
HAL Id: lirmm-00416006
https://hal-lirmm.ccsd.cnrs.fr/lirmm-00416006

Submitted on 11 Sep 2009

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A High Capacity Reversible Watermarking Scheme
Marc Chaumont, William Puech

To cite this version:
Marc Chaumont, William Puech. A High Capacity Reversible Watermarking Scheme. Electronic
Imaging, Jan 2009, San Jose, CA, United States. pp.72571H, �10.1117/12.805561�. �lirmm-00416006�

https://hal-lirmm.ccsd.cnrs.fr/lirmm-00416006
https://hal.archives-ouvertes.fr

A High Capacity Reversible Watermarking Scheme

Marc Chaumonta,b and William Puecha,b

a Laboratory LIRMM, UMR CNRS 5506, University of Montpellier II,
161, rue Ada, 34392 Montpellier cedex 05, France.

b University of Nı̂mes, Place Gabriel Péri, 30000 Nı̂mes, France.

ABSTRACT

Many reversible watermarking solutions have been proposed since 1996: spread-spectrum approaches, circular
interpretation on histogram approaches, lossless compression approaches, expansion approaches and histogram
approaches. In this paper, we propose a solution whose embedding capacity goes beyond all those reversible
schemes. For certain images, the reach payload of the proposed method is over 2 bpp. This solution is an
improvement of the Coltuc reversible watermarking approach published in ICIP’2007.

Keywords: Reversible watermarking, high-capacity, congruence-based watermarking.

1. INTRODUCTION

Reversible watermarking methods for images own three major requirements: a high embedding payload, a small
complexity and a good visual quality. In this paper we mostly look at a high payload scheme with a small
complexity. Our algorithm does not care about the quality criteria. It produce a kind of ”salt-and-pepper”
noise.

”Although salt-and-pepper artifacts might appear ugly, it must be remembered that they will be
removed when the original Work is recovered. ... For example, suppose the watermarked Works
are used only for browsing. ... In such a scenario, the watermarked Works need only to be recog-
nizable, and salt-and-pepper artifacts might not be a serious problem. (Digital Watermarking and
Steganography, 2007, p. 382)1”.

We then believe that this approach might been used for medical or satellite images. Moreover, it has already
been successfully used for color information protection in.2

Since 1996, lots of reversible watermarking solutions have been proposed: spread-spectrum approaches,3

circular interpretation on histogram approaches,4 lossless compression approaches,5,6 expansion approaches7

and histogram approaches.8,9 Our proposed solution allows to obtain an embedding-payload going beyond all
the previous reversible schemes. Moreover, the algorithm complexity is very small. The proposed solution in
this paper is an improvement of the Coltuc reversible watermarking approach.10 More precisely, our objective
is to correct the Coltuc scheme. Indeed, in some cases the process of10 can not be reverted due to a problem of
dependencies during the decoding process. We have then re-formulated its scheme in order to clarified it. We
also provide lots of experimental results. In Section 2 we deal with the new watermarking scheme. In Section 3
we treat more precisely few technical points and have a discussion about the scheme. Finally, in Section 4 and
5, we give results and conclude.

Send correspondence to Marc.Chaumont@lirmm.fr.

2. ALGORITHM PRINCIPLE

In the same way as the method proposed by,10 our algorithm lies on congruence computations. But in,10 Coltuc
proposes only two possible states for each pixel of an image. In our approach, we define three possible states
for a pixel:

• the state embedding which corresponds to a pixel embedding an integer coefficient belonging to [1, n],

• the state to-correct which corresponds to a pixel that has been modified but does not embed any infor-
mation; this pixel will be corrected during the reverting process,

• the state original which corresponds to an original pixel (i.e unchanged). This state is new compared to
those defined in.10

Lets define a constant integer value n greater or equals to 3. Lets also define the T transform which takes two
integers x1 and x2 as input and return an integer:

T : N× N→ N
T (x1, x2) = (n + 1).x1 − n.x2.

In order to clarify the paper, we will name the coding process, the act of embedding a message into an image
and the decoding process, the act of extracting the message and rebuilding the original image. Lets now define
the three possible states and the coding-decoding algorithms.

2.1 Embedding state
A pixel i in the embedding state is a pixel such that:

0 ≤ T (I(i), I(i + 1)) and T (I(i), I(i + 1)) + n ≤ L, (1)

with I the original image (of N pixel size) whose grey-levels belongs to [0, L]. In the case of 8-bits images, L
equals to 255. All pixels i which are in the embedding state:

1. are T transformed such that IT (i) = T (I(i), I(i + 1)), with IT (i) the resulting transformed pixel,

2. must then embed a coefficient w belonging to [1, n] such that Iw(i) = IT (i) + w.

Note that after the embedding of a coefficient w belonging to [1, n], it is impossible to recover I(i) with the only
knowledge of I(i + 1). Indeed Iw(i) = (n + 1).I(i)− n.I(i + 1) + w with w 6= 0, thus I(i) = Iw(i)+n.I(i+1)−w

n+1 and
so:

(Iw(i) + n.I(i + 1)) mod (n + 1) 6= 0. (2)

This congruence property (2) allows to detect an embedding pixel during the decoding process. Note that
during the decoding process, the Iw(i + 1) pixel should have been previously reverted to I(i + 1) in order to
compute this congruence. This implies that the image order scan used during the decoding process is the opposite
of the one used during the coding process.

2.2 To-correct state
A pixel i in the to-correct state is a pixel such that the negation of equation (1) is true:

T (I(i), I(i + 1)) < 0 or T (I(i), I(i + 1)) + n > L.

All pixels that are in this to-correct state are then modified such that:

c← (I(i) + n.I(i + 1)) mod (n + 1);
if (I(i)− c) < 0 then c← −(n + 1− c); (3)
Iw(i)← I(i)− c.

The c coefficients belong to [−n, n]∗ and are embedded (into the embedding pixels) in order to enable the
reversibility of the to-correct pixels during the decoding process. We name the c coefficients the corrective
codes. Note that after the modification expressed by equation (3), pixel Iw(i) checks the property:

(Iw(i) + n.I(i + 1)) mod (n + 1) = 0. (4)

This congruence property (4) allows to detect a to-correct pixel at the reverting process. Note that at the
decoding process the Iw(i + 1) pixels should have been previously reverted to I(i + 1) in order to compute this
congruence.

2.3 Original state
Given an image order scan for the coding, a pixel in the original state (i.e. unmodified pixel) must always be
present just before a pixel in the to-correct state. For a top-bottom-left-right scan order, if a pixel i is in the
to-correct state, then the pixel i − 1 must be in the original state. In order to ensure this strong property
(original and to-correct pixels go by pairs), during the scan, when a pixel i is detected as a to-correct one, a
forward research is proceeded in order to find the next embedding one (noted next). Original and to-correct
states are then alternates between the i (or i − 1) position and the next − 1 position. See 3.1 for more details
and Appendix section for the algorithms.

This grouping constraint (additional state to Coltuc scheme10†) breaks the problematic dependencies during
the decoding process. Remember that during the decoding, the image scan order is inverted. A to-correct pixel
i may not be reverted immediately if its associated corrective code is still not extracted. Nevertheless, because
the pixel i − 1 is an original pixel, the pixel i − 2 may be treated immediately and the decoding process may
continue (pixel i will be corrected later, in a second pass).

2.4 Coding and decoding algorithms
The coding process is composed of two steps (see Appendix section for the coding algorithm):

1. classify each pixel in one of the three states: embedding, to-correct, original,

2. embed into the embedding pixels, the watermark made of corrective codes plus the message.

Note that the image scan order has been chosen to be from top to bottom and from left to right.

For the decoding process, the image scan order is inverted; it is perform from bottom to top and from right
to left. The decoding process is also composed of two steps (see Appendix section for the decoding algorithm):

1. extract the watermark from the embedding pixels, revert (during the scan) all those pixels and localize the
to-correct pixels,

2. from the extracted watermark retrieve the corrective codes and the message, and correct the to-correct
pixels.

3. FEW TECHNICAL DETAILS

3.1 About pairs of to-correct and original pixels
During the first step of the coding process the image is scan from top to bottom and from left to right in order
to classify each pixel in one of the three states: embedding, to-correct and original. A pixel is classified in the
embedding state if equation (1) is verified. When equation (1) is not verified, one have to alternate original
and to-correct sites until reaching an embedding site. In this case, we have then to respect the constraint of
producing pairs of original and to-correct sites.

Lets note i the position of the encountered pixel which does not verify equation (1). Lets note j the position
of the first encountered pixel starting from i which verifies equation (1). If j − i is odd (respectively even) then
alternate original and to-correct sites from i− 1 (respectively i) to j − 1 (respectively j − 1).

∗In,10 the author forget the case I(i)− c < 0; this mistake implies a wrong range c ∈ [0, n].
†Without this additional constraint, the scheme proposed in10 does not work in lots of cases.

3.2 About the embedding of corrective codes

During the first step of the coding process, the image is scanned from top to bottom and from left to right,
and when a to-correct site is found, a corrective code is built. At the end of the first step of the coding, the coder
own a list of corrective codes which are arranged in the find order. This list is then concatenated to the message
before embedding. During the decoding process, after the first step, the corrective codes list is extracted
and to-correct pixels are then corrected.

Another important point is that corrective codes belong to [−n, n] and embedding is possible only with
coefficients belonging to [1, n]. One can entropically encode (Huffman or Arithmetic coding) the corrective codes
and then embed the obtained binary vector with respect to the embedding sites payload (i.e log2(n) bits per
pixel (bpp)). In a first approach and for simplicity we do not have chosen this solution. Our solution consists in
embedding:

• either directly the corrective code plus one, if the corrective code belongs to [0, n-3];

• either two coefficients w1 and w2, if the corrective code c belongs to [−n,−1] or [n − 2, n]. The first
coefficient w1 is a special code used to communicate to the decoder. If w1 = n − 1, this signify to the
decoder that w2 represents a corrective code belonging to [n− 2, n]. If w1 = n, this signify to the decoder
that w2 represents a corrective code belonging to [−n,−1]. Thus, the coefficient w2 allows to recover the
corrective code.

Equations below resume the method used to code a corrective code c belonging to [−n, n] in order to obtain
coefficient(s) belonging to [1, n]:

8<
:

if c ∈ [0, n− 3] embed w1 = c + 1
if c ∈ [n− 2, n] embed w1 = n− 1 and w2 = c− n + 3
if c ∈ [−n,−1] embed w1 = n and w2 = −c

At the decoding step, the decoder extract a coefficient w1 and, depending of the case, extract coefficient w2: if w1 ∈ [1, n− 2] decode c = w1 − 1
if w1 = n− 1 decode c = w2 + n− 3
if w1 = n decode c = −w2

3.3 Hiding payload

Lets k be the number of embedding pixels. Each embedding pixel allows the insertion of one coefficient belonging
to the range [1, n] which corresponds to an embedding-payload of log2(n) bits. The N − k remaining pixels‡

(to-correct and original pixels) represent (N −k)/2 corrective codes. Indeed, the to-correct and original pixels
go by pairs and there is corrective codes only for the to-correct pixels. A corrective code belongs to the range
[−n, n] and is thus corresponding to a rate of log2(2n+1) bits. The theoretical real payload of the watermarking
scheme equals to the embedding payload minus the corrective codes bitrate§ i.e:

k

N
log2(n)− N − k

2N
log2(2n + 1) bits per pixel. (5)

When the number k of embedding pixels is close to N the payload is approximately of log2(n) bpp. For example,
if k ≈ N , the payload can be close to 2 bpp with n = 4.

‡N is the image size.
§In10 Coltuc gives a theoretical payload of k

N
log2(n)− N−k

N
log2(n + 1) bpp which is in practical impossible.

3.4 Discussions

In the Coltuc scheme10 the decoding process necessitates for each watermarked pixel Iw(i) the knowledge of the
original pixel I(i + 1). There is thus a dependency between each pixel going from the last one to the first one.
Unfortunately, only two states are used in its scheme (named in our paper the to-correct state and the embedding
state). During the decoding process (i.e message extraction + reversibility), for any watermarked pixel Iw(i)
all the pixels Iw(i + 1), Iw(i + 2), ..., Iw(N) should have been recovered. This strong dependency yield to a not
always possible scheme.

Indeed, in its scheme, some pixels are modified by adding them a coefficient (named in our paper corrective
code). Those corrective codes must be embedded additionally to the user message. At the decoding process, if a
pixel Iw(i) has to be corrected and if the associated corrective code has not still been extracted, then the decoding
process is impossible and the message extraction fails. For example, take the two last coefficients Iw(N − 1) and
I(N) and suppose that the pixel Iw(N − 1) should be corrected thanks to a corrective code. This correcting
code is supposed to be embedded in the image but is still not extracted. It is thus impossible to revert the pixel
Iw(N − 1) and thus impossible to continue the decoding process. Other cases of impossibility may occur during
the decoding process.

In order to break this dependency problem, we introduce the supplementary original state. Original pixels
and to-correct pixels go by couple and are alternate if a suite of non-embedding pixels occurs. Those improvement
enable to have a valid scheme and to proceed to multiple watermarking.

4. RESULTS

In this section, few results are given for classical grey-level images, 512 × 512, 8 bits per pixel. Table 1 gives
the payload results with parameter n=4. The obtained payload is really impressive. For example, for the Lena
image the embedding payload is 457 256 bits. To the author knowledge, the best reachable payload is with an
expansion approach proposed in.7 In,7 Tian obtains a payload of 1.97 bpp ≡ 516 794 bits for Lena image; In
our proposed approach we reach a maximum payload of 2.06 bpp ≡ 541 464 bits with n=9. We could moreover
remark that the scheme own a very small computational complexity and that the payload may still be improved
thanks to the corrective codes entropic coding.

Image payload PSNR
Airplane 457 256 bits 1.74 bpp 20.90 dB

Lena 445 294 bits 1.70 bpp 19.60 dB
Godhill 435 040 bits 1.66 bpp 18.56 dB
Peppers 418 710 bits 1.60 bpp 19.56 dB

Boat 409 444 bits 1.56 bpp 19.52 dB
Barbara 285 620 bits 1.09 bpp 18.82 dB
Baboon 195 608 bits 0.75 bpp 16.10 dB

Table 1. Payload on few classical grey-level images, 512× 512, 8-bits per pixel with n = 4.

In theory the algorithm may be run several times. In practice, with n = 4, the algorithm succeed in
embedding bits in a second algorithm execution only with Airplane and Lena images and the payload is very low
(0.4 bpp for Lena and 0.03 bpp for Airplane). With Godhill, Peppers, Boat, Barbara and Baboon there were not
enough payload for a second pass embedding. From equation (5), the first term is smaller than the second one.

As a consequence, for an higher embedding payload, it is most of the time more interesting to use the
algorithm just with one pass execution and with a value for parameter n higher than 4. Indeed, as it could be
observed in Figure 1, excepted for Baboon¶ image, a higher payload is reached when n > 4.

Figures 2 and 3 give results of the embedding of a pseudo-random binary vector with parameter n=4 on
the grey-level image Lena 512×512 shown in Figure 2(a) and on the grey-level image head 228×256 shown in
Figure 3(a). Figure 2(b) and 3(b) show the resulting watermarked image. Figure 2(c) and 3(c) show the three

¶In general, the payload is week for strongly textured images and one should choose a small value for n.

Figure 1. Real payload variation in function of the parameter n for few classical 512× 512, 8 bits images.

(a) 512×512 Lena image. (b) Watermarked image, (c) States image (1st pass),

1st pass, n=4, PSNR=19.6 dB, White: embedding,

payload=1.7 bpp. Red: to-correct,

Black: original.

(d) Watermarked image, (e) States image (2nd pass).

2nd pass, n=4, PSNR=14 dB,

combined payload=1.7+0.4 bpp.

Figure 2. Illustration of the algorithm on Lena 512×512 image, with n=4 and 2 passes. The total embedding real payload
equals to 2.1 bpp i.e 550 940 bits.

(a) 228×256 head image. (b) Watermarked image, (c) States image (1st pass),

1st pass, n=4, PSNR=19.8 dB, White: embedding,

payload=0.99 bpp. Red: to-correct,

Black: original.

(d) Watermarked image, (e) States image (2nd pass).

2nd pass, n=4, PSNR=14.3 dB,

combined payload=0.99+0.04 bpp.

Figure 3. Illustration of the algorithm on head 228×256 medical image with n=4 and 2 passes. The total embedding real
payload equals to 1.03 bpp i.e 60 478 bits.

different sites: in white, there are the pixels embedding a coefficient belonging to [1, n], in red there are the
pixels to-correct (those pixels produce a corrective code belonging to [-n, n]) and in black there are the non-
modified original pixels. The watermarked image obtained after two consecutive embedding is shown in Figure
2(d) and 3(d). One can remark, on Figure 2(e) and 3(e), that in the second algorithm execution, there is lots of
non-embedding sites (to-correct and original pixels).

5. CONCLUSION

To conclude, the proposed scheme in this paper improves the previous Coltuc scheme10 by breaking dependencies
and thus ensuring that watermarking may always be reverted. Moreover, those dependencies broken allows
multiple consecutive watermarkings. Thus, embedding payload reach amazing values around 2 bbp. Such
high capacities were never previously reached (see circular interpretation on histogram approaches,4 lossless
compression approaches,5,6 expansion approaches,7 and histogram approaches8,9). Future work should deal
with the tradeoff between distortion and payload; indeed the current work always reach the maximum payload
without taking into account distortion. Future work should also deal with the corrective codes compression and
the used of a secret-key (modifying the order-scan) for the scheme’ security.

ACKNOWLEDGMENTS

This investigation was supported in part by the TSAR project which is a french national project ANR-05-SSIA-0017-05 of the ANR ARA SSIA (Agence Nationale de

la Recherche, Action de Recherche Amont, Sécurité Systèmes Embarqués et Intelligence Ambiante) and in part by the VOODDO project which is a french national project of

the ANR Contenu et Interaction. We would also like to thank the Languedoc-Roussillon Region.

APPENDIX

Listing 1. Embedding algorithm

const Integer n ; // n ≥ 3

Procedure embed(Image : I , Message : m) : Iw // m c o e f f i c i e n t s ∈ [0, n− 1]
begin

List embedding ; // Dec la ra t i on o f the embedding l i s t
List codes ; // Dec la ra t i on o f the c o r r e c t i v e codes l i s t

// FIRST STEP
for i from 1 to N − 1
begin

t ← (n + 1).I(i)− n.I(i + 1) ; // T transform

i f ((0 ≤ t) and (t + n ≤ L))
then

Iw(i)← t ; // Apply T trans fo rmat ion to the i th p i x e l
embedding ← embedding ⊕ i ; // Add p i x e l i to the embedding l i s t

else
next← l o ok f o rwa rd f o r nex t embedd ing p i x e l (i) ; // next i s the next embedding p i x e l

i f (next− i i s odd)
then

k ← i− 1 ;
Iw(i− 1) ← I(i− 1) ; // P ixe l i−1 come back to i t s o r i g i n a l va lue
embedding ← embedding 	 i ; // Remove p i x e l i from the embedding l i s t

else
k ← i ;

end−i f

for j from k to next− 1 alternate o r i g i n a l and t o c o r r e c t p i x e l s
begin

i f (i t i s t o c o r r e c t turn)
then

c← (I(j) + n.I(j + 1)) mod (n + 1) ; // Po s i t i v e code
i f ((I(j)− c) < 0) then c← −(n + 1− c) ; // Negative code
Iw(j)← I(j)− c ;
codes← codes⊕ c ; // Add c o r r e c t i v e code c to the codes l i s t

end−i f
end−for
i← next− 1 ; // Next i t e r a t i o n , goes to the next embedding p i x e l

end−i f
end−for

Generate a coefficient sequence w with the corrective code list codes and the message m;

// SECOND STEP : embedding OF THE WATERMARK w
∀i ∈ embedding Iw(i)← Iw(i) + w(i) ; // w(i) ∈ [1, n]

end

Listing 2. Extraction algorithm

Procedure ex t r a c t (Image : Iw) : I , m
begin

List t o c o r r e c t ; // Dec la ra t i on o f the t o c o r r e c t l i s t

I ← Iw ; // copy Iw i n to I

// FIRST STEP: EXTRACTION OF THE WATERMARK w
for i from N−1 to 1
begin

v ← (Iw(i) + n.I(i + 1))mod(n + 1) ;

i f (v = 0) // Congruence property t e s t
then // Case : p i x e l i i s a t o c o r r e c t p i x e l

t o c o r r e c t ← t o c o r r e c t ⊕ i ; // Add p i x e l i to the t o c o r r e c t l i s t
i← i− 1 ; // Important lign : p i x e l i− 1 i s o r i g i n a l and i s not to t r e a t

else // Case : p i x e l i i s an embedding p i x e l
w ← w ⊕ v ; // Concatenate c o e f f i c i e n t v to the watermark w
Iw(i)← Iw(i)− v ; // Remove c o e f f i c i e n t v

I(i)← Iw(i)+n.I(i+1)
n+1 // Inve r t T trans fo rmat ion

end−i f
end

Retrieve from the coefficient sequence w the corrective codes list codes and the message m;

// SECOND STEP: CORRECTION OF THE t o c o r r e c t PIXELS
∀i ∈ t o c o r r e c t I(i) = Iw(i) + codes(i) ;

end

REFERENCES
[1] Cox, I., Miller, M., Bloom, J., Fridrich, J., and Kalker, T., [Digital Watermarking and Steganography],

ch. 11, 382, in Multimedia Information and Systems, Morgan Kaufmann, 2nd ed. (Nov. 2007).
[2] Chaumont, M. and Puech, W., “A 8-Bit-Grey-Level Image Embedding its 512 Color Palette,” in [The 16th

European Signal Processing Conference, EUSIPCO’2008], 5 pages (Aug. 2008).
[3] Bender, W., Gruhl, D., Morimoto, N., and Lu, A., “Techniques for data-hiding,” in [IBM Syst. J.], 35(3),

313–336 (1996).
[4] Vleeschouwer, C. D., Delaigle, J., and Macq, B., “Circular Interpretation on Histogram for Reversible

Watermarking,” in [IEEE International Multimedia Signal Processecing Workshop, IMSPW’2001], 345–350
(Oct. 2001).

[5] Fridrich, J., Goljan, M., and Du, R., “Invertible Authentication,” in [IS&T/SPIE Annual Symposium on
Electronic Imaging, Security Watermarking Multimedia Contents, SPIE’2001], 4314, 197–208 (Jan. 2001).

[6] Celik, M. U., Sharma, G., and Tekalp, A. M., “Lossless Watermarking for Image Authentication: A New
Framework and an Implementation,” IEEE Transactions on Image Processing 15 (Apr. 2006).

[7] Tian, J., “Reversible Data Embedding Using a Difference Expansion,” IEEE Transactions on Circuits and
Systems for Video Technology 13, 890–896 (Aug. 2003).

[8] van Leest, A., van der Veen, M., and Bruekers, A., “Reversible Watermarking for Images,” in [IS&T/SPIE
Annual Symposium on Electronic Imaging, Security Watermarking Multimedia Contents, SPIE’2004], 5306
(Jan. 2004).

[9] Ni, Z., Shi, Y.-Q., Ansari, N., and Su, W., “Reversible Data Hiding,” IEEE Transactions on Circuits and
Systems for Video Technology 16 (Mar. 2006).

[10] Coltuc, D., “Improved Capacity Reversible Watermarking,” in [IEEE International Conference on Image
Processing, ICIP’2007], (Sept. 2007).

