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ABSTRACT

This paper presents a novel method for the protection of
copyrighted multimedia content. The problem of selective
encryption (SE) has been addressed alongwith compres-
sion for the state of the art video codec H.264/AVC. SE is
performed in the context-based adaptive binary arithmetic
coding (CABAC) module of video codec. For this purpose,
CABAC is converted to an encryption cipher. It has been
achieved through scrambling of equal length binarized code
words. In our scheme, CABAC engine serves the purpose
of encryption cipher without affecting the coding efficiency
of H.264/AVC by keeping exactly the same bitrate and by
generating completely compliant bitstream, and requires in-
significant computational cost. Nine different benchmark
video sequences containing different combinations of mo-
tion, texture and objects are used for experimental evaluation
of the proposed algorithm.

Index Terms— Video encryption, CABAC, H.264/AVC,
selective encryption.

1. INTRODUCTION

With the rapid evolution of digital media, growth of process-
ing power and availability of network bandwidth, many multi-
media applications have emerged in the recent past. As digital
data can easily be copied and modified, the concern about its
protection and authentication have surfaced. Data encryption
is used to restrict access of digital data to only authenticated
users. For video data, SE is used in order to encrypt only a
small part of the whole bitstream [1]. In this work, we have
transformed CABAC module of H.264/AVC into encryption
cipher. We have achieved this by scrambling of part of Exp-
Golomb suffix of non-zero quantized coefficients (NZs) and
sign bits of all NZs.

SE of H.264/AVC has been studied in [2] who has done
encryption of some fields like intra-prediction mode, resid-
ual data, inter-prediction mode and motion vectors. Carillo et
al. have presented an idea of encryption for H.264/AVC [3].
They do permutations of the pixels for those macroblocks
(MBs) which lie in region of interest (ROI). The drawback
of this scheme is that bitrate increases when the size of ROI
increases. This is due to changes in the statistics of ROI as

it is no more a slow varying region which is the basic as-
sumption for video signals. The use of general entropy coder
as encryption step has been discussed in the literature in [4].
This method encrypts NZs by using different Huffman tables
for each input symbols. The tables, as well as the order in
which they are used, are kept secret. This technique is vulner-
able to known plaintext attack as explained in [5]. Key-based
interval splitting of arithmetic coding (KSAC) [6] follows an
approach in which intervals are partitioned in each iteration of
arithmetic coding based on secret key. The number of sub in-
tervals in which an interval is divided should be kept small as
it increases the size of bitstream. Randomized arithmetic cod-
ing [7] is aimed at arithmetic coding but instead of partition-
ing of intervals like in KSAC, secret key is used to scramble
the order of intervals. Both of these techniques make the bit-
stream non-compliant and thus not suitable for SE. [8] have
presented an encryption approach for Context-base Adaptive
Variable Length Coding (CAVLC) [9] of H.264/AVC wherein
he encrypts scrambles only equal length syntax elements of
MB header, thus keeping exactly the same bitrate.

We organize our work as follows. In Section 2, overview
of H.264/AVC and CABAC is presented. It explains the
working of CABAC along with its limitations from encryp-
tion point of view. We explain the whole system architecture
in Section 3. Section 4 contains its experimental evalua-
tion and performance analysis including its analysis over the
whole rate-distortion (RD) curve and its efficiency for dif-
ferent benchmark video sequences. In Section 5, we present
some concluding remarks.

2. PRELIMINARIES
2.1. Overview of H.264/AVC

H.264/AVC [10] is state of the art video coding standard of
ITU-T and ISO/IEC. It offers better compression as compared
to previous video standards. Like previous video standards,
an input video frame is processed into blocks of 16x16 pixels
in H.264/AVC, called MB and each of them is encoded sep-
arately. Each MB can be encoded as intra or inter. In intra
frame, current MB is predicted spatially from MBs which
have been previously encoded, decoded and reconstructed
(MB at top and left). In infer mode, motion compensated



prediction is done from previous frames. The difference
between original and predicted frame is call residual. This
residual is coded using integer transform coding followed
by quantization and zigzag scan. In the last step, either of
the entropy coding techniques named context-based adap-
tive variable length coding (CAVLC) [9] or CABAC [11] is
used. H.264/AVC has some additional features as compared
to previous video standards. Discrete cosine transform (DCT)
transform has been replaced by integer transform (IT) which
does not need any multiplication operation and can be im-
plemented by only additions and shifts. In baseline profile,
H.264/AVC has 4x4 transform in contrast to 8x8 transform
of previous standards. It uses a uniform scalar quantization.
For Inter frame, H.264/AVC supports variable block size
motion estimation, quarter pixel accuracy, multiple reference
frames, improved skipped and direct motion inference. For
Intra frame, prediction has been shifted to spatial domain.
H.264/AVC provides two modes for entropy coding which
are CAVLC and CABAC [11]. Owing to all these additional
features, H.264/AVC outperforms previous video coding
standards.

2.2. Context-based Adaptive Binary Arithmetic Coding

In entropy coding, quantized transformed coefficients are
scanned in reverse order as shown in Fig. 1. In this paper,
we are presenting an encryption scheme based on CABAC.
It is designed to better exploit the characteristics of NZs,
consumes more processing and offers about 10% better com-
pression than CAVLC on average. Run length encoding
has been replaced by Significant Map (SM) coding which
specifies the position of NZs in 4x4 block. Binary arithmetic
coding module (BAC) of CABAC using many context models
to encode NZs and context model for a specific NZ depends
on the number of NZs which have been already coded in the
current block.

Bitstream compliance is a required feature for some direct
operations (displaying, time seeking, cutting, etc.). In each
MB, header information in encoded first, which is followed
by the encoding of MB data. To keep the bitstream compli-
ant and the bitrate unchanged, we cannot encrypt MB header
data, since it is used for prediction of future MBs. MB data
contains NZs and can be encrypted. A MB is further divided
into 16 blocks of 4x4 pixels to process it by IT module. For
each 4x4 block inside MB, if coded block pattern and mac-
roblock mode are set, it indicates that this block is encoded,
coded block flag (CBF) is encoded first. If CBF is zero, no
further data is transmitted; otherwise, SM is encoded. Fi-
nally, the absolute value of each NZ and its sign are encoded.
Similar to MB, header information of 4x4 block which in-
cludes CBP and SM, should not be encrypted for the sake of
bitstream compliance.

CABAC consists of multiple stages as shown in Fig. 2.
First of all, binarization is done in which, non binary syn-
tax elements are converted to binary numbers which are more
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Fig. 1. Scanning order of NZs in CABAC.

amenable to compression by BAC. In CABAC, there are four
basic code trees for binarization step, namely the unary code,
the truncated unary code, the kth order Exp-Golomb code and
the fixed length codes.
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Fig. 2. Block diagram of CABAC of H.264/AVC.

For an unsigned integer value x > 0, the unary code con-
sists of z 1’s plus a terminating O bit . The truncated unary
code (TU) is only defined for x with0 < z < s. Forx < sthe
code is given by the unary code, whereas for x = s the ter-
minating O bit is neglected. The kth order Exp-Golomb code
(EGK) is constructed by a concatenation of a prefix and a suf-
fix code word and are suitable for binarization of syntax el-
ements that represent prediction residuals. The fixed length
code is applied to syntax elements with a nearly uniform dis-
tribution or to syntax elements, for which each bit in the fixed
length code work represents a specific coding decision e.g., in
luma part of the coded block pattern symbol.

Three syntax elements are binarized by concatenation
of these trees, namely the coded block pattern, the NZ and
the motion vector difference (mvd). Binarization of abso-
lute level of NZs is done by concatenation of TU and EGO.
TU constitutes the prefix part with cutoff value S = 14.
Binarization and subsequent arithmetic coding process is
applied to the syntax element coef f_abs_value_minusl =
abs_level — 1, since NZs with zero magnitude are encoded us-
ing SM. Kth order Exp-Golomb code (EGk) consists of a pre-
fix and a suffix codeword. For a given unsigned integer value



x > 0, the prefix part of the EGk codeword consists of a unary
code corresponding to the value of I(z) = [loga(3 + 1)].
The EGk suffix part is computed as the binary representa-
tion of = + 2¥(1 — 24*)) using k + I(x) significant bits.
Consequently for EGk binarization, the number of symbols
have the same code length of 2/(z) + k£ + 1. When k = 0,
2l(z)+k+1 = 2l(x)+1. So for each NZ with | NZ| > 14,
encryption is done by scrambling of () bits to encrypt the
EGO. It is followed by encryption of coef f_sign_flag (sign
of levels) of all non-zero levels.

3. SYSTEM ARCHITECTURE

To keep the size of the bitstream unchanged, we scram-
ble the NZ with only those NZs whose EGO code have the
same length. We initialize pseudo-random number generator
(PRNG) with a secret key. The scrambling space is dependent
on the absolute value of NZ. EGO codes, having same code
length, constitute the scrambling space which is logs(n + 1)
where n is the absolute value which is binarized using EGO.
The block diagram of our scheme is shown in Fig. 3.
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Fig. 3. Encryption and decryption process in H.264/AVC.
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Fig. 4. Encryption of NZs in CABAC of H.264/AVC.

3.1. Encryption Process

The encryption process is shown in block diagram in Fig. 4.
Let x be a suffix part of absolute level of NZ which is en-
coded using EGO and is to be encrypted with the encrypted
coefficients y can be given by:

v =rand() mod logs(x + 1), (D

y=(z+~)) mod loge(z+ 1). 2

Bitstream

3.2. Decryption Process

For the decryption of NZ in H.264/AVC decoder, the process
can be performed in reverse order in Context-based Binary
Arithmetic Decoder (CABAD) module of H.264 decoder.
Same secret key will be used as seed for PRNG to produce ~.
Original value of absolute level of NZ can thus be extracted
using encrypted NZ by using the formula:

z = (y+logen) —v)) mod loge(z + 1). 3)

4. EXPERIMENTAL RESULTS

For the experimental results, nine benchmark video sequences
have been used for the analysis in QCIF format. Each of them
represents different combinations of motion, color, contrast
and objects. The video sequences ’bus’, ’city’ and *foreman’
contain camera motion while ’football” and ’soccer’ contain
camera panning and zooming along with object motion and
texture in background. The video sequences 'Harbour’ and
’ice’ contain high luminance images with smooth motion.
’Mobile’ sequence has a foreground motion with complex
still background. To demonstrate the efficiency of our pro-
posed scheme, we have compressed 100 frames as INTRA of
each sequence at 30 fps.

#0 - decoded_18,0_FOREMAN

Fig. 5. Decoding of encrypted video “foreman”: first frame
with QP equal to a) 18, b) 24, c¢) 30, d) 36.

Fig. 5 shows the encrypted video frames at different
quantization parameter (QP) values of the foreman video
sequence. Their PSNR values are given in Table 1 and they
are compared with the PSNR obtained for the same video
frames without encryption. One can note that, whatever is the
QP value, the quality of the encrypted video remains in the
same range (below 10 dB on average for luma component)
which shows that our algorithm is equally efficient over the
whole RD curve. Table 2 compares the average PSNR of
100 frames of all benchmark video sequences at a QP value
of 18’ without encryption and with SE. It confirms that this



Table 1. Comparison of PSNR without encryption and with
selective encryption (SE) for “foreman” sequence at different

QP values.

PSNR (Y) (dB) | PSNR (U)(dB) | PSNR (V) (dB)

QP | Without With | Without ~With | Without ~ With
SE SE SE SE

18 | 4443 842 | 4562 2387 | 4742 22.14

24 | 3940 838 | 4170 2487 | 4386  22.70

30 | 3493 892 | 3938 2460 | 4099 2271

36 | 30.80 889 | 37.33 2465 | 38.10 22.90

Table 2. Comparison of PSNR without encryption and with
SE of benchmark video sequences at QP 18.
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