self-configuration phase

The self-configuration phase consists in the detec-
tion of available devices to set up the system and main-
tains accurate information on devices. Each device is

described by a descriptor which contain information
on services and events they provide. Dcas download
these descriptors and extract the information needed
to generate sensor and action components. Then, they
advertise information on the services and events pro-
vided by each component into the directory. This self-
configuration phase executes autonomically at system
startup and re-executes periodically to detect device or
service addition or removal.

5.2 Self-assembly phase

The self-assembly phase translates user scenario def-
initions into operational component assemblies that
implement the scenarios. After a scenario is defined,
the corresponding coordination descriptor is sent to a
Dca for it to parameterize the rule execution engine
of a corresponding coordination component. Then, the
coordination component is assembled to the declared
sensor, action and comparison components. Once the
assembly achieved, the scenario is activated. The co-
ordination component then listens to events, is able to
retrieve values from the its sensor components, com-
pute the value of the condition with its comparison
component and execute the prescribed actions thanks
to its action components. The coordination descriptor
of the evening scenario is shown on Fig. 7. It contains
the information necessary for the Dca to parameter-
ize the coordination component and assemble it to the
Clock, Radiator, Shutter and comparator components.
The resulting assembly is presented in Fig. 8.

rule:

event: LivingRoom.Clock.TimeChange(time=07:00 PM)

condition: LivingRoom.Radiator.Temperature()

action: LivingRoom.Shutter(id=*).Close() ;

LivingRoom.Radiator.TurnOn(level=6)

Figure 7. Evening scenario rule descriptor



6 State of the art

6.1 Component models

Sensor Beans (Sb) [14] and Sofa [19] are two com-
ponent models close to ours. They both propose a ty-
pology of interfaces and oppose to our approach that
relies on a component typology. Despite this, there are
correspondences. Our action components have inter-
faces that correspond to Service interfaces (Sb) and
CSProcCall interfaces (Sofa) while our sensor com-
ponents have interfaces that correspond to Event and
Producer/Consumer interfaces (Sb) and EventPassing
and DataStream interfaces (Sofa). Our proposal is
thus comparable as for the syntactic richness of com-
ponent interfaces but further adds semantics thanks to
the component typology.

6.2 Domotic systems

We classify existing domotic systems into three cat-
egories and compare existing systems and the proposal
of this paper according to a series of aforementioned
criteria (see Table 1). The first category, we call Pre-
defined Scenario Systems (Psss), contains centralized
systems based on predefined scenarios. In [3, 4, 11],
the only capability offered to users is to choose the
scenarios they want to execute. The implementation
of a scenario generally consists in assembling existing
components. [3, 4] provide a little more general ar-
chitecture: new components are generated as bridges,
to enable communication between various technologies
and protocols. In our proposal, the components that
can be generated on the fly are not dedicated to
satisfying technical purposes but to meeting new user
requirements (they encompass some semantics on
the system). To conclude, to our opinion, predefined
scenarios are not sufficient to cover all possible situa-
tions and meet all user-requirements. Moreover, they
are not change-resistant as any unforeseen change
requires the intervention of an expert user (the system
designer). The second category, we call Service Con-
trol Systems (Scss), contains systems [2, 12, 15, 22]
that allow users to control available services. They
automatically detect devices in their environment and
build a user Gui that lists the services provided by
the detected devices. This capability is very close to
the service selection Gui (see Sect. 3.1) provided in
our system as one of the two means the user has to
interact with the domotic system. The user interacts
with the system through this Gui to trigger service
executions but cannot define complex scenarios.
Among them, [22] nonetheless allows to define simple

Figure 8. Evening scenario component as-
sembly

scenarios as service sequences. The third category,
we call Scenario Definition Systems (Sdss), enables
users to define their own scenarios. [7] offers a tool
to define scenarios that is designer-oriented and does
not allow runtime scenario definition. Similarly to our
proposal, [16] provides users with a Gui allowing them
to define and execute their own scenarios. However,
scenarios seem restricted to sequences of service calls:
they do not propose conditional executions as Eca
rules do. Moreover, services can be composed so
as the result of a service is used as a parameter
of another. Such parameters must then be hard-
wired into services: there is no possibility for users to
dynamically define parameters in their scenario scripts.

7 Conclusion and Perspectives

In this paper, we described the specification of a do-
motic system that enables users to define their own re-
quirements. The system consists of a set of component-
based agents. It automatically detects services and
events offered by available devices and includes them in
a Gui that represents the environment. Users can use a
simple service implemented by a generated component
or define a scenario represented by a new (automati-
cally produced) component assembly formed by gen-
erated components. The system is under development
using the OSGi and UPnP standards1. In the future,
it will be enhanced with new component types that im-
plement scenario conflict management, fault tolerance
policies, automatic service adaptation, etc.

References

[1] J. J. Alferes, F. Banti, and A. Brogi. An Event-
Condition-Action logic programming language. In

1http://www.osgi.org and http://www.upnp.org.



System
Decentra-
lization

Agents
Compo-
nents

Meta-
data

User
scenarios

Dynamic
evolution

Component
generation

Auto-
matic

Services

Psss

Anso [3] no no yes no no yes yes yes yes

Homega [4] no no yes yes no yes no no yes

Madcar [11] no no yes no no yes no yes no

Scss

Cinema [2] no no no no no no no no yes

Sencha [12] no no yes no no yes no yes yes

Phs [15] no no yes no no yes no yes yes

Masml [22] yes yes yes no no yes yes yes yes

Sdss

Wcomp [7] no no yes no no no yes yes no

Hns [16] yes no no no yes yes no yes yes

Our prop. yes yes yes yes yes yes yes yes yes

Table 1. System comparison

10th Europ. Conf. on JELIA, Liverpool, UK, LNAI,
4160:29-42, Sept. 2006. Springer.

[2] S. Berger, H. Schulzrinne, S. Sidiroglou, and X. Wu.
Ubiquitous computing in home networks. IEEE Com-
munications Magazine, 41(11):128-135, Nov. 2003.

[3] A. Bottaro, A. Gerodolle, and P. Lalanda. Pervasive
service composition in the home network. In 21st Int’l
Conf. on AINA, Niagara Falls, Canada, 596-603, May
2007. IEEE.

[4] J. Bourcier, A. Chazalet, M. Desertot, C. Escoffier,
and C. Marin. A dynamic-SOA home control gateway.
In IEEE Int’l Conf. on SCC, Chicago, USA, 463-470,
Sept. 2006.

[5] H. Cervantes and R. S. Hall. Automating service de-
pendency management in a service-oriented compo-
nent model. In 6th Wkshp on CBSE, Portland, USA,
May 2003.

[6] Y. Charif-Djebbar and N. Sabouret. Dynamic service
composition and selection through an agent interac-
tion protocol. In IEEE/WIC/ACM Int’l Conf. on WI-
IAT, Hong Kong, 105-108, Dec. 2006.

[7] D. Cheung-Foo-Wo, J.-Y. Tigli, S. Lavirotte, and
M. Riveill. Wcomp: a multi-design approach for pro-
totyping applications using heterogeneous resources.
In IEEE Int’l Wkshp on RSP, Los Alamitos, USA,
119-125, 2006.

[8] U. Dayal, B. Blaustein, A. Buchmann,
U. Chakravarthy, and al. The HiPAC project:
combining active databases and timing constraints.
ACM SIGMOD Records, 17(1):51-70, March 1988.

[9] N. Desnos, M. Huchard, G. Tremblay, C. Urtado, and
S. Vauttier. Search-based many-to-one component
substitution. Journal of Software Maintenance and
Evolution, Wiley, 20(5):321–344, Sept./Oct. 2008.

[10] N. Desnos, S. Vauttier, C. Urtado, and M. Huchard.
Automating the building of software component ar-
chitectures. In 3rd Europ. Wkshp on EWSA, Nantes,
France, LNCS, 4344:228-235, Sept. 2006. Springer.

[11] G. Grondin, N. Bouraqadi, and L. Vercouter. MaD-
cAr: An abstract model for dynamic and automatic
(re-)assembling of component-based applications. In

9th Int’l Symposium on CBSE, V✿aster̊as, Sweden,
LNCS, 4063:360-367, June 2006. Springer.

[12] H. Ishikawa, Y. Ogata, K. Adachi, and T. Nakajima.
Building smart appliance integration middleware on
the OSGi framework. In 7th IEEE Int’l Symposium
on ISORC, Vienna, Austria, 139-146, May 2004.

[13] J.-Y. Jung, J. Park, S.-K. Han, and K. Lee. An
ECA-based framework for decentralized coordination
of ubiquitous web services. Information & Soft. Tech.,
49(11-12):1141-1161, Nov. 2007.

[14] C. Marin and M. Desertot. Sensor bean: a compo-
nent platform for sensor-based services. In 3rdrd Int’l
Wkshp on MPAC, New York, USA, 1-8, 2005. ACM.

[15] K. Matsuura, T. Hara, A. Watanabe, and T. Naka-
jima. A new architecture for home computing. In
IEEE Wkshp on WSTFES, Washington, USA, 2003.

[16] M. Nakamura, H. Igaki, H. Tamada, and K. ichi
Matsumoto. Implementing integrated services of net-
worked home appliances using service oriented archi-
tecture. In 2nd Int’l Conf. on SOC, New York, USA,
269-278, 2004. ACM.

[17] M. P. Papazoglou and D. Georgakopoulos. Service-
oriented computing special section. Communications
of the ACM, 46(10):24-28, Oct. 2003.

[18] M. P. Papazoglou, P. Traverso, S. Dustdar, F. Ley-
mann, and B. J. Krämer. Service-oriented computing:
A research roadmap. In SOC Dagstuhl Seminar Proc.
05462, IBFI, Dagstuhl, Germany, 2006.

[19] F. Plásil, D. Bálek, and R. Janecek. SOFA/DCUP:
Architecture for component trading and dynamic up-
dating. Int’l Conf. on CDS, 43-52, 1998.

[20] SCA Consortium. Building systems using a service
oriented architecture, 2005.

[21] C. Szyperski. Component Software: Beyond Object-
Oriented Programming. Addison-Wesley / ACM, 2002.

[22] C.-L. Wu, C.-F. Liao, and L.-C. Fu. Service-oriented
smart-home architecture based on OSGi and mobile-
agent technology. IEEE Trans. on SMC, Part C,
37(2):193-205, 2007.


