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ABSTRACT

Ultra high-throughput sequencing is used to analyse
the transcriptome or interactome at unprecedented
depth on a genome-wide scale. These techniques
yield short sequence reads that are then mapped
on a genome sequence to predict putatively tran-
scribed or protein-interacting regions. We argue
that factors such as background distribution,
sequence errors, and read length impact on the pre-
diction capacity of sequence census experiments.
Here we suggest a computational approach to mea-
sure these factors and analyse their influence on
both transcriptomic and epigenomic assays. This
investigation provides new clues on both method-
ological and biological issues. For instance, by
analysing chromatin immunoprecipitation read
sets, we estimate that 4.6% of reads are affected
by SNPs. We show that, although the nucleotide
error probability is low, it significantly increases
with the position in the sequence. Choosing a read
length above 19 bp practically eliminates the risk of
finding irrelevant positions, while above 20bp the
number of uniquely mapped reads decreases. With
our procedure, we obtain 0.6% false positives
among genomic locations. Hence, even rare signa-
tures should identify biologically relevant regions,
if they are mapped on the genome. This indicates
that digital transcriptomics may help to characterize
the wealth of yet undiscovered, low-abundance
transcripts.

INTRODUCTION

Unravelling the complexity of the human transcriptome
remains a major challenge, especially given the importance
of transcriptional activity in non-coding regions of the
genome (1). By applying high-throughput sequencing
technologies (HTS) to open Digital Gene Expression
(DGE), it is possible to catalogue all transcripts and mea-
sure their activity level in a cell (2), while finding their
region of origin on the genome opens the way to their
complete functional annotation. The latter is achieved if,
when mapping the sequence signature (also called tag) of a
transcript, one points to a single genomic location (3-5).
Indeed, multiple locations are more complex to annotate
and usually discarded. For a given amount of sequencing,
using short tags allows a deeper sampling and a larger
catalogue, while longer signatures increase the probability
of detecting a single location of origin for each transcript.
This has been previously suggested in a seminal work,
which proposed to use 21bp instead of the classical
14bp tags with Serial analysis of Gene Expression
method (SAGE), to annotate genomic transcribed regions
(6). Today, HTS can produce longer tags (up to 36) at
a much larger scale. Hence, the question of an optimal
tag length is timely. However, recent investigations have
provided evidence that a large proportion of tags cannot
be mapped on the genome (3,7).

Assays are now designed to explore the transcriptome
or more specifically the RNA dark matter, as deeply as
possible and generate huge tag sets (2,8). Presently, the
prediction capacity, i.e. the ability to identify single geno-
mic locations for a maximum number of transcripts, has
never been evaluated. Several parameters such as the tag
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length, the background distribution (i.e. the probability of
mapping a random sequence) and sequence errors influ-
ence the outcome; these factors should therefore be
assessed and taken into account in the strategy.

Chromatin immunoprecipitation by sequencing (ChIP-
Seq) is a method for identifying the chromosomic loca-
tions where a given protein binds to DNA. The DNA
fragments obtained by immunoprecipitation are then
sequenced with HTS (9,10). As for DGE, reads generally
range between 25 and 34 bp and are mapped back to the
genome sequence to get a genomic profile. Here again, we
face the same issues as with transcriptomic assays.
Moreover, sequence-based assays represent, in both
cases, appealing alternatives to those based on hybridiza-
tion: they overcome the difficulties inherent to this type of
platforms and to hybridization, but they also offer impor-
tant advantages like speed, small extract needs, and low
cost (2,4). Undoubtedly, these techniques will deeply
impact biological investigations and it is crucial to thor-
oughly evaluate their prediction capacities.

We thus propose a computational protocol to investi-
gate how the prediction capacity of a sequence-based assay
is influenced by several factors: read or tag length, back-
ground distribution, and sequence errors (hereafter, we
only use the word tag). Our protocol based on exact map-
ping of increasing sub-parts of the tags on a reference
genome sequence is illustrated in Supplementary Figure
1. It consists of a theoretical model of background distri-
bution as a function of the tag length, a procedure to
estimate sequence errors and allows one to identify which
tag length optimizes the prediction capacity. Effective pre-
dictions are then validated by intersecting putative tran-
scribed regions with Ensembl annotations, and comparing
these with those yielded by a whole genome tiling array
(11). We apply our protocol to both DGE and ChIP-Seq
datasets, as well as to data produced with Sanger and
Solexa sequencing techniques. Our analysis gives several
clues to improve predictions obtained with such experi-
ments. Finally, it provides the first independent estimates
of the sequence errors per tag and per position, which indi-
cates how error probability varies with tag length, and it
measures the impact of Single Nucleotide Polymorphism
(SNPs) and other biological processes on tag sets.

MATERIALS AND METHODS
Datasets

In experiments like SAGE, ChIP-Seq, etc., one obtains a
collection of sequences of length 7, with some being
observed several times. For clarity, we call a representative
sequence a tag, and all sequences identical to that tag
observed in the collection are termed its occurrences
(occ.). The number of occurrences (# occ.) of a tag, i.e.
the number of times its sequence is observed in the collec-
tion, is considered as a measure of its biological validity: a
tag observed once (# occ. = 1) may be an artefact, while a
tag observed say 10 times (# occ. = 10) is likely a valid
biological observation (2).

The data were collected from publicly available reposi-
tories (June 2008): for the human SAGE-Sanger dataset,
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we used the libraries from GPL1485 and GPL5624
Gene Expression Omminbus (GEO) Platforms (http://
www.ncbi.nlm.nih.gov/geo) and all Sanger sequenced
libraries from the CAGP project (Sage genie ftp://
ftpl.nci.nih.gov/pub/SAGE/). For the human SAGE-
Solexa dataset, we used a private library sequenced with
the Solexa sequencer from the Skuld-Tech® company
(which contains 2222343 occurrences for 440445 tags).
For the ChIP-Seq dataset, we used data from the
GSM325935 GEO sample (rep3 - lane B), which contains
1339671 occ. for 929 165 tags. For the CAGE dataset, we
used data from Kawaji et al. (12) (5476289 occ. for
1627871 tags at 21 bp only). The human genome (hgl8,
NCBI Build 36.1) was retrieved from the UCSC Genome
Browser website (http://genome.ucsc.edu).

Locating tags

To predict regions of origin of experimental tags in the
human genome, we searched for these tags in the genome
sequence with MpscaN (13), and recorded whether each tag
has been located or not. MPSCAN is guaranteed to report,
for each tag, all positions at which the genome exactly
matches the tag. Such positions are called genomic loca-
tions or simply locations. We distinguish tags found once
in the genome, i.e. uniquely mapped tags, from those that
map multiple locations, i.e. multi-mapped tags. To investi-
gate how the proportion of uniquely mapped tags varies
according to the tag length, we searched for prefixes or
suffixes of increasing lengths of experimental tags, e.g. for
a 21-bp tag, we also searched for its prefixes of length 14,
15, ... until 20.

To illustrate the tradeoff between uniquely and multi-
mapped tags as a function of length, we plot a Precision—
Recall-like curve in which the Recall is the percentage
of mapped tags over all tags, while the Precision is the
percentage of uniquely mapped tags over all mapped tags.

Background distribution

We introduce here the notation used throughout the arti-
cle. Consider a target genome G of length n (by default, the
human genome in this work). To optimize the annotation
strategy with respect to tag length we need to compute the
probability that a random tag w of length ¢ has 0 or 1
matching locations on a random sequence 7 of length n.
We consider random sequences under the Bernoulli model.
In our context, tags are short compared with the genome,
but long enough to match only a few locations on the
genome, since ¢ is on the order of log(n). We describe the
theoretical probabilities for unconstrained tags (general
model), as well as for tags starting with a defined prefix
(adapted model; i.e. CATG for SAGE like tags).

General model. Precisely, we need to determine the follow-
ing two probabilities: 1/ A(7): the probability that a tag w
of length ¢ is not located on sequence 7, and 2/ B(¢):
the probability that a tag w of length ¢ is located exactly
once in T. If N'7(w()) denotes the number of matching
locations of w in 7, we have

A1) = PN 7 (w(0) = 0) and B(1) := PN 7(w()) = 1) 1
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It is known that the probability distribution of N 7 (w())
is precisely approximated by a compound Poisson
distribution £, (A, a), where a is the probability of a tag
location overlapping the previous location, and A is the
expectation of the number of consecutive overlapping
locations (14). Hence, one obtains

A(t) = e and B(t) = (1 — a)re™ 2

The difficulty is to compute over all possible tag sequences
an average of a and of A, while accounting for the self-
overlap possibilities of all tags, i.e. their period sets. For
this sake, we use an algorithm to enumerate all period sets
efficiently (15).

Adapted model. This model can be adapted to the case of
tags starting with a predefined prefix. We consider the case
of NIalll SAGE tags, which start with a CATG restriction
site. Hence, the number of matching positions is limited
to locations where CATG appears in the target genome.
Let ng;. denote their number. To estimate our probabilities,
that we denote by A'(r) and B'(¢) in the adapted model, we
simply consider that the random sequence 7" contains as
many CATG sites as the target genome (i.e. ng). This
number replaces n in the formula of parameter A, then
A’(t) and B'(¢) are computed as in Equation (2). To verify
that these formulas are precise enough for our purpose, we
also empirically estimated A4'(z) and B'(¢) by mapping ran-
domly generated tags to a random sequence. The compar-
ison between theoretical and empirical values of 4'(¢) and
B'(¢) is shown in Figure 1B.

In the following, 1 — A(7) (resp. 1 — A'(¢)) represents the
background probability of being mapped in the general
model (resp. in the adapted model).

Estimating sequence errors

Given a collection of sequences (either the tags or occur-
rences), it is possible to estimate the number of sequence
errors of an experiment as a function of the sequence
length . We present a framework and an algorithm to
estimate the probability that a sequence of length 7 is
erroneous. If the sequence is an occurrence, it is erroneous
if it contains a sequence error, while a tag is erroneous if
all of its occurrences are erroneous. Thus, a non-erroneous
tag has at least one non-erroneous occurrence. Later, we
apply this algorithm both to the set of tags and to the
collection of occurrences. Let us consider the following
probabilities:

S(7) : the probability that a sequence of length 7 has at least one
sequence error;

X(t) : the prior probability that a sequence of length 7 is not located
on G;

M(t) : the probability that an erroneous sequence of length 7 is
located on G;

R(t) : the probability that a non-erroneous sequence of length ¢ is
not located on G.

We want to compute S(z). Now, why can a sequence not
be found on the genome?

(1) Either, it is a biologically valid sequence that is not
erroneous, and does not appear in the genome for
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biological reasons (i.e. post-transcriptional modifica-
tion, SNP); the probability of this event is given by
(I=8(@) - R(1);

(i1) or it is an erroneous sequence, which does not
appear in the genome, and in this case the proba-
bility is S(7) - (1 — M(1)).

As both cases are exclusive, the probability X'(¢) that a
sequence is not located on G is

X)) =1 -=80) -R(@)+ S() - (1 — M(1)). 3

Now, if we can estimate M(¢), R(t) and X(z), we will be
able to estimate S(7) using the formula:

X(1) — R(1)

1 — M) —R>G&)" 4

S(n) =

We explain how to estimate these probabilities. Clearly,
X(1) can be estimated from the number of experimental
sequences that are not located on G. For R(¢), we need a
sample of non-erroneous sequences. Assuming that above
a certain threshold of # occ. a tag is biologically valid, we
choose a threshold by a graphical method presented in
‘Sequence errors’ Section (see the blue curve in Figure 2)
and select tags whose # occ. lies above that threshold.
We estimate R(f) as the proportion of these sequences
that are not located on the genome. For M(s), we
assume that any erroneous sequence contains no more
than one error (a likely hypothesis as the nucleotide
error probability is expected to be low) and proceed by
simulation: we consider the same collection of sequences
as for R(z), randomly substitute one position in each
sequence and search it on G. The proportion of sequences
not found in G is our estimate for M(?).

We evaluate the precision of our estimate S(¢) as a func-
tion of ¢ by computing a standard error o(¢) for S(¢) using
the bootstrap technique (16). For each of the k bootstrap
samples (i:= 1..k), we recompute all the statistics and Si(¢)
denotes the S(7) obtained with bootstrap sample i. In our
experiments, we use k = 100. The standard error is then
computed with

k
> (Sil0) — ELS«0)’

a(t) = | = . . 5

From the X(¢), M(z) and S() estimated on the tags, one
can also compute the proportion of located tags that are
erroneous using the following formula:

S(1) - M(1)
V(1) = =X
Note that V(f) should not be confused with M(¢), the
probability that an erroneous sequence is located.
Moreover, from the S(7) estimated on the occurrences,
we can estimate the sequence error at the nucleotide
level. Let p be the error probability for one
nucleotide. The probability that an occurrence of
length ¢ has no error is (1 —p)”. Thus, S(t) = 1 —(1 —p)’,
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and we get

pzl_exp<w). 7

t

Classification of transcriptomic tags

For transcriptomic tags, we consider the subset of
uniquely mapped tags, and given their genomic location,
determine if they fall in a region annotated by a gene or an
EST according to Ensembl. This can be a complex matter
if genes are nested within each in another, or on both
strands. We classify the tags giving a higher priority to
gene versus EST annotations, and to annotations on the
same, rather than on the opposite, strand. The classifica-
tion algorithm proceeds as follows. Relative to its strand,
if the tag is located in a gene, the tag is exonic (1) if it falls
entirely into an exon, or inxonic (2) if it covers an intron—
exon border or intronic (3). Otherwise, the same is done
with a gene on the opposite strand (if any), which yields
the cases exonic (4), inxonic (5) and intronic (6). Then, if it
is still not annotated, we check whether it is covered by an
EST on any strand (7), and otherwise the tag is said to be
intergenic (8).

RESULTS

Background distribution, recall/precision tradeoff and
optimal tag length

To determine the appropriate tag length for genomic
annotation, it is necessary to measure the background dis-
tribution when mapping tags to the genome. For this, we
computed as a function of tag length the probabilities that
a tag 1/ is mapped on the genome at least once [1 — A'(¢),
with ¢ denoting the length], 2/ matches a single location
[B'(1)], under a Bernoulli model. We approximate the law
of these probabilities using the guaranteed Poisson
approximation, which provides more precise estimates
than published so far (6). For the human genome case,
we report these probabilities for both transcriptomic
tags starting with a pre-defined prefix (CATG for
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SAGE-like tags) in Figure 1A and for unconstrained
tags (ChIP-Seq, RNA-Seq) in Supplementary Figure 2A.
For instance, at length 16 the probability that a transcrip-
tomic tag is found at least once in a random sequence is
46%. This probability measures a background distribu-
tion: 46% of tags that are located on a real genome
would also be located on a random sequence of the
same length. This can be understood as a P-value (as in
a BLAST result): the lower the probability, the less likely
to find the same result by chance. Clearly, one gains con-
fidence in the result of a mapping procedure by choosing a
tag length for which this probability is low. From Figure
1A, the probability of being mapped in a random sequence
logically decreases from nearly 1 at 14 bp to 107 at 25 bp.
To keep the background probability of being mapped
<1%, one should use tags longer than 18 bp. The proba-
bility of being located once, B'(f), (i.e. to map a single
location) increases up to 16bp, then decreases until
25bp and converges towards zero as [1 — A'(¢)].

Of course, the tag length should be chosen to minimize
the probability of being unmapped and maximize that of
being mapped once. The balance between these antagonis-
tic goals can be assessed on a Precision—Recall-like curve,
which plots (for all lengths) the Recall, i.e. the percentage
of mapped tags over all tags, versus the Precision, i.e. the
percentage of uniquely mapped tags over mapped tags
(Figure 1B). In addition, to check whether our pro-
babilistic model is adequate, we estimated the same
probabilities by mapping randomly generated tags. The
Precision—Recall-like curves for theoretical and empirical
random mapping are compared with that of experimental
transcriptomic tags in Figure 1B. First, the curves of the-
oretical and empirical estimations (orange and brown) are
closely correlated, suggesting that both the model and its
adaptation to constrained transcriptomic tags are correct.
Second, the curve of true tags (blue) departs from the
random expectation and illustrates the tradeoff between
recall and precision: it is linear from 14 until 19 bp and
then bends down. Beyond 19 bp, increasing the tag length
induces a loss in recall that is not compensated by a gain in
precision. To adjust the length according to both criteria,

> 100% s
A P A B(1) B s 7
t
_80%] N\ B
Located Once located T 70%- 15 20
14 0.9997 0.0017 g 60%- \ z
15 0.7717 0.1409 o 50%q 1)
E 40%-
16 0.4654 0.1849 = 30%
17 0.1303 0.0946 g i 17
g 20%
18 0.0351 0.0285 10%- 17 N
19 0.0091 0.0080 GPBW L 20% | 40%  60% | 80% 10(;7
0 0 0 0 0 ‘0
20 0.0023 0.0021 Precision (%Single / %Located)
21 5931073 5531073 —+— Human SAGE-Solexa (tags with occnb>1) vs hg 18
25 244 10~ 6 2310-6 ~—#— Human experimental random vs hg18

Human estimate random with an adapted Bernoulli vs hg18

Figure 1. Background distribution and influence of length on the prediction capacity. (A) Theoretical probabilities of a transcriptomic SAGE tag
being located (1 — A'(¢)), and being located once (B'(r)) in a random Bernoulli sequence. The former starts at approximately 1 at 14 bp and gets to
lesser than 0.01 at 19 bp, while the latter reaches its maximum at 18 bp and decreases towards low values. (B) Influence of the tag length onthe
prediction capacity shown with Precision—Recall-like curves. The recall (percentage of located tags over all tags) is plotted versus the precision
(percentage of uniquely mapped tags over all mapped tags) for each tag length. The blue curve of a human Solexa tags set departs from those of
random tags, either theoretically computed (yellow) or empirically estimated (brown curve). The overlapping yellow and brown curves show the
validity of thetheoretical model. The blue curve remains linear until 19 bp, then bends down.
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the background probability and the tradeoff between pre-
cision and recall, one could choose an optimal length at
19-20bp, for which both the recall and precision are
above 70%, and the background probability is <1%.
We obtain similar results for unconstrained tags, as
shown in Supplementary Figure 2B. The method can be
used for any genome and any type of tags. The Precision—
Recall-like curve allows one to adjust the tag length to its
experimental set up.

Sequence €errors

From the results of mapping a set of experimental tags on
a genome, one can estimate the number of sequence errors
produced in the assay. We propose a procedure to

100%-
90%-
80%- . ee N
70% W
o 60%7
5 50%
40%
30%-
20%-
10%1 e
0% * T %
5 10 15 20 25

Occurrence number threshold

% analysed occ
—&— % erroneous tags

—— % located tags/analysed
% analysed tags
———— % erroneous occ

Figure 2. Influence of the selection of tags with # occ. above a threshold
on the percentage of analysed tags (grey), analysed occurrences (pink),
erroneous tags (black), erroneous occurences (magenta) and located tags
(blue). A point at abcissa x is the corresponding value when only tags
with # occ. > x are kept. Analysed tags represent 25% of the original tag
set, but still 85% of the occurrences. The percentages of erroneous tags
and erroneous occurrences become low, respectively very low with
# occ. > 1. The percentage of located tags stabilizes after # occ. > 10;
the blue curve serves as a graphical method to set the threshold to
select biologically valid tags in our estimation procedure.
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compute the probability that one occurrence or one tag
contains at least one error in its sequence. For this we
empirically measure the probability that a biologically
valid sequence is not mapped, and the probability of an
erroneous tag is mapped. We apply our method to esti-
mate the sequence errors in transcriptomic and ChIP-Seq
assays obtained with Solexa and Sanger sequencing tech-
niques using real datasets. We report the percentages of
both erroneous occurrences (Table 1) and tags (Supple-
mentary Table 3), and derive from the former the percent-
age of erroneous nucleotides (Table 1).

Note that for estimating R(z) and M(z), as biologically
valid tags we select those whose occurrence number lies
above an empirical threshold of 10. We choose the thresh-
old by plotting the proportion of located tags as a function
of the # occ. (blue curve in Figure 2). As the probability of
an erroneous tag decreases with the # occ., the curve
should level off above a given threshold. For a SAGE-
Solexa assay, the blue curve shows that the proportion
of mapped tags is almost stable above # occ. >10.

We also investigate the effect of solely considering the
tags whose # occ. lies above a user-defined threshold on
the proportions of analysed and erroneous tags and occur-
rences. For each threshold value, we recomputed all of this
information and plotted it on Figure 2. Note that both the
levels of erroneous occurrences and tags drop drastically
(divided by 3) when considering only # occ. > 1. Thus, the
usage of selecting tags whose # occ. > 1 for further analysis
(‘Annotation’ section) is appropriate since although they
account for =25% of tags (grey curve), they represent
>85% of the occurrences (pink curve). This filtration
also positively affects the probability that a tag with a
mapped location is due to an erroneous tag, i.e. the rate
of false positive locations. Indeed, for the SAGE-Solexa
tags, V(20) drops from 2.17 to 0.58% with the filtration
(Table 2).

Estimates of the proportion of erroneous occur-
rences are less precise below 16bp as shown by the

Table 1. Percentages of erroneous occurrences [S(7)] and the probability of an erroneous nucleotide (P) for SAGE and Chip-seq assays at different

tag length (7)

SAGE-Sanger
(6527650 occ)

SAGE-Solexa
(2222344 occ)

ChIP-Seq-Solexa
(1339671 occ)

t S(1) £ a(r) P S(1) £ a(r) P NOE=0) P
14 6.02+1.64 0.44 4224277 0.31 — —
15 6.25+0.88 0.43 5.31+1.26 0.36 — —
16 6.10+0.67 0.39 4.85+0.96 0.31 6.89 +1.59 0.44
17 7.37+0.46 0.45 5.244+0.71 0.32 — —
18 8.32+£0.38 0.48 6.65+0.65 0.38 7.534+0.99 0.46
19 9.52+0.38 0.53 8.11+0.61 0.44 — —
20 10.794+0.33 0.57 9.14+0.61 0.48 8.84 +0.09 0.48
21 12.494+0.32 0.63 10.57+0.60 0.53 - —
22 — — - - 10.39+0.09 0.50
24 — — — — 11.9940.09 0.53
26 — - — - 13.51£0.09 0.56
28 — — — — 15.2240.09 0.59
30 — - — - 16.83 +£0.09 0.61

The tag length ¢ ranges from 14 to 21 for SAGE-{Sanger,Solexa}, and from 16 to 30 bp for Chip-Seq-Solexa, £ a(7) is the standard error of S(¢). The
percentage of erroneous occurrences logically increases with length. However, the percentage of an erroneous nucleotide increases with its position in the
sequence (until the 30th bp), showing that, even with the Solexa technique, errors occur more frequently at the 3’ end (in bold: values cited in text).
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A SAGE-Sanger ( 1992 500 tags).
100% N
o 80%-
8
£ 60%
[0}
2 40%-
)
& 20%-
0% 14 15 16 17 ' 18 19 20 21
tag length
m Once located o Alllocated

—=— Background distribution Erroneous tags

(9]

SAGE-Solexa (440 445 tags).
100%
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20% -
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14 15 "16 17 ' 18
tag length

19 20 21

All located
Erroneous tags

B Once located o
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B CAGE-Sanger ( 1627 871 tags).
100%

80%
60%
40%
20%

analysed tags

0% 14 15 16 17 18 19 20 21
tag length
m Once located O All located

—=— Background distribution

O

ChIP-Seg-Solexa ( 929 165 tags).
100%

80%
60%
40%
20%

analysed tags

0% 736 "18 20 "22 "24 ' 26 ' 28 ' 30
tag length
B Once located (] All located

—=— Background distribution Erroneous tags

Figure 3. Variation of the prediction capacity when mapping four transcriptomic or ChIP-Seq tag setson the human genome. For each assay, the
histogram gives for each tag length, the percentages over all tags of located tags (light blue bar) uniquely mapped tags (dark blue bar), erroneous tags
with the standard errors (black curve) and the background distribution (brown curve). Histograms obtained whenmapping (A) the SAGE-Sanger set,
(B) the CAGE-Sanger set, (C) the SAGE-Solexa set and (D) the ChIPSeq-Solexa set on the genome sequence (hgl8). For concision, only even lengths
are plotted in ChIP-Seq histogram (D) tags. The ratio of tags located once on the genome reaches its maximum at 19 bp when the background
probability of being located is already low, while the ratio of erroneous tags keeps on increasing after that.

standard errors. This is due to the background probability
of mapping tags of these lengths in a random sequence.
For all types of assays, the percentage of erroneous
occurrences increases regularly above a certain length,
which is expected since the probability of having at least
one error increases with the tag length. For the SAGE-
Solexa assay, the percentage decreases until 16bp and
then increases regularly up to 21 bp. For the ChIP-Seq-
Solexa assay, it also increases until 30 bp, thus confirming
the trend noted with SAGE, with similar error levels (8.84
versus 9.14 for SAGE at 20 bp). Hence, tags above 20 bp
may not be the most appropriate for annotating the
genome.

Above 16 bp, SAGE-Solexa exhibits a lower error rate
than with the Sanger sequencing method: 8.11% of occur-
rences are erroneous at 19 bp with Solexa, while it reaches
9.52% with the Sanger technique. This confirms that high-
throughput sequencing technologies are well adapted for
digital transcriptomic assays.

The percentage p of erroneous nucleotides is derived
from that of erroneous occurrences (but not of erroncous
tags, since the occurrences are sequenced). The results for
all three assay types are given in Table 1. The error level
obtained with the Sanger method agrees with published
estimates (17,18). Note that the nucleotide error rate
increases with tag length for all assays. For ChIP-
Seq-Solexa, the error rate goes from 0.46% at 18bp to
0.61% at 30 bp: an increase of 32%. Hence, the probability

of getting an error on a nucleotide increases with the
nucleotide position. Again, this suggests that, when tags
are used for genome annotation, the longest is not the
best.

Comparison of the mapping capacity of assays and
sequencing techniques

Having estimated the background distribution and the
error levels, we can draw our attention back to our main
question: how well can one predict genomic sites of inter-
est using assays based on short sequences? In other words,
what is the capacity to map single genomic sites with
experimental tags and how do several factors (background
distribution, error, tag length or sequencing technology)
affect this capacity? Here, we investigate this issue for two
types of transcriptomic (CAGE and SAGE) and one of
epigenomic (ChIP-Seq) assays, as well as for two sequen-
cing techniques (Solexa versus Sanger). To each case cor-
responds in Figure 3 a histogram, which gathers all
the information for various tag lengthes. This way, by
comparing two adjacent sub-figures, one can evaluate
the effect of ecither the assay (e.g. CAGE 3.B versus
SAGE 3.A), or the sequencing technique (Solexa 3.C
versus Sanger 3.A).

Let us first describe features common to all cases. First,
the percentage of mapped tags (light blue) necessarily
decreases with the tag length ¢ since shorter tags are



PAGE70F 11

Nucleic Acids Research, 2009, Vol. 37, No. 15

Table 2. Errors and localization for the Sage-Solexa library without and with filtration

el04

Sage-Solexa

private library

# occ.>0

(440445 tags)

# occ.> 1

(114721 tags)

t R(1) M(1) X(1) S(1) £ a(r) V(1) X(1) NOGE0) V(1)
14 0.23 97.36 1.01 32.46 +2.80 31.92 0.59 14.77+£2.82 14.47
15 0.96 88.42 4.16 30.18+1.74 27.834 2.25 12.22+1.75 11.06
16 2.34 63.35 10.86 24.84+1.31 17.65 5.86 10.274+1.32 6.91
17 6.84 33.65 22.18 25.77+0.77 11.14 13.50 11.194+0.78 4.35
18 10.27 10.83 34.06 30.15+0.77 4.95 20.09 12.454+0.77 1.69
19 12.38 6.49 41.04 35.33+0.74 3.89 23.61 13.854+0.74 1.18
20 13.89 3.09 45.61 38.20+0.79 2.17 25.52 14.01 +£0.79 0.58
21 15.56 2.42 50.00 41.98+0.99 2.04 28.23 15.48+0.99 0.57

For each length 7, one reads the percentages over all tags of valid mapped tags [R(?)], erronecous mapped tags [M(7)], unmapped tags [X(7)],
erroneous tags [S(7)] with its standard error [o(7)] and false positive locations [i.e locations mapped by erroneous tags, V()]. The three last statistics

are given for the unfiltered (# occ. > 0) and filtered (# occ. > 1) tag set (in bold: values cited in text).

Table 3. Classification of TARs according to Ensembl annotations

Exonic Inxonic Intronic Intergenic

Result Total S (1) AS (4) S(2) AS (5) S (3) AS (6) EST (7) Other (8)
t=16 % 100 34.7 7.8 1.0 0.4 15.1 9.2 5.5 26.3
N 16328 5659 1279 156 73 2467 1501 898 4295

=21 % 100 38.5 8.8 1.2 0.3 15.6 6.6 5.5 23.5
N 56006 21600 4947 691 192 8760 3694 3054 13068

=20 % 100 38.5 8.8 1.2 0.3 15.6 6.6 5.5 23.5
N 56441 21706 4970 687 192 8808 3743 3100 13235

Tiling % 100 35.6 - - — 349 - 10.8 18.7

The number and percentage of all TARs using digital transcriptomic tags at length 16, 20 or 21 bp, and using a tiling-array [ENCODE project (11)]
are shown for each annotation category (cf. ‘Classification of transcriptomic tags’ section). If inside a gene, a TAR can be located in an exon, in an
intron or overlap one of each, we term it as ‘inxonic’. These three categories are further subdivided into sense (S) and antisense (AS), depending on
which strand the tag was located on compared with the gene. Category (7) concerns ESTs that do not overlap any annotated exon.

prefix of longer ones in our protocol. Second, as uniquely
mapped tags are a subset of all mapped tags, the dark blue
bar can at most fill the light blue bar. It first increases with
t, reaches a maximum around 19 or 20 bp (17 for CAGE),
and then decreases with 7. The background probability of
being mapped decreases sharply from nearly 100% at
14bp to =15% at 17 bp, then more smoothly goes <1%
at 19 bp; this occurs regardless of the type of tags (uncon-
strained or constrained), although the random model dif-
fers (‘Background distribution, recall/precision tradeoff
and optimal tag length’ section). The error level (which
was not evaluated for CAGE) measured as the percentage
of erroneous tags increases gradually after a certain length
(16 or 17 bp) at which the background probability of being
mapped becomes low. Note that even if percentage of
erroneous tags (and not of occurrences) seems high, the
errors are made on occurrences and represent a few base
pairs per Kilo base pairs. This is why most of erroneous
tags have an # occ. = 1 and can be readily excluded from
the analysis (cf. Table 2). Globally, all sub-figures except
for CAGE share the same behaviour regarding the map-
ping capacity (note that for ChIP-Seq only even tag
lengths are plotted).

SAGE-Sanger versus CAGE-Sanger. Clearly, in Figure 3
the CAGE assay departs from all other cases including

SAGE-Sanger: the percentage of mapped tags at 19 bp is
less than half that of LongSAGE. This strange behaviour
is due to the presence of CAGE-specific errors, so our
protocol is unsuitabled in this case. Indeed, 88% of all
CAGE tags start with a guanine, a percentage too
biased not to be artefactual. We adapted our protocol
by mapping increasing tag suffixes instead of prefixes.
Then, at length 18, one maps 46% of the tags versus
28% with prefixes. This confirms that errors are generated
at the 5-end of CAGE tags (19), and that one should
consider a specific trimming procedure before further
analysis.

SAGE-Solexa versus SAGE-Sanger. Here, we compare
the results obtained with a single human LongSAGE
library sequenced with the Solexa technique (=440K
tags, 2.2 M occ.) to those yielded by the collection of all
LongSAGE libraries sequenced with the Sanger method
(1.9 M tags, 6.5M occ.). In both cases, curves representing
background distributions are identical. As the LongSAGE
protocol has been simplified with new sequencing techni-
ques, we observed the cumulated effect of the differences
in assays and sequencing techniques. However, the two
behaviours are quite similar (3.A versus 3.C), with
SAGE-Solexa having a slight advantage in terms of map-
ping capacity: the percentage of mapped tags (light blue)
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ranges from 66 to 50% for lengths 18 to 21 bp for Solexa,
and from 59 to 43% for Sanger over the same length
range. The difference in overall capacity, e.g. 59% versus
48% at length 19, corresponds exactly to the difference in
percentage of erroneous tags 35% versus 47% for SAGE-
Sanger (cf. Supplementary Table 3). This may well be due
to differences in sampling depth and cumulative analysis
of multiple SAGE-Sanger libraries.

In both studies, the maximum of uniquely mapped tags
(dark blue) is reached at length 19: 44% for Solexa versus
41% for Sanger, again suggesting that 19bp is a more
advantageous length for genome annotation.

SAGE-Solexa versus ChIP-Seq-Solexa. Here we compare
a transcriptomic assay versus an epigenomic assay per-
formed with the same sequencing technology. One yields
mRNA tags and the other genomic tags. As in the previ-
ous comparison, the mapping capacities are similar,
although slightly better for ChIP-Seq. Here again, the per-
centage of uniquely mapped tags is maximum at 19 bp,
44% for LongSAGE versus 47% for ChIP-Seq, and
then decreases until the maximum length (3.C versus
3.D). However, even at length 30 for ChIP-Seq, not all
tags map a single genomic location, showing that the
increase in length induces a loss of mapping capacity
that is not compensated by an increase in unambiguous
mapped locations (the dark blue bar does not fill the light
blue one). Another phenomenon is involved with respect
to the choice of an optimal tag length. Recall from
‘Sequence errors’ section that the probability of an erro-
neous nucleotide increases with its position in the tag.
Thus, these considerations could explain why the predic-
tion of single genomic locations may be more efficient with
shorter tag lengths (19 or 20 instead of 30 bp).

This comparison also delivers measurements of techno-
logical and biological phenomena. We measured the per-
centage of biologically valid tags that are not mapped on
the genome R(7). For a ChIP-Seq assay, the main cause of
non-localization is the presence of individual variation
(mainly single nucleotide polymorphism in our case).
However, SNPs, but also post-transcriptomic modifica-
tions (e.g. RNA editing) and LongSAGE artefacts
(e.g. a tag overlapping two exons) also affect transcrip-
tomic assays. Hence, at a certain length, say ¢ = 20,
Renip(t) estimates the percentage of non-localization due
to SNPs, while the difference Rqg.(f) — Renip(f) measures
that due to causes specific to LongSAGE or transcrip-
tomic assays. We observe that at length 20 SNPs affect
at most 4.6% of tags (a priori in both ChIP-Seq and
LongSAGE), while an additional 9.3% of LongSAGE
tags may not be localized due to biological causes
(Supplementary Table 2). The latter figure is equivalent
to the one previously published for Sanger-LongSAGE
in (7). Moreover, the percentages of erroneous occur-
rences at length 20 between the two assays are not signi-
ficantly different (8.844+0.09 for ChIP-Seq versus
9.14+0.61, cf. Table 1). This suggests that the reverse
transcription step performed in LongSAGE generates
very little error.
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Annotation

Above, we sought for ways to optimize the prediction of
genomic regions of interest for a collection of experimen-
tal tags. Here we evaluate this strategy in practice for the
prediction of transcriptionally active regions (TARs) using
digital transcriptomic data. In our private SAGE-Solexa
library, we selected all tags whose # occ. > 1, chose a tag
length of either 1 = 16, 20 or 21 bp, mapped them to the
human genome and classified the subset of uniquely
mapped tags (cf. ‘Classification of transcriptomic Tags’
section) to evaluate how many predicted TARs are located
in genes (exons, introns), in ESTs, and in intergenic
regions. Table 3 gives the absolute numbers and percen-
tages for each category and compares them with those of a
human tiling array dataset (11).

By comparing analyses performed with different
lengths, we notice that with ¢#=21 compared with
t =20, even if the percentage remains identical, one
loses some predictions in all categories, but not for inxonic
tags (overlapping an intron exon boundary). Indeed, the
probability of an overlap increases with longer tags. With
shorter tags 1 = 16, the percentage of exonic TARs drops
to 34.7 compared with 38.5 with ¢ = 20, and their number
is 4-fold smaller. At ¢ = 16, most tags mapped to multiple
genomic locations, while at ¢+ = 20, 16 K more tags can be
unambiguously associated with an exon. This illustrates
the practical inconvenience of non-optimal lengths.

Clearly, with an appropriate length of 20 bp, the pro-
portion of TARs in exonic and intergenic categories are
similar between the tiling and digital transcriptomics ana-
lyses: 36% versus 38% of exonic TARs, and 29%
(5.5 +23.5) versus 29.5% (10.8 + 18.7) of intergenic
TARs. The 38% of exonic tags/TARs represent 75% of
the occurrences of uniquely mapped tags. As the classifi-
cation schemes differ, the figures of intronic TARs cannot
be directly compared. This confirms the validity of the
prediction based on digital tags compared with hybridiza-
tion-based data. Our analysis based on a single library
suggests that a large proportion of TARs remain unchar-
acterized, i.e. belong to the so-called dark matter of
the genome (20): 45% (23.5+ 6.6 + 8.8 +0.3 +5.5) if
one considers an overlap with an EST as insufficient for
annotation. This makes 25240 tags located in intergenic
regions or in antisense of annotated genes.

DISCUSSION

Direct ultra high-throughput sequencing is being applied
to interrogate on a genome-wide scale, the transcriptome
or the interactome with high specificity, sensitivity and
statistical significance (21,22). Transcriptomic sequence
census assays are paving the way to a thorough investiga-
tion and characterization of pervasive transcription and
its annotation on the genome sequence. Although the
standard annotation involves searching tags against tran-
script reference databases like UniGene or RefSeq, it has
appeared that such gene-centred repositories fail to
describe the whole complexity of mammalian transcrip-
tomes (3,17). In mice or humans, significant genomic frac-
tions that remain unannotated or are unlikely to code
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for proteins give rise to RNA (1,8). For an in-depth inves-
tigation of the transcriptome, the tags produced must be
mapped back on the genome, in reference to which anno-
tations are accumulating (6). Once the genomic region
of origin of a transcript has been determined, its charac-
terization can build on other available annotations in
its genomic neighbourhood. However, with the new gen-
eration of DNA sequencing systems, millions of data
will be obtained to study the full scope of transcriptomes
and genomes, but could also generate more and more
erroncous data. It is crucial to evaluate the accuracy of
these sequences. Here, we performed a global evaluation
of DGE and ChIP-Seq experiments and proposed a new
strategy for managing sequenced tags. Except where
otherwise stated, all figures given below are for a 20 bp
tag length.

Sequence errors

For the Sanger method, estimations of the sequence error
level based on experimental measurements or on analysis
of the PHRED score yielded rates <1% (17,18). Recently,
an estimation was reported in the framework of genome
resequencing with HTS techniques (23). Here we present
an original and accurate method to estimate the sequence
error for both DGE and ChIP-Seq assays. Our estimate of
0.57% erroneous nucleotides for tags sequenced with the
Sanger method (Table 1) confirms published rates (17,18),
and thereby validates our approach. A first interesting
observation: the Solexa technique yields a similar, slightly
lower error rate than that of Sanger (0.48 versus 0.57),
showing that this technology is accurate enough for
DGE and ChIP-Seq assays. The higher error level in
LongSAGE data may be due to the diversity of platforms
used to obtain SAGE libraries and to the error rate in the
PCR step of that protocol (24).

With HTS, it has been suspected that the probability of
an erroneous nucleotide increases with the sequence posi-
tion (i.e. a higher error rate at the 3’-end) (25). Evidence
of this bias was published for genome resequencing with
the Solexa platform (23). The evidence provided here
confirmed this hypothesis independently of the assay
type. For DGE experiments, we only observed a weak
bias between 14 bp and 20 bp, while a significant increase
from 0.44 to 0.61 was noted between 20 and 30 bp in the
ChIP-Seq data.

Compared with other methods, our approach enabled us
to measure the impact of error on the prediction capacity.
At a length of 19 bp, we found =36% of erroneous tags in
both Solexa- LongSAGE and ChIP-Seq, and this rate
increases with the tag length (Supplementary Table 3).
This is the major cause of unmapped tags in both experi-
ments. However, when selecting tags whose # occ. > 1, the
rate of erroneous tags drops <15%, thereby providing a
clear rationale for implementing a widespread filtration
criterion (6). Nonetheless, above this threshold, some erro-
neous tags remain, particularly in transcriptomic data due
to the wide distribution of occurrence numbers. Indeed,
highly abundant tags are more often sequenced and gener-
ate more erroneous occurrences, which mostly differ by one
mismatch from the original tag. The latter can be identified
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by tag comparison and removed, as already proposed to
further improve the data reliability (26). For example, in
our Solexa library, a 20 bp tag with 8 165 occurrences gen-
erates a neighbourhood of 47 other tags, among which 44
have 1 <# occ. <20, but none matches the genome.

Importantly, we have shown that above # occ. > 1, the
rate of false positive locations is very low =0.58% (value
of V(20)4 scc~1, Table 2). This is critical since Khattra
et al. (24) experimentally demonstrated that rare tags
also correspond with mRNA present in the sample, and
could thus be biologically relevant. Our results also indi-
cated that with a tag length like 20 (in the framework of a
human study), which minimizes the background probabil-
ity of being mapped and optimizes the prediction capacity,
the fact that tags are mapped should help to distinguish
erroneous tags from valid ones.

Causes of unmapped tags

As mentioned above, for both transcriptomic and ChIP-
Seq data, sequence errors are the main cause of unmapped
tags, but can be treated by filtering on the occurrence
number and by choosing an adequate tag length (20 bp).
Other causes may be artefacts due to the protocol or bio-
logical factors depending on the experiment, thus our
comparison of DGE and ChIP-Seq data provides valuable
information on both aspects. All figures below are for the
complete tag set (# occ. > 0).

For ChIP-Seq data, >62% of the tags can be mapped
on the genome (Supplementary Table 2), while unmapped
tags should be explained by sequence errors or poly-
morphism. We estimated that 4.6% of tags are affected
by a SNP (Supplementary Table 2). Already published
rates for LongSAGE were computed by multiplying the
frequency of known SNPs on the genome by the total
amount of sequence in a tag library, or by mapping
mRNAs and tags on genomic SNPs. In both cases, these
estimates, i.e. either 2% of tags with a frequency of 1/1000
(7) or 8.6% from the database of 2020 SNP associated
tags (27), depend on the former state of the SNP collec-
tions. Moreover, both approaches neglect the fact that
SNP collections pool the polymorphisms sampled in
numerous individuals, while an RNA sample is taken
from a single individual. Here our estimate is based on a
single DNA library and on a single genome sequence, on
much larger datasets, and is independent of SNP data-
bases, which may provide a more realistic rate.
However, these approaches do not account for individual
copy number variations (28).

Transcriptomic assays yield more unmapped tags than
ChIP-Seq ones, even when biologically unsure tags are
removed, but they are hampered by the same error rate,
which depends solely on the sequencing technique.
Assuming an identical SNP rate for both types of data,
we evaluated the difference at 9.4% of the tags
(‘Comparision of the mapping capacity of assays and
sequencing techniques’ section). These mapping failures
could be attributed either to artefactual causes, e.g. tags
overlapping an exon boundary or a poly-A tail (3), or to
biological ones such as RNA editing or transplicing tran-
script (7,29). Our global rate of 9.4% closely agrees with
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published rates: 9.6% for LongSAGE (7). For first time,
our analysis generates an explanation for the fate of all
unmapped tags.

The longest is not the best

The original SAGE protocol uses 14-bp tags. The goal of
annotating the human genome with such transcript signa-
tures (i.e. to tag both the transcript and its genomic region
of origin) led to an extension of the tag length to 21 bp (6).
The current tendency in sequence-based assays is to fur-
ther increase the tag length, e.g. 36 and soon 50 bp with
the Solexa/Illumina® technology, to potentially cover a
larger diversity of tags. Longer tags generally imply
using approximate rather than exact mapping. On the
contrary, our analysis suggests that the longest is not the
best. Indeed, longer tags have a much higher probability
of including erroneous bases (0.48 with 20 bp versus 0.61
at 30 bp), and we see no reason why this should improve at
36 bp. They also more likely overlap an exon boundary or
are affected by an SNP: two other causes of unmapped
tags. Moreover, at 20 bp the chance of matching a genome
location at random is already low, as is the rate of false
positive locations, while the percentage of mapped tags
deteriorates with length. Thus, exact mapping with an
appropriate tag length provides a simple and secure
method to process DGE and ChIP-Seq data. The
MPSCAN program proves to achieve this task with perfect
accuracy and high efficiency (13). Of course, this strategy
is not restricted to using a prefix of the tag, but could
easily be adapted to take a suffix, or a subpart of tags,
as illustrated by the case of CAGE data (‘Comparison of
the mapping capacity of assays and sequencing techni-
ques’ section).

An interesting question is whether approximate instead
of exact tag mapping would increase the percentage of
uniquely mapped tags, especially for longer tags. For a
given tag length, authorizing a few mismatches between
the tag and the genome will automatically increase the
number of mapped tags compared with exact mapping,
but also that of multiply mapped tags and of false posi-
tives (since the background probability is higher). We
studied this issue on a 34-bp ChIP-Seq dataset (GEO
GSM325934). At length 34, ELaND, which authorizes up
to two mismatches, yields the same number of uniquely
mapped tags than mpscaN does when mapping exactly the
20-bp tag prefixes (13). Hence, exact mapping with an
appropriate tag length may yield more uniquely mapped
tags than approximate mapping, and this is also valid with
programs other than ELAND.

Although in the literature tag analyses generally exclude
multimapped tags, as done in this work, one may ask
whether longer tags could help to resolve multi-mapped
tags. For this sake, we analysed the subset of multi-
mapped ChIP-seq tags at a length ¢ and their number of
genomic locations at length ¢+ 2, for r =16 until 28
(Supplementary Table 1). For ¢ > 20, the rate of resolved
multi-mapped tags falls at 5%, and at length 7 + 2 the
relative gain of uniquely mapped tags is completely anni-
hilated by the number of tags that are not located any-
more. Clearly, longer tags are not sufficient to rescue
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multi-mapped tags, but more complex computational stra-
tegies for this task represent a future line of research (30).

Detection of novel transcripts: towards an optimal
strategy

High-throughput identification of transcribed genomic
regions was recently performed with whole genome tiling
arrays, which led to the discovery of pervasive transcrip-
tion: numerous non-coding regions are transcribed (1,8).
However, tiling arrays have two drawbacks: they cover
only non-repetitive parts of the genome for design issues
(1), and because of noise filtration it is necessary to focus
on highly transcribed regions [e.g. the top 90th percentile
in (1)]. But the accumulation of EST, MPSS and SAGE
libraries over the years implies that the vast majority of yet
unknown transcripts are low-abundance RNAs. Contrary
to tiling arrays, DGE assays, like PMAGE, allow sam-
pling at unprecedented depth RNAs transcribed anywhere
on the genome. The tag sets they produce contain rare and
biologically valid tags, but it is still a challenge to distin-
guish these from artefacts. We have shown that filtering
tags whose # occ. = 1 eliminates most erroneous occur-
rences and tags, and that exact mapping of remaining
tags with an appropriate length produces <0.6% false
positive hits. Thus, our strategy enables the user to exploit
rare tags, i.e. with a low # occ., that are mapped on the
genome. Hence, DGE, as an open technology, represents
along with RNA-Seq (31), one of the most appropriate
solutions to fully explore mammalian transcriptomes.
The percentages of annotation in each category obtained
by mapping the 20-bp prefix of our SAGE-Solexa library
(Table 3) are closely in line with that of a tiling array study
from the ENCODE project (11) and support this claim.

SUPPLEMENTARY DATA
Supplementary Data are available at NAR Online.
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