
HAL Id: lirmm-00415935
https://hal-lirmm.ccsd.cnrs.fr/lirmm-00415935v1

Submitted on 11 Sep 2009

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Efficient Neighbourhood Encoding for Interval Graphs
and Permutation Graphs and O(n) Breadth-First Search

Christophe Crespelle, Philippe Gambette

To cite this version:
Christophe Crespelle, Philippe Gambette. Efficient Neighbourhood Encoding for Interval Graphs
and Permutation Graphs and O(n) Breadth-First Search. IWOCA’09: 20th International Work-
shop on Combinatorial Algorithms, Jun 2009, Hradec nad Moravicí, Czech Republic. pp.146-157,
�10.1007/978-3-642-10217-2_17�. �lirmm-00415935�

https://hal-lirmm.ccsd.cnrs.fr/lirmm-00415935v1
https://hal.archives-ouvertes.fr

Efficient neighborhood encoding for interval graphs
and permutation graphs and O(n) Breadth-First

Search

Christophe Crespelle1 and Philippe Gambette2

1 CNRS - Univ. Paris 6, christophe.crespelle@lip6.fr
2 Univ. Montpellier 2, Philippe.Gambette@lirmm.fr

Abstract. In this paper we address the problem of designing O(n) space
representations for permutation and interval graphs that provide the neigh-
borhood of any vertex in O(d) time, where d is its degree. To that purpose,
we introduce a new parameter, called linearity, that would solve the problem
if bounded for the two classes. Surprisingly, we show that it is not. Neverthe-
less, we design representations with the desired property for the two classes,
and we implement the Breadth-First Search algorithm in O(n) time for per-
mutation graphs; thereby lowering the complexity of All Pairs Shortest Paths
and Single Source Shortest Path problems for the class.

Introduction

Interval graphs are the intersection graphs of intervals of the real line, and
permutation graphs are the intersection graphs of segments joining two par-
allel lines. They are extensively studied graph classes. One of the reasons is
that they naturally appear in many contexts such as scheduling, genomics,
phylogeny and archeology. On these two classes, a lot of usually NP-complete
problems (e.g. coloring, maximum clique, domination) admit very efficient
and pleasant solutions (see [7, 11]). These algorithms lean on the geometric
definitions of the two classes, which give rise to O(n) space representations
providing adjacency3 between an arbitrary pair of vertices in O(1) time, while
the adjacency matrix takes O(n2) space, where n is the number of vertices in
the graph.

Though it seems a natural question, the issue of designing O(n) space data
structures providing the neighborhood of an arbitrary vertex in O(d) time,
where d is its degree, has never been investigated for any of the two classes.
For arbitrary graphs, the question of finding compact representations pro-
viding optimal time neighborhood queries is an accurate practical issue [12].
The compactness of such representations allows to store the graph entirely
in memory, and preserve the complexity of algorithms using neighborhood
queries. The conjunction of these two advantages has great impact on the
running time of algorithms managing large amount of data.

3 That is, answering the question ”Is x adjacent to y?”

Does there exist a O(n) space structure providing neighborhoods in O(d)
time for interval and permutation graphs? There is a natural approach that
one cannot avoid to consider. It consists in trying to extend some known
results for subclasses of interval graphs or permutation graphs that are known
to have very good properties with regard to neighborhood encoding. The
proper (or unit) interval graphs are the subclass of interval graphs that admit
a model whose intervals all have the same length. They are also characterized
as the graphs admitting a linear order on their vertices such that the closed4

neighborhood of each vertex is an interval [10]. Some compression techniques
are based on this notion [1, 2]: they try to find orders of the vertices that
group the neighborhoods together, as much as possible. If one uses one single
order on the vertices and allows the closed neighborhoods of the graph to be
split in at most k intervals, the minimum value of k which make possible to
encode the graph in this way is a known parameter called closed contiguity.
Let us mention that [6, 14] showed that deciding whether a graph has closed
contiguity at most k is NP-complete for any fixed k ≥ 2, and [5] gave an
upper bound on the value of the parameter for arbitrary graphs. Another
possible way of generalization is to use at most k orders on the vertices
such that the closed neighborhood of a vertex is the union of one interval
in each of the k orders. It gives rise to a new parameter, that we call closed
linearity, which is always less or equal to the closed contiguity. Concerning
the corresponding notions for open neighborhoods, it is known that bipartite
permutation graphs have5 open contiguity 1 [3], or equivalently open linearity
1. Then, it seems unavoidable to ask whether interval and permutation graphs
have one of the four parameters mentioned above bounded. Unfortunately,
none of them is bounded for any of the two classes. We show that the linearity
(closed or open) can be up to Ω(log n/ log log n). However, following another
approach, we devise O(n) space data structures, for both interval graphs and
permutation graphs, that provide neighborhoods in O(d) time, and that can
be computed from an intersection model of the graph in O(n) time. This gives
new possibilities for the applications dealing with big interval or permutation
graphs on which neighborhood queries are needed.

The fact that the neighborhood representation question had not been risen
before for interval and permutation graphs is even more surprising considering
that, on arbitrary graphs, many algorithmic problems are efficiently solved
thanks to adjacency lists, which provide O(d) time neighborhood queries.
Part of the reason is that the structure induced by the intersection models of
these two classes often allows to avoid addressing the problem. However, we

4 The closed neighborhood is the classic neighborhood augmented with the vertex itself.
We will refer to the classic neighborhood as the open neighborhood, in order to avoid
confusion between the two notions.

5 The graphs having open contiguity 1 are exactly biconvex graphs, which is a subclass of
bipartite graphs that properly contains bipartite permutation graphs.

believe that the problem of efficiently managing neighborhood in interval and
permutation graphs may lead to new algorithmic developments for the two
classes by improving or simplifying some algorithms. As an illustration of the
interest of considering this question, we show how to implement an O(n) time
Breadth-First Search algorithm (BFS for short) for permutation graphs. This
lowers the complexity of finding All Pair Shortest Paths and Single Source
Shortest Paths in a non weighted graph of the class to respectively O(n2)
and O(n).

Outline of the paper. Section 1 gives some basic definitions and notations
we use in the following. In Section 2, we formally define the closed linearity
and show that this parameter can be up to Ω(log n/ log log n) for both interval
graphs and permutation graphs. In Section 3, we design an O(n) space data
structure providing the neighborhood of any vertex in O(d) time. Finally, in
Section 4 we implement the BFS algorithm in O(n) time for permutation
graphs.

1 Preliminaries.

All graphs considered here will be finite, undirected, loopless and simple. In
the following, G denotes for a graph, V for its vertex set and E for its edge
set, we denote G = (V,E). The set of subsets of V is denoted 2V . Throughout
the paper, n stands for |V | and m for |E|. An edge between vertices x and y
will be arbitrarily denoted xy or yx. The (open) neighborhood of x is denoted
N(x) and the closed neighborhood N [x] = N(x) ∪ {x}. For a rooted tree T
and a vertex u ∈ T , we denote T (u) for the subtree of T rooted at u, and
AncT (u) for the ancestors of u in T (u ∈ AncT (u)). The depth of u in T , is
the number of edges in the path from the root to u (the root has depth 0).
The depth of T , denoted depth(T), is the greatest depth of its leaves. The
set of vertices at depth i in T will be denoted T i. For a linear ordering σ on
a set S, we denote min(σ) (resp. max(σ)) for the first (resp. last) element
of σ. For any s ∈ S, we denote σ(s) for the rank of s in σ (min(σ) has rank
1, and max(σ) rank |S|), and for any i ∈ [1, |S|], we denote σ−1(i) for the
element s ∈ S such that σ(s) = i. For s ∈ S, s− (resp. s+) denotes for the
predecessor (resp. successor) of s in σ. σ denotes for the reverse order of σ.
The list L containing elements x1, . . . , xk is denoted L = [x1, . . . , xk]. For two
lists L1, L2 with L1 = [x1, . . . , xk] and L2 = [y1, . . . , yk], we denote L1.L2 for
the concatenated list L1.L2 = [x1, . . . , xk, y1, . . . , yk].

An interval model of a graph G is a set of intervals of the real line together
with a one to one mapping onto the set of vertices of G, such that there is an
edge between vertices x and y in G iff their corresponding intervals intersect
(see Fig. 1(b)). An interval graph is a graph admitting such a model. The class

remains the same if the intervals are required to be closed and to have integer
bounds between 1 and 2n, all models considered in the following satisfy this
restriction. Associating each vertex with the bounds of its interval provides
an efficient encoding of the graph that takes O(n) space and allows to answer
adjacency queries between any pair of vertices in O(1) time.

A permutation model of a graph is a set of segments joining two given
parallel lines along with a one to one mapping onto the set of vertices of G,
such that there is an edge between vertices x and y in G iff their corresponding
segments intersect (see Fig. 1(c)). A graph G is a permutation graph iff it
admits a permutation model. The class remains the same if the extremities of
the segments are required to be pairwise distinct. We denote π1 and π2 for the
orders on the vertices induced by the order of their extremities respectively
on the first and second line. Vertices x and y are adjacent in G iff (π1(y) −
π1(x)) × (π2(y) − π2(x)) < 0; that is iff x and y do not appear in the same
relative order in the first and in the second linear ordering. Associating with
each vertex x of G the couple (π1(x), π2(x)) results in a O(n) representation
of G providing adjacency in O(1) time. We will refer to π1(x) and π2(x) as
the extremities of x, identifying x and its corresponding segment.

2 Interval graphs and permutation graphs have unbounded
closed linearity

The aim of this section is to prove that interval graphs and permutation
graphs have unbounded contiguity and linearity (both open and closed).
Thanks to the relationships between the four parameters, we will derive the
result from the case of closed linearity, for which we give a formal definition.

Definition 1. We call a closed p-line-model of a graph G = (V,E) a tu-
ple (σ1, . . . , σp) of linear orders on V such that ∀v ∈ V,∃(I1, . . . , Ip) ∈
(2V)p, (∀i ∈ [1, p], Ii is an interval of σi) and N [x] =

⋃

1≤i≤p Ii.
The closed linearity of G, denoted cl(G) is the minimum integer p such that
there exists a closed p-line-model of G.

We now exhibit a family of graphs which shows that closed linearity is
unbounded for interval and permutation graphs.

Theorem 1. For any k ∈ N, there exists a graph G that is both an interval
graph and a permutation graph, and such that cl(G) > k.

Proof. Consider the transitive closure of the rooted directed 2k + 1-ary tree
Tk of depth k, for k ≥ 1. Let Gk be its underlying undirected graph.

We first prove that Gk is a permutation graph: for every internal node v
of Tk, choose an arbitrary order πv on its 2k + 1 children. Let π1 (resp. π2)
be the order in which one discovers the nodes of Tk in a Depth-First Search

(a)

(b) (c)

Fig. 1. The interval model (b) and the permutation model (c) of the undirected underlying
graph of the transitive closure of the rooted directed tree T2 (a). This graph has linear-
ity strictly greater than 2, because two orders are not sufficient to represent the closed
neighborhood {r, x1, x2} of x2.

that respects the orders πv (resp. πv) for all v ∈ Tk. (π1, π2) is a permutation
model of Gn, as illustrated for G2 in Fig. 1(c). It is easy to see that Gk is
also an interval graph: for any vertex v ∈ T , choose an interval included in
its father’s one and disjoint from its siblings’one, as in Fig. 1(b).

We now prove that cl(Gk) > k. Assume for contradiction that Gk admits
a closed k-line-model M. We prove by recursion that for all i ∈ [0, k], there
is a vertex xi at depth i in Tk such that for all u ∈ AncTk

(xi) \ {xi} and for
all y ∈ Tk(u), y is not next to u in any order of M. This is trivially true for
i = 0 since the root is at depth 0 and has no strict ancestor. We now suppose
this is true for some i ∈ [0, k − 1], and prove it for i + 1. Since there are k
orders inM and since xi has 2k +1 children, there exists one child xi+1 of xi

such that for all y ∈ Tk(xi+1), y is not next to xi in any order of M. Then,
xi+1 shows that the inductive hypothesis also holds for i + 1.

Consider the leaf xk given by the statement above, proved by recursion.
The closed neighborhood of xk is exactly AncTk

(xk). Let σ be a linear order
ofM. From the statement, no vertex of AncTk

(xk) is next to another vertex
of AncTk

(xk) in σ. It follows that the interval associated to xk in σ contains
only one vertex. As there are k + 1 vertices in the closed neighborhood of xk

and only k orders inM, we get a contradiction. Thus, cl(Gk) > k. ✷

Since the graphs Gk used in the proof of Theorem 1 have (2k+1)k vertices
and since cl(Gk) > k, it follows that cl(Gk) = Ω(log n/ log log n). This lower
bound also holds for open linearity, open contiguity and closed contiguity,
which are respectively denoted ol(G), oc(G) and cc(G). Indeed, one can obtain
a closed p + 1-line-model from an open p-line-model by adding a linear order
in which the interval associated to a vertex is reduced to the vertex itself. It
follows that ol(G) ≥ cl(G)−1. In addition, if G has contiguity p, make p copies

of a linear ordering π realizing this p, and, in each of the p copies, associate
to all the vertices of G one of their at most p intervals in π. This results
in a k-line-model of G and shows that cc(G) ≥ cl(G) and oc(G) ≥ ol(G) ≥
cl(G) − 1. Thus, the four parameters have value Ω(log n/ log log n) for Gn.
Let us mention that we have examples showing that the contiguity (open and
closed) can even be up to Ω(log n) for both interval and permutation graphs
(see Appendix B). The relations between the four parameters are detailed in
Appendix A.

3 Encoding neighborhoods in interval graphs and
permutation graphs

Here, we aim at providing O(n) space representations of interval graphs and
permutation graphs that allow to answer neighborhood queries on any vertex
x in O(d) time, where d is the degree of x. Moreover, the structures we
propose can be constructed in O(n) time from the interval or permutation
model of the graph. We first show that, for interval graphs, the encoding
problem we consider can be reduced to the same problem on permutation
graphs. Then, we describe an encoding of permutation graphs satisfying the
desired properties.

Interval graphs. The neighborhood of a vertex x of an interval graph can be
divided into three (not necessarily disjoint) parts: the subset L(x) of vertices
whose interval left bound lies in the interval of x, the subset R(x) of vertices
whose interval right bound lies in the interval of x, and the vertices whose
interval either contains or is included in the one of x. Let π1 (resp. π2) be
the order on the vertices of G obtained by sorting them with increasing
interval left (resp. right) bound, breaking the ties in an arbitrary way. It is
not difficult to see that L(x) is an interval I1 of π1 and R(x) is an interval
I2 of π2. Concerning the last part of the neighborhood, it is known that the
containment relationship of intervals (i.e. I is in relation with J iff I ⊆ J or
J ⊆ I) is a permutation graph, denoted G′. Therefore, a neighborhood query
on x in G will be treated by augmenting the result of the query in G′ with
the vertices of I1 ∪ I2.

Note that this encoding of interval graphs usually contains redundant in-
formation. During the query on x, a vertex whose interval is included in that
of x will appear in the result of the query in G′, as well as in I1 and in I2.
This drawback can be avoided by simply parsing the output list to remove
repetitions. Anyway, this redundancy only introduces a constant multiplica-
tive factor and we still achieve expected time and space complexity, provided
that there exists a structure achieving it for permutation graphs. We now
concentrate on building such a structure.

Permutation graphs. The difficulty of encoding neighborhoods in permu-
tation graphs comes from the fact that the neighborhood of a vertex can be
spread everywhere in the two orders of the permutation model. Then, scan-
ning the orders to collect the neighborhood of x may take up to O(n) time.
However, we show that it is possible to extract the neighborhood of x from
the permutation model, without scanning it, in O(d) time, where d is the
degree of x. This can be achieved thanks to augmented Cartesian trees, intro-
duced in [4], which is based on Cartesian trees [13] and constant time nearest
common ancestor queries [8, 9] (see Appendix C for more details). This struc-
ture provides, in constant time, the maximum, on any given interval, of an
integer function f defined on a linear order; and it can be computed in O(n)
time for a linear order on n elements. Notice that changing f for its opposite
provides the same features for minimum queries. We denote max(f, I) (resp.
min(f, I)) for the maximum (resp. minimum) of function f over interval I.

MaxNeighbor(x, I)
1. N ← ∅

2. y ← π−1

2 (max(π2, I))
3. If y >π2

x Then

4. N ← N ∪ {y}
5. If lI <π1

y Then N ← N∪ MaxNeighbor(x, [lI , y−])
6. If y <π1

rI Then N ← N∪ MaxNeighbor(x, [y+, rI])
7. Return N

Neighborhood(x)
8. N ← ∅

9. If min(π1) <π1
x Then N ← N∪ MaxNeighbor(x, [min(π1), x

−])
10. If x <π1

max(π1) Then N ← N∪ MinNeighbor(x, [x+, max(π1)])
11. Return N

Fig. 2. Routines MaxNeighbor and Neighborhood. x is a vertex of G and I = [lI , rI] is an
interval of π1.

We now detail the algorithm listing the neighborhood of a vertex (cf.
Fig 2). An example can be found in Appendix D. The algorithm assumes
that the model (π1, π2) of the permutation graph G is given, as well as the
augmented Cartesian tree of the function π2 on the linear order π1, which pro-
vides the maximum of π2 on any interval of π1. The prerequisites of Routine
MaxNeighbor(x, I) are: 1) x is a vertex of G and 2) I = [lI , rI] is a non-empty
interval of π1 such that rI <π1

x. Lemma 1 below states that, when they are
satisfied, the routine returns all the neighbors y of x that belong to I, and
runs in O(d) time.

Lemma 1. When its prerequisites are satisfied, Routine MaxNeighbor re-
turns the neighbors of x belonging to the interval I of π1, in O(d) time.

Proof. The prerequisite 2) guarantees that rI <π1
x. Then, a vertex z ∈ I

is adjacent to x iff z >π2
x. Since the test of Line 3 occurs on the vertex

y ∈ I having the greatest value for π2(y), it exactly determines whether x is
adjacent to some vertex of I; and in the positive, y is added to N . Then, the
search recursively goes on in the two pieces made by the removal of x in I.
Since these two pieces still satisfy the prerequisites and since the search do
not forget any part of I, it discovers all the neighbors of x belonging to I.

Thanks to the augmented Cartesian tree, the maximum query of Line 2
takes constant time, and so does each recursive call to MaxNeighbor. Then
the complexity of the routine is its number of recursive calls. Each vertex
y ∈ N(x) ∩ I discovered during a recursive call, then called a discovering
call, has not been discovered before, since the neighbors discovered are ex-
cluded from the search. Then the number of discovering calls is O(d). When
a recursive call does not discover any neighbor of x, it does not call Routine
MaxNeighbor. It follows that all calls are made by a discovering call, called
its parent call. Since Routine MaxNeighbor contains at most two recursive
calls during an execution, a discovering call is the parent of at most two non-
discovering calls. Thus, the number of non-discovering calls is also O(d), and
so is the total running time of Routine MaxNeighbor. ✷

Similarly to MaxNeighbor, we can design a Routine MinNeighbor that dis-
covers all the neighbors of x belonging to an interval I of π1 lying entirely to
the right of x: simply replace max with min at Line 2 and reverse the inequal-
ity of Line 3. Then, from Lemma 1, it is clear that Routine Neighborhood

discovers all the neighbors of x in O(d) time, as stated by Theorem 2.

Theorem 2. Routine Neighborhood returns the neighborhood of x in O(d)
time.

4 Breadth-First Search of permutation graphs

The input of our algorithm is a permutation graph G given by its model
(π1, π2) and a linear order σ on V . It computes the BFS tree Tσ resulting
from the BFS of G with priority order σ, that is, the BFS starting with vertex
min(σ) and where the neighbors y of a vertex are examined with increasing
σ(y). Our algorithm does not discover the vertices in the same order as the
standard BFS would do. Nevertheless, the tree T produced is the same, except
that the children of a vertex of T are not ordered; which we fix, in a final
step, by sorting all the children lists according to σ. The total complexity of
the process is O(n).

BuildTree(π1, π2, σ)
1. x← min(σ); ord(x)← 1
2. initialize I and Γ with (x, x, x, x)
3. For all y ∈ N(x) Do

4. parent(y)← x; color y in gray; update(Γ, y)
5. While I 6= Γ Do

6. Γnew ← Γ ; Exam← ∅

7. If α1 < a1 Then PutInTree(α1, a
−

1 , π1, Q
l
1, Exam)

8. If β1 > b1 Then PutInTree(β1, b
+

1 , π1, Q
r
1, Exam)

9. If α2 < a2 Then PutInTree(α2, a
−

2 , π2, Q
l
2, Exam)

10. If β2 > b2 Then PutInTree(β2, b
+

2 , π2, Q
r
2, Exam)

11. AssignOrd(Ql
1, Q

r
1, Q

l
2, Q

r
2); color Exam in gray

12. I ← Γ ; Γ ← Γnew

Fig. 3. Routine BuildTree. Lists Ql
1, Qr

1, Ql
2, Qr

2 and Exam are local variables of the main
loop, as well as Γnew which is a quadruplet of integers. I and Γ are global variables.

The algorithm. Routine BuildTree (cf. Fig. 3) computes the BFS tree
of the connected component of the first visited vertex. It can be applied
iteratively on the first non-visited vertex in σ in order to get the complete
BFS forest. From now on, we concentrate on building a single tree T . In the
description of the algorithm, parent(y) denotes for the parent of vertex y
in T . Before the algorithm starts, parent(y) is initialized with ⊥, and y is
colored in white. Γ = (α1, β1, α2, β2) and I = (a1, b1, a2, b2) are quadruplets
of vertices. We denote I1 for the interval [a1, b1] of π1 and I2 for [a2, b2] in π2.
Similarly, Γ1 = [α1, β1] in π1, and Γ2 = [α2, β2] in π2. Procedure update(X, y),
where y ∈ V and X = (l1, r1, l2, r2) is a quadruplet of vertices, executes
the instructions lj ← minπj

(lj , y) and rj ← maxπj
(rj , y), for j ∈ {1, 2}.

Function ord takes integer values assigned by Procedure AssignOrd. We
denote <ord the order defined by u <ord v iff ord(u) < ord(v). The arguments
of AssignOrd are four lists (not necessarily disjoint), which are merged by the
procedure into a single one Qglob without repetition and sorted according to
order <prior (defined below), the first element of the list being the least one for
<prior. Then, for each vertex x in Qglob, the procedure assigns ord(x) with the
rank of x in Qglob. For any i ≥ 0, we denoteOi for {y ∈ T i | ord(y) is defined}.
Order <prior is defined by u <prior v iff ord(parent(u)) < ord(parent(v)) or
(

ord(parent(u)) = ord(parent(v)) and σ(u) < σ(v)
)

. By convention, element
⊥ is the greatest for order <prior.

Routine BuildTree builds T level by level from the root to the leaves. The
ith iteration of the main loop (starting at Line 5) builds T i+1 by parsing the
vertices of (Γ1 \ I1)∪ (Γ2 \ I2), thanks to the four calls to Routine PutInTree

(cf. Fig. 4). This routine affects to the encountered white vertices their parent

in T (Line 4). A vertex is colored gray (Line 11 of BuildTree) only when it
has been placed correctly in T ; note that a vertex may be assigned a parent
twice, once in π1 and once in π2. The main loop stops when I = Γ (Line 5),
that is, when the two intervals of π1 and π2 corresponding to the connected
component C of min(σ) have been entirely parsed. Then, all the vertices have
been assigned a parent, and the construction of T is over.

PutInTree(u, v, π, Q, F)
1. p← u; Q← [p]
2. For y from u to v in π Do

3. If y is white and p <prior parent(y) Then

4. parent(y)← p; F ← F.[y]; update(Γnew, y)
5. If y is gray and y <prior p Then

6. p← y; Q← [p].Q

Fig. 4. Routine PutInTree. π is an order, u and v two vertices, and Q and F are lists. Γnew

is a variable of Routine BuildTree.

Correctness. It is straightforward that during all the algorithm, I1 ⊆ Γ1

and I2 ⊆ Γ2. The key of the correctness of our algorithm is the following
invariants. At the beginning of the ith iteration of the main loop of BuildTree
(Line 5), T has been built correctly until depth i, the set of gray vertices is
exactly

⋃

0≤j≤i T
j , and the properties below hold (see Lemmas 5 and 6 in

Appendix E).

1. the vertices of
⋃

0≤j<i T
j have their two extremities in I1 and I2;

2. the vertices of T i have their two extremities in Γ1 and Γ2;
3. I1 ∪ I2 contains all the vertices of

⋃

0≤j≤i T
j and no others;

4. the bounds of Γ1 and Γ2 belong to
⋃

0≤j≤i T
j .

5. the order <ord restricted to Oi−1 is exactly the order of visit of the vertices
of Oi−1 by the standard BFS algorithm.

During the main loop, the four calls to PutInTree parse the vertices of B =
(Γ1 \ I1) ∪ (Γ2 \ I2). The white vertices of B are exactly the vertices of T i+1

and the gray ones are in T i. PutInTree affects to the white vertices of B
their parent in T , which is among the gray vertices of B. The vertices of T i

that have their two extremities in I1 and I2 are leaves of T . Let us examine
more precisely the first call to PutInTree, when α1 < a1. From Invariant 1
and 4 (Inv. for short), α1 ∈ T i. Let w be a white vertex of [α1, a

−
1]. Since all

the vertices of I1∪ I2 are gray (Inv. 3) and since w is not adjacent to min(σ),

necessarily w <π2
a2. Moreover, since α1 ∈ T i, α1 has an extremity in I2

(Inv. 3). It follows that w and α1 are adjacent and w ∈ T i+1. Similarly, w
is adjacent to all the gray vertices z <π1

w and to none of the gray vertices
z >π1

w. From Inv. 5 and the definition of <prior, we have that, for u, v ∈ T i,
u <prior v iff u is visited before v by the standard BFS. Then, the test at Line 5
together with the affectation at Line 6 maintain variable p as the gray node
of [α1, y] which is the first visited by the standard BFS, where y is the current
vertex in the loop starting at Line 2. Thus, any white vertex w ∈ [α1, a

−
1] is

assigned a parent which is the gray vertex of [α1, a
−
1] ∩N(w) being the first

one visited by the standard BFS (remind that [w, a−1] ∩ N(w) = ∅). More
generally, this is true for any white node discovered in any of the four calls
to PutInTree. Note that a white vertex w may be seen in two different calls
to PutInTree, once in π1 and once in π2. In this case, the test at Line 3
guarantees that the second possible parent is affected if and only if it is
visited by the standard BFS before the first one. Thus, during the main loop,
any white vertex w of B is affected its correct parent in T . We showed that
w ∈ T i+1; note that conversely, every vertex w ∈ T i+1 is white and has
necessarily an extremity in B: otherwise, it would either be adjacent to none
of the vertices of

⋃

0≤j≤i T
j , or adjacent to min(σ); both contradict the fact

that w ∈ T i+1. As a conclusion, the ith iteration of the main loop properly
computes level T i+1 and colors its vertices in gray (Line 11).

The fact that Γnew is updated, at Line 4 of PutInTree, every time a white
vertex (which will become gray at Line 11) is visited, together with the two
affectations at Line 12 of BuildTree, imply that Inv. 1 to 4 are still true at
the beginning of the next iteration. Finally, since order <prior on set T i is the
order of visit of the vertices of T i by the standard BFS, and since AssignOrd
(Line 11) assigns the values of ord(v) to the vertices v ∈ T i according to
<prior, it follows that Inv. 5 is also maintained during the loop.

Complexity. The total running time of our BFS algorithm is O(n). First, we
build the structure of Section 3 that allows to answer neighborhood queries
in O(d) time. It takes O(n) time. Then, Routine BuildTree gives the BFS
tree (except the order on the children) of the connected component C of the
first vertex examined, in O(|C|) time. We repeat Routine BuildTree, starting
from the first non-visited vertex in σ, until all the vertices of the graph have
been visited. As the sets of vertices visited during each call to BuildTree are
disjoint, the total running time of all the calls to BuildTree is O(n). At last,
we order the lists of children of the vertices in all the trees produced: set the
lists of children of all the vertices in the forest to ∅, and scan σ placing each
vertex in the list of its parent. At the end of the scan, all the children lists
have been rebuilt and sorted according to σ. This process takes O(n) time.

Let us detail the O(|C|) time complexity of Routine BuildTree. Remind
that B denotes for (Γ1 \ I1) ∪ (Γ2 \ I2). Thanks to the data structure of
Section 3, at Line 3, we can get N(x) in O(|N(x)|) time, which is also the
running time of the initialization loop. In PutInTree, all instructions take
O(1) time, and the Routine runs in O(|π(u) − π(v)|) time. That is, O(|B|)
time for the four calls of the main loop. Coloring Exam also takes O(|B|)
time. The complexity of procedure AssignOrd is a crucial point. It is worth
to note that any list Q′ being one of its arguments is already sorted according
to <prior. This is a property of PutInTree, which produces Q′, guaranteed
by the test y <prior p at Line 5 and the affectations of Line 6. It follows that
AssignOrd can be implemented to merge the four lists in a single one, sorted
according to <prior, in O(|Ql

1| + |Q
r
1| + |Q

l
2| + |Q

r
2|) = O(|B|) time. Then,

the running time of an iteration of the loop is O(|B|), and since all the B’s
considered until the end of the loop are pairwise disjoint, it follows that the
main loop, as well as Routine BuildTree, runs in O(|C|) time.

References

1. P. Boldi and S. Vigna. The webgraph framework I: compression techniques. In
WWW’04, pages 595–602. ACM, 2004.

2. P. Boldi and S. Vigna. Codes for the world wide web. Internet Mathematics, 2(4):407–
429, 2005.

3. A. Brandstädt, V.B. Le, and J.P. Spinrad. Graph Classes: a Survey. SIAM Monographs
on Discrete Mathematics and Applications, 1999.

4. H.N. Gabow, J.L. Bentley, and R.E. Tarjan. Scaling and related techniques for geometry
problems. In STOC’84, pages 135–143, 1984.

5. C. Gavoille and D. Peleg. The compactness of interval routing. SIAM Journal on

Discrete Mathematics, 12(4):459–473, 1999.
6. P.W. Goldberg, M.C. Golumbic, H. Kaplan, and R. Shamir. Four strikes against phys-

ical mapping of DNA. Journal of Computational Biology, 2(1):139–152, 1995.
7. M.C. Golumbic. Algorithmic Graph Theory and Perfect Graphs, volume 57 of Annals

of Discrete Mathematics. Elsevier, second edition, 2004.
8. D. Harel. A linear time algorithm for the lowest common ancestors problem (extended

abstract). In FOCS’80, pages 308–319, 1980.
9. D. Harel and R.E. Tarjan. Fast algorithms for finding nearest common ancestors. SIAM

J. Comput., 13(2):338–355, 1984.
10. F.S. Roberts. Representations of Indifference Relations. PhD thesis, Stanford Univer-

sity, 1968.
11. J. P. Spinrad. Efficient graph representations, volume 19 of Fields Institute Monographs.

American Mathematical Society, 2003.
12. G. Turan. On the succinct representation of graphs. Discr. Appl. Math., 8:289–294,

1984.
13. J. Vuillemin. A unifying look at data structures. Commun. ACM, 23(4):229–239, 1980.
14. R. Wang, F.C.M. Lau, and Y. Zhao. Hamiltonicity of regular graphs and blocks of

consecutive ones in symmetric matrices. Discr. Appl. Math., 155(17):2312–2320, 2007.

A Relationships between contiguity and linearity

In the article, we focus on closed linearity which is “more powerful” than open
linearity and open or closed contiguity, i.e., if one of these three parameters
are bounded then closed linearity is bounded too. We prove this claim with
three lemmas following a formal definition of contiguity.

Definition 2. Let G = (V,E) be a graph and let σ ∈ Π(V). We denote
cσ(x) (resp. cσ[x]) the number of maximal intervals I of σ st. I ⊆ N(x) (resp.
N [x]). We define the open contiguity of G as oc(G) = min

σ∈Π(V)
max
x∈V

cσ(x), and

the closed contiguity as cc(G) = min
σ∈Π(V)

max
x∈V

cσ[x].

Lemma 2. Any graph G = (V,E) satisfies cl(G) ≤ cc(G).

Proof. Let G = (V,E) and σ ∈ Π(V) realizing cc(G) = p. We build a closed
p-line model by adding p copies of σ. Then the interval used to code the
neighborhood of a vertex v in the i-th copy of σ is the i-th interval used to
code the neighborhood of v in σ. ✷

Lemma 3. Any graph G = (V,E) satisfies cl(G) ≤ oc(G) + 1.

Proof. Let G = (V,E) and σ ∈ Π(V) realizing oc(G) = p. As the open neigh-
borhood of any vertex v appears as p intervals in σ, its closed neighborhood
appears as at most p + 1 intervals, so cc(G) ≤ oc(G) + 1. Using Lemma 2,
cl(G) ≤ oc(G) + 1. ✷

Lemma 4. Any graph G = (V,E) satisfies cl(G) ≤ ol(G) + 1.

Proof. If G admits an open p-line-model, then we obtain a closed p + 1-line-
model of G by adding a p + 1th linear order σp+1 such that for all x ∈ V the
interval associated to x in σp+1 is {x}. ✷

B Lower bound for the contiguity of interval and
permutation graphs

We denote Π(V) for the set of linear orderings of set V .

Theorem 3. For any k ∈ N, there exists a graph G that is both an interval
graph and a permutation graph, and such that cc(G) ≥ k.

Proof. Consider the transitive closure of the rooted directed ternary tree Tn

of depth n. Let Gn be its underlying undirected graph. Gn is a permutation
graph: for every internal node v of T , choose an arbitrary order πv on its three
children. Let π1 (resp. π2) be the order in which one discovers the nodes of T
in a Depth-First Search that respects the orders πv (resp. πv) for all v ∈ T .
(π1, π2) is a permutation model of Gn. It is easy to see that Gn is also an
interval graph: for any vertex v ∈ T , choose an interval included in its father’s
one and disjoint from its siblings’one.

We show by induction that for all i and for all σ ∈ Π(V (Gi)), there ex-
ists a vertex x ∈ V (Gi) such that cσ(x) ≥ i. This is true for i = 1 since
for any σ ∈ Π(V (G1)), all the three children of the root cannot be next to
it in σ. If for some i ≥ 1, the property holds, then it holds for i + 1. Let
σ ∈ Π(V (Gi+1)). We denote r for the root of Ti+1 and v1, v2, v3 its children.
Since there are at most two vertices of Ti+1 that are next to r in σ, then there
exists j ∈ [1, 3] st. no vertex of Ti(vj) is next to r in σ. By induction, there
exists v ∈ V (Ti(vj)) such that cσ[Ti(vj)](v) ≥ i. Since r is adjacent to v in Ti,
thus cσ(v) ≥ i + 1. ✷

Remark 1. The proof of Theorem 3 shows that there exist permutation graphs
and interval graphs on n vertices having a closed contiguity of Ω(log n).

C Augmented cartesian trees

The augmented cartesian tree data structure relies on the Cartesian tree intro-
duced by Vuillemin [13] and on a data structure for lowest common ancestor6

queries designed by Harel and Tarjan [8, 9].

Let f be an integer function defined on linear order σ = [x1, . . . , xm−1, xm, xm+1, . . . , xn],
where xm is an element realising the maximum value of f on σ. A Cartesian
tree of f on σ is a binary tree whose root is xm and whose left subtree is a
Cartesian tree of f on [x1, . . . , xm−1], and whose right subtree is a Cartesian
tree of f on [xm+1, . . . , xn]. The nodes of a Cartesian tree are exactly the
elements of σ. It is not difficult to see that the maximum of f over a given
interval I = [lI , rI] is reached on the nearest common ancestor of the nodes
corresponding to lI and rI in the Cartesian tree. ancestor of two nodes in
a tree and the problem of finding the maximum over a given interval of an
integer function defined on a linear order are linear time equivalent.

The fact is that [8, 9] showed that, given a tree on n nodes, it is possible
to precompute it in O(n) time so that nearest common ancestor queries can
be answered in O(1) time for any pair of nodes.

6 The lowest common ancestor of two nodes u and v in a tree is defined as the minimum
(for the ”is a descendant of” relationship) of the common ancestors of u and v.

As the Cartesian tree and the structure of [8, 9] take O(n) space, this
results in an O(n) space structure providing the maximum, and an element
reaching it, of f on any interval of σ in constant time. Changing f into its
opposite immediately gives the same feature for the minimum instead of the
maximum.

D Efficient neighborhood algorithm for permutation graphs

Here we give an example of execution of routine Neighborhood on the ver-
tex v6 of the permutation graph shown in Figure 5(a). As π1(v6) = 6,
Neighborhood only calls MaxNeighbor(v6, [1, 5]), which should return the list
of all neighbors of x whose upper extremity is in interval [1, 5], i.e. {3, 4, 5}.

(a) (b)

Fig. 5. A permutation graph (a) and its permutation model (b): π1 = (123456) and π2 =
(214653).

MaxNeighbor(v6, [1, 5]) identifies the neighbor of v6 with upper extremity
in [1, 5] and right-most lower extremity, v4, whose lower extremity is at posi-
tion 6. So y ← v4, and m ← 6. v4 is added to N and MaxNeighbor is called
recursively on the two remaining intervals: [1, 3] and [5, 5].

MaxNeighbor(v6, [1, 3]) puts 4 into m and v3 into y, and only calls MaxNeighbor(v6, [1, 2]),
which is not a discovering call and returns ∅. Finally, MaxNeighbor(v6, [1, 3])
only returns {3}.

MaxNeighbor(v6, [5, 5]) puts 5 into m and v5 into y, and directly returns
{5}.

Finally, MaxNeighbor(v6, [1, 5]) returns N = {3, 4, 5}.

E Correctness proof of the Breadth-First Search algorithm
for permuation graphs

We denote G for the set of gray vertices.

Lemma 5. At the beginning of the ith iteration of the main loop, the follow-
ing properties hold.

1.
⋃

0≤j<i T
j ⊆ I1 ∩ I2; and

2. T i ⊆ Γ1 ∩ Γ2; and
3.

⋃

0≤j≤i T
j = I1 ∪ I2 = G; and

4. {a1, b1, a2, b2} ⊆
⋃

0≤j<i T
j and for j ∈ {1, 2}, αj 6= aj ⇒ αj ∈ T i and

βj 6= bj ⇒ βj ∈ T i.

Proof. It is easy to check that the invariant is true at the beginning of the first
iteration. Now, suppose that it is true at the beginning of the ith iteration,
for some i ≥ 1. Let us show that T i+1 =W∩(Γ1∪Γ2). Let y ∈ W∩(Γ1∪Γ2).
Since I1 ∪ I2 = G, y ∈ (Γ1 \ I1) ∪ (Γ2 \ I2). If α1 6= a1, from the invariant,
we have α1 ∈ T i ⊆ G = I1 ∪ I2. Then, as α1 6∈ I1, α1 ∈ I2. It follows that
all the vertices of [α1, a

−
1] are adjacent to α1. And more generally, all the

vertices of (Γ1 \ I1) ∪ (Γ2 \ I2) are adjacent to one of α1, β1, α2, β2. Since
y ∈ W, then y 6∈

⋃

0≤j≤i Tj ; and since {α1, β1, α2, β2} ⊆ T i, we obtain that

y ∈ T i+1. Conversely, let y ∈ T i+1. Since
⋃

0≤j≤i Tj = G, y ∈ W. Suppose

that y 6∈ Γ1 ∪ Γ2. Since x ∈ T 0 and y ∈ T i+1 with i ≥ 1, y is not adjacent
to x. Then, either y <π1

α1 and y <π2
α2, or y >π1

β1 and y >π2
β2. In

both case, since
⋃

0≤j≤i Tj ⊆ Γ1 ∩ Γ2, it follows that y is not adjacent to any

vertex of
⋃

0≤j≤i Tj , which is a contradiction with the fact that y ∈ T i+1.

Thus, y ∈ Γ1 ∪ Γ2. And finally, T i+1 =W ∩ (Γ1 ∪ Γ2).
It follows that the white vertices discovered during the four calls to

PutInTree are exactly the vertices of T i+1. At the end of the loop, they are
colored in gray and I is set to the old value of Γ . Then

⋃

0≤j<i+1 T j ⊆ I1∩I2,
⋃

0≤j≤i+1 T j = I1 ∪ I2 = G and {a1, b1, a2, b2} ⊆
⋃

0≤j<i+1 T j . Furthermore,
Γ is assigned the value of Γnew that has been computed by the calls to
update(Γnew, y) at Line 4 of PutInTree when a new white vertex (which
belong to T i+1) is encountered. It implies that, for j ∈ {1, 2}, αj 6= aj ⇒
αj ∈ T i+1 and βj 6= bj ⇒ βj ∈ T i and T i+1 ⊆ Γ1 ∩ Γ2. Thus, the invari-
ant is still statisfied at the beginning of the next iteration of the main loop. ✷

Lemma 6. At the beginning of the ith iteration of the main loop, the order
<ord on the set Oi−1 = {y ∈ T i−1 | ord(y) is defined} is exactly the order of
visit of the vertices of Oi−1 by the standard BFS algorithm. And the vertices
of T i−1 \ Oi−1 are leaves of T .

Proof. Suppose it is true for some i ≥ 1. Then, clearly, order <prior is de-
fined for all vertices of T i and is precisely the order of visit of the vertices of
T i. Since AssignOrd assigns the values of ord to vertices of Oi by increas-
ing <prior, it follows that <ord on Oi is the order of visit of the vertices of
Oi by the standard BFS algorithm. Now, let y ∈ T i \ Oi. Since y has not
been assigned a value for ord, necessarily, it was not placed in Q at Line 6
of PutInTree, because the test of Line 5 was negative. Since y ∈ T i, from
Lemma 5, y was already gray when the test was performed. Necessarily, the

test was negative because there exists z ∈ T i ∩ [α1, y
−] such that z <prior y.

Let us show that all the vertices of T i+1 that are adjacent to y are also adja-
cent to z, which imply that y has no children in T . From Lemma 5, y ∈ I2.
Furthermore, since vertices u ∈ T i+1 are not adjacent to min(σ) and since
⋃

0≤j≤i T
j = I1 ∪ I2, it follows that either u <π1

a1 and u <π2
a2, or u >π1

b1

and u >π2
b2. Then, since u is adjacent to y, y <π1

u <π1
a−1 and u <π2

a−2 .
And since z ∈ I2 and z <π1

y, u is adjacent to z. Thus, y has no child in T ,
which ends the proof of the invariant. ✷

