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Abstract— The study presented in this paper aims at achiev-
ing optimal paths for a human-performed assembly task. Op-
timality, from an operator’s point of view, means that minimal
fatigue occurs. Trajectories for assembly parts, generated by
potential fields, are optimized in terms of the work the operator
has to do. Optimization is carried out by genetic algorithm. The
trajectories have to satisfy the constraints imposed by physical
human limitations. We therefore introduce a virtual human
operator in the working environment, and determine by means
of inverse kinematics if the trajectories are feasible. Our method
is tested on the assembly of a mechanical part in 3D space.

I. INTRODUCTION

Path planning, whose aim is to find a path lying completely
in free space from an initial to a final configuration, is
an integral part of industrial assembly. Although extensive
work exists on the subject, most of it is focused on robot-
performed tasks. While robots have undeniably overcome
human limitations in many ways, many tasks still need to
be done by human workforce, for economic or technical
reasons. Such is the case when limited series of mechanical
parts need to be manufactured. When assembly is to be
performed by humans, the path planning scheme has to
integrate ergonomic issues. A trajectory which is optimal
for a robot is not necessarily optimal for the worker, and
sometimes it might just not be humanly possible to realize.
In this paper we propose a 3D path planning algorithm where
the physical fatigue of the human operator is the center of
interest.

The paper is organized as follows. In the next section, we
present the main principles of our approach as well as some
existing work in related areas. Section III gives the expres-
sions of the potential fields producing the forces giving the
trajectories and describes how the path is computed. Section
IV deals with the task to be performed, the computation of
the work done during the task as well as the constraints the
virtual human operator’s presence brings in the loop. Section
V explains hows optimization is carried out by our genetic
algorithm. Simulations results from the 3D assembly of a
pump are presented and commented on in section VI and
we conclude in section VII.

II. PROBLEM STATEMENT

A. Description of the approach

Figure 1 gives an overview of our approach. Trajectories
for assembly parts are first are generated by attractive and
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Fig. 1. Block diagram of the proposed approach

repulsive potential fields. The parameters of the repulsive
potential fields are initially generated by genetic algorithm
(GA). Our choice for the potential field method lies on
the fact that it is goal-oriented. Assembly path planning
assumes the existence of paths, which means that the whole
operational space doesn’t need to be searched to prove the
existence of one. The trajectories are obtained as a series
of positions in operational space. A virtual manikin is intro-
duced in the environment to simulate a human operator. At
each simulation step, path feasibility checking is done with
respect to constraints due to the environment and constraints
brought in by the manikin using inverse kinematics.

Although fatigue may have various causes, our study is
focused on the amount of work done by the operator along
the trajectories taken during handling of parts. Using the
arm configuration and the torque acting on it, the work done
is computed and used as a cost function for the GA. By
applying selection, cross-over and mutation operators, the
GA then produces a new population. The process is repeated
for a chosen number of generations.

B. Related Work

In order to study the constraints of the human body in the
context of manual assembly tasks, it has become common to
introduce a human dummy in virtual environments for 3D
simulations. Ferré et al. [4] proposed 2 approaches to add a
manikin in an assembly process. The first one is to compute
a path for the part alone by using a probabilistic diffusion



algorithm. The feasibility of the path for the manikin is then
checked by inverse kinematics. When feasibility fails, the
second approach is then considered. It consists in grouping
the manikin altogether with the part being handled into a
single system. This obviously increases the dimensionality
of the problem, but allows to solve more constrained cases
the first approach doesn’t. Both methods are valid for one-
hand and two-hand manipulation. Lämkull et al. [7] com-
pared simulation results from digital human modelling with
real working conditions in a case study concerning manual
automobile assembly. The aim of the study was to examine
how far the ergonomics simulations could correctly predict
real outcomes. Evaluation of ergonomics conditions in sim-
ulations were based on 3 criteria: joint configuration, work
distance/hand position and field of vision. Conclusions were
that digital human modelling tools could correctly predict
ergonomic issues for standing and uncontrained working
postures. The study also identified areas where improvements
could de made.

The amount of work that has to be done and the number
of decisions that have to be taken have a direct impact on the
operator’s productivity. For the latter to work with maximum
efficiency, physical fatigue and mental load have to be
minimized. Rodrı́guez et al. [11] estimated fatigue apparition
caused by a body segment’s own mass and carrying of
an external load. The half-joint concept was introduced to
calculate fatigue at joint-level, i.e at muscle group level. The
idea is to break each dof at each joint into a half-joint pair
so as to isolate the activity of antagonistic muscle groups.
The parameters of the model are normalized torque, joint
strength and the maximum holding time that a posture can
be maintained. The model also includes a term for static
recovery produced by a period of rest. Simulation results
from the model were compared with results obtained from
experimental subjects.

GAs have been widely used in path planning due to their
simplicity, and have been adapted in various ways. Nishimura
et al. [10] used GAs to optimize the joint configuration to
achieve collision-free motion for the body of a hyper multi-
joint manipulator, while the end-effector was driven to the
goal position by forces generated by potential fields. The
chromosomes had a 2D structure in which the variation
of the angle for each joint was stored at a time step.
The chromosomes were also variable in length such that
they could represent a movement of the manipulator of
any duration. A technique that combined the closed-loop
pseudoinverse method with GAs for trajectory planning of
redundant manipulators was presented by da Graça Marcos
et al. [3]. The method uses an extended square Jacobian
and an extended position vector in operational space, both
whose additional values were generated by GA. Several
fitness functions such as largest joint displacement, total joint
torque or joint power consumption, all to be minimized,
were proposed. Christiand & Yoon [2] proposed an assembly
algorithm that considers both path planning and the assembly
task itself. 2D trajectories were generated by potential fields
and GA was used to optimize a cost function based on the

overall path distance, the number of assembly orientation
changes and the number of gripper changes. The chromo-
somes consisted of the assembly sequence and a repulsive
radius for each part. The repulsive potential field associated
to each part was to ensure that no collision among parts
occurred at the moment of assembly. However, optimization
of the repulsive radii of obstacles was not considered in the
algorithm.

III. PATH GENERATION

This section describes how attractive and repulsive forces
are obtained from potential fields. The potential fields we
implemented are based on the formulation used by Khatib
[6]. Path computation from the resulting displacement of the
parts is also explained.

A. Potential Fields

Objects in the virtual environment can be either a part
to be assembled or an obstacle. Each object has a repulsive
potential field attached to it. When a part is being handled,
it is continuously attracted to its final position, and also
subjected to repulsion from obstacles and other parts which
might lie on its way. Note that its own repulsive potential
field has no effect on its surrounding during this process.

The repulsive potential fields we implemented are spheri-
cal in shape, and are based on the bounding spheres (BS) of
the objects. They are defined by a repulsion constant Cr and
a radius ρr. Consider a static a moving part A and a static
obstacle B, having ac and bc as centers of their respective
BS. (Figure 2). As said earlier, it is the obstacle’s repulsive
field which will apply forces on the part. The distance ρ
between these 2 BS is ρ = ‖a− b‖, a and b being points
on the BS surfaces. The force applied on part A will depend
on how far a is from b, and is derived from the repulsive
potential Ur. The repulsive potential at point a is given by

Ur =

{
1
2Cr

( 1
ρ − 1

ρr

)2 if ρ ≤ ρr

0 if ρ > ρr
(1)

The repulsive force at a in the workspace is obtained by

fr(a) =−grad|Ur(a)|, (2)

thus giving

fr(a) =

{
Cr

( 1
ρ − 1

ρr

) 1
ρ2

dρ
∂a if ρ ≤ ρr

0 if ρ > ρr,
(3)

The attractive potential at point ac is given by

Uatt =
1
2

Catt(ac−a f )2, (4)

and the attractive force is proportional to the distance away
from the goal position. Its expression is similarly derived
from its potential, giving

fatt =−Catt(ac−a f ), (5)

where a f is the goal position to be reached and Catt is the
attraction constant. The proportional nature of the attractive
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Fig. 2. ρ is the distance between bounding spheres. ρr is the repulsive
radius of obstacle B

force can make it very strong when a part is initially far from
its final position. Indeed, the attractive force can sometimes
be so strong that it can overcome the repulsive forces of
nearby objects, and this results into collisions. To avoid this,
we have saturated the attraction when parts are beyond a
certain limit from their final position.

B. Path Computation

Paths are obtained from the displacement of parts caused
by attractive and repulsive forces generated by potential
fields. Following Newton’s 2nd Law of Motion, these forces
induce an acceleration which, at an instant t, can be expressed
as

Iẍ(t) = fa(t)+ fr(t), (6)

where I is a [6×6] mass matrix. This acceleration can in turn
be expressed as

ẍ(t)≈ ẋ(t +δ t)− ẋ(t)
δ t

, (7)

δ t being the integration step. Combining equations (6) and
(7) gives

ẋ(t +δ t) = ẋ(t)+ I−1(fa(t)+ fr(t)
)
δ t. (8)

Integrating further gives the configuration at instant t +δ t

x(t +δ t) = x(t)+ ẋ(t)δ t. (9)

The path is thus formed by a series of configurations obtained
by the same calculation at each step.

IV. VIRTUAL HUMAN OPERATOR

In this section we specify the type of task the operator has
to accomplish, and derive expressions to compute the amount
of work that is done during the task. Constraints arising from
physical human limitations are also specified and adapted to
the virtual manikin.

Fig. 3. Differents parts for the assembly of a pump: body, bottom, push
rod, axis, lever and top cover.

A. Task Specification

The first step in assembly is movement towards the task
vicinity [1]. We do not deal with the mounting operation.
The chosen task requires the operator to take the parts from
their initial configuration and to bring them in the vicinity of
the operation. The final configuration of the parts have been
chosen in such a way that when they are all in the mounting
vicinity, they form an exploded view of the assembly.

The assembly of a pump has been chosen for our ex-
perimentations. The model was taken from OpenCASCADE
[5] and consists of 6 parts to be mounted. Figure 3 shows
the different parts and the mounted assembly. 2 additional
parts (coloured in green) were introduced in the setting to
act as obstacles. The grid on which the assembly rests can
be considered as a table.

B. Virtual Arm Model

We have placed a virtual human operator in a standing
posture in the environment as shown in Figure 4. The upper
arm and the forearm are represented as linear segments. The
hand is not shown. Like [4], we assume that the operator’s
position enables him to reach all the parts. Although it is
generally accepted that the human arm is mechanically a
7 DOF redundant serial kinematic chain ([9], [12], [13]),
we have modelled a 6 DOF arm for the manikin. The
DOF that has been dropped is that of medial rotation of
the shoulder. We have seen that the absence of this DOF
doesn’t considerably penalize the workspace of the operator.
This also makes inverse kinematics easier since the resulting
mechanism is non-redundant.

In operational space, the hand is described in the shoulder
frame Rs by a [6×1] vector x. x corresponds to a [6×1]
vector q which is the description of the hand in joint space,
or configuration space. The forward and inverse kinematic
models of the arm allow the transition from one space to
another.

The total torque to which the arm is subjected during the



Fig. 4. Virtual human operator in the workspace.

handling operation is given by

τ = M(q)q̈+v(q, q̇)+g(q)+JT (q)w(q), (10)

where M(q) is the kinetic energy matrix, v(q,q̇) the centrifu-
gal and Coriolis force vector, g(q) the gravity force vector,
J(q) the Jacobian matrix, and w(q) the weight of the part.
The path being a series of configurations as said earlier, let
us consider the total torque at one particular configuration.
This is given by

τ = g(q)+JT (q)w(q), (11)

The power developed by the operator in terms of the forces
acting on its arm is given by

P = τT q̇ (12)

The work done along the path Π is the integration of the
power with respect to time

W =
∫

Π
τT q̇ dt. (13)

C. Operator-Related Constraints

Once the configuration x of a part is obtained, as described
on section III.B, the operator’s hand has to follow it at each
step to simulate the task of bringing the part to the assembly
vicinity. Our study does not investigate into object grasping.
We assume that an object is held by making its center of
gravity coincide with that of the operator’s hand. The virtual
arm’s behaviour must exhibit characteristics which are as
close as possible to that of a real operator. Hence it becomes
necessary to impose some constraints.

Firstly, joint limits have been imposed so that the
workspace volume of our virtual operator corresponds to that
of a human arm. Maximal joint values were obtained from a
kinesiological source [8]. When the virtual hand is following
a part’s trajectory, it’s joint configuration q can be computed
from its operational configuration via the inverse kinematic
model. In our algorithm q is calculated from x at each step.
If any joint qi of the vector q is outside its admissible limits,

the path is considered infeasible for a human operator, and
has to be rejected.

Another issue is the limited power that humans have;
they cannot handle infinite weights. It is important that
this limitation is reflected on our virtual operator as a
matter of safety. One of the ergonomics requirements for
an automobile company stated in [7] is that assembly of
parts must not exceed an assembly force of 15N forn one
finger, 30N for two/three fingers and 50N for hand at average
position of the wrist. Using this data, we have determined a
maximum force/torque value, τmax(q), dependent on the joint
configuration q, which can be exerted on the arm model.

V. ASSEMBLY TASK EVALUATION

The assembly task is evaluated with respect to the con-
straints imposed by the virtual manikin and the environment.
This section describes outlines the steps of our genetic
algorithm and how these constraints are accounted for in
the optimization process.

A. Genetic Algorithm

Since the trajectory of a part is influenced by the repulsive
forces acting on it, it is the parameters which govern these
forces that have to be optimized. These are the repulsive
constant Cr, and the radius of the repulsive boundary ρr.
The chromosomes for the GA thus consist of 2 arrays: the
first one is an array of the repulsive radii ρri , and the second
one is for the repulsive constants Cri .

The optimal path is searched for each part one by one.
For example, let pk be the kth part to be assembled for a
given sequence consisting of n parts. The algorithm takes
into account that parts p1 to pk−1 have been assembled while
parts pk+1 to pn are still in their initial configurations.

For each generation gi, each chromosome c j is used to
determine the path of pk only. The cost of each chromosome
is evaluated, and a selection rate is applied. By using cross-
over and mutation operators over the selected portion of
the actual population, new chromosomes are produced for
the next generation gi+1. This process is carried on for the
chosen number of generations Ngen, at the end of which a
chromosome giving the optimal path for part pk is obtained.

Our cross-over operator was designed such that the off-
spring is composed of the even-indexed ρri and Cri of the
first parent and the odd-indexed ρri and Cri of the second
parent. The mutation operator generates a new chromosome
by changing a randomly chosen

[
ρri ,Cri

]
pair in a randomly

chosen chromosome. This comes to changing the potential
field of a randomly selected object in the environment.

The genetic algorithm is therefore run for Ngen generations
for each part, thus giving a set of n chromosomes, each one
giving the optimal path for 1 part alone.

B. Cost Evaluation

The cost associated with each chromosome is the total
work done by the operator to move the part along the path
it - the chromosome - gives. If the path does not satisfy the
constraints of the virtual operator, this must appear in the



cost. In addition to the two previously mentioned constraints
originating from the manikin, a third constraint comes as a
consequence of the geometry of the repulsive potential fields.
Their spherical shape makes them generate forces in all
directions. This can cause objects to be pushed downwards,
through the table. This is obviously not realistic and can be
detected in the virtual environment by keeping record of the
object’s center of gravity. Any trajectory making an object
pass through the table has to be rejected.

If at any moment one of these constraints is not met, a
penalty is applied to the cost of the chromosome. This will
cause it to be eliminated from the next population in the GA.

VI. SIMULATION AND RESULTS

In this section we show the results obtained by our
approach. We show the behaviour of the cost function, and
the joint values also, for the manipulation of the pump
bottom since it is the heaviest part and is therefore likely to
show information in a more evident manner than the lighter
parts.

In our experiments the selection, cross-over and mutation
rates were respectively 25%, 75% and 5%. The radius ρr
of the repulsive potential field of each object was randomly
chosen by the GA in the interval

[
ρrmin ,ρrmax

]
. ρrmin was

chosen to be equal to the radius of the object’s BS while
ρrmax was twice ρrmin .

Fig. 5. Evolution of cost for pump bottom

Figure 5 shows the variation of cost for assembling the
pump bottom over 45 generations. It can be observed that at
around the 30th generation, the cost varies only slightly and
reaches a plateau at around the 40th generation.

The values of the joint angles for the manipulation of the
pump bottom are shown in Figure 6 at 3 generations - 5th,
20th and 40th - during the optimization process. Lines of the
same colour correspond to the same joint. It can be seen
that as the number of generations increases, the joints reach
their final values in a shorter time. This implies that the
optimization process finds paths which are shorter in length.
Figure 7 shows the paths obtained for the pump bottom.

Fig. 6. Joint values for manipulation of the pump bottom at the 5th, 20th

and 40th generations(from right to left). The joints reach the final values in
shorter time.

Fig. 7. Paths generated by potential fields for the pump bottom. The yellow
line across the image is the virtual operator’s arm.

Fig. 8. Optimal paths obtained for each part at the end of the simulation



The optimal paths obtained at the end of the simulation
are displayed in Figure 8.

VII. CONCLUSIONS AND FUTURE WORK

The aim of the work presented in this paper is to provide
optimal paths to a human operator for an assembly task.
Trajectories are generated by potential fields. By introducing
a virtual manikin in the environment, the feasibillity of the
path is verified through imposed constraints. We have chosen
work as a criterion to optimize the paths and results show that
the approach achieves paths which the manikin completes in
lesser time as optimization proceeds (Figure 6).

Collision detection has not been treated in the example we
have chosen. The repulsive potential fields naturally pushed
the objects away from one another, and there was enough
clearance in the working environment to omit collision de-
tection between the virtual operator’s arm and other objects.
The problem however becomes crucial when the operational
space is confined.
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