
HAL Id: lirmm-00416228
https://hal-lirmm.ccsd.cnrs.fr/lirmm-00416228v1

Submitted on 13 Sep 2009

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Protecting the Color Information by Hiding it
Marc Chaumont, William Puech

To cite this version:
Marc Chaumont, William Puech. Protecting the Color Information by Hiding it. Dr. Mithun Das
Gupta. Recent Advances in Signal Processing, Chapter 7, IntechOpen, 2009, 978-953-51-5869-1.
�10.5772/7453�. �lirmm-00416228�

https://hal-lirmm.ccsd.cnrs.fr/lirmm-00416228v1
https://hal.archives-ouvertes.fr

X

Protecting the color information by hiding it

Marc CHAUMONT and William PUECH
University of Nîmes, University of Montpellier 2, CNRS UMR 5506- LIRMM,

France

1. Introduction

Few work have been proposed for image color protection. A color protection algorithm
should give some comprehensive information about the image (such as its grey-level
version) but should hide securely the color information. The proposed algorithms are thus
specific but take into account recent signal processing concepts such as quantization,
compression and data-hiding. Figure 1 illustrates a possible use of the color protection
where only secret key owners may rebuild the color image.

Fig. 1. Illustration of possible color protection use.

This chapter presents some previously published solutions and proposes new solutions built
on data-hiding methods. Remember that many methods propose solutions to hide
information by using the decomposition of a color image in an index image and a color
palette (Fridrich, 1998, Wu et al., 2003, Tzeng et al., 2004). The data-hiding may occur in the
index image (Fridrich, 1998) or in the color palette (Wu et al., 2003, Tzeng et al., 2004).
Nevertheless, none of those techniques tries to protect the color information by hiding the
color palette in the index image. Other approaches such that (Campisi et al., 2002, Queiroz &
Braun, 2006) based on wavelet decomposition and sub-band substitution propose solutions
to embed the color information in a grey-level image. Their areas are image printing for
(Queiroz & Braun, 2006), and perceptive compression for (Campisi et al., 2002). Even if those

techniques embed the color information, their approaches and their purposes are clearly
different since they do not try to preserve the best color quality while ensuring security.
In previous work (Chaumont & Puech, 2007a, Chaumont & Puech, 2007b), we presented
two new approaches in order to protect the color information by hiding the color palette in
the index image. In (Chaumont & Puech, 2007a) we propose to sort the colors of the color
palette in order to get an index image which is near of the luminance of the original color
image. In the same time, we get a color palette whose consecutive colors are close. In
(Chaumont & Puech, 2007b) the approach is completely different and relies on a function
optimization of the global problem formulation. In those two previous work, the security
and the color quality requirements were not fully addressed. In this chapter, we give new
directions of analysis and improve the security and the quantized color image quality.

This chapter will first remind two solutions quite close from the image color protection
problem: the image printing algorithm (Queiroz & Braun, 2006) and the perceptive
compression algorithm (Campisi et al., 2002). We will then remind the two specific
solutions: the fuzzy approach (Chaumont & Puech, 2007b) and the re-ordering approach
(Chaumont & Puech, 2007a). Finally, we will present a better solution for this problem
which consists to hide a 512 color palette in an 8-bit-grey-level image.

2. Two substitution-based approaches in the wavelet domain

2.1. Queiroz & Braun color hiding
The solution proposed by (Queiroz & Braun, 2006) is specific to the image printing problem.
When a document owning color images has to be distributed in a society, it is still often
printed onto black-and-white printers. Graphics, pie charts, or other color images may then
become unreadable. The proposed solution is to transform a color image in a readable grey-
level image even in presence of colors of same luminance. What is interesting us in the
(Queiroz & Braun, 2006) solution is not the readability aspect but the reversibility of their
transformation from grey-level to color. Indeed, it is possible to recover a visually close
approximation of the original color image from the grey-level image.

Fig. 2. Sub-band replacement for color embedding of (Queiroz & Braun, 2006).

The technique, illustrated in Figure 2, is very simple and consists:

a) to express the color image into the Y, Cr, Cb color space,

b) to subsample by four the two planes Cr and Cb,
c) to derive two planes Cr+ and Cr- (resp. Cb+ and Cb-) from the subsampled Cr (resp.

Cb) plane; The plane Cr+ (resp. Cb+) is a copy of the subsampled Cr (resp. Cb)
plane where negative values are set to 0 and the plane Cr- (resp. Cb-) is a copy of
the subsample Cr (resp. Cb) plane where positive values are set to 0,

d) to decompose the Y plane with a 2-levels discrete wavelet transform,
e) to substitute the LH1 by Cb+, HL1 by Cr+, HH1 by Cr- and HH2 by a ¼

subsampling of Cb-,
f) to inverse the wavelet transform in order to produce a grey-level image embedding

its color information.

To recover the embedded color information i.e the Y, Cr, Cb planes, from the grey-level
image and then rebuild a color image, one should:

a) apply a 2-levels wavelet transform,
b) extract Cb+, Cr+, Cr-, and Cb-.
c) up-sample the Cb- plane,
d) retrieve Cr and Cb planes such that Cr = |Cr+|-|Cr-| and Cb = |Cb+|-|Cb-|, and

up-sample them,
e) set sub-bands coefficients of HL1, LH1, HH1 and HH2 to 0 and apply the invert

wavelet transform.
Figure 3 illustrates the recovering principle.

Fig. 3. Recovering of a color image from a grey-level image (Queiroz & Braun, 2006).

This substitution approach in the wavelet domain is interesting for its potential for hiding
the color information into a grey-level image. Figure 4 shows some key images of the
process for the baboon image. One could nevertheless remark that the retrieved color image
(Figure 4.e) from the grey-level image has a poor visual quality. We could note some blurring
and strong ringing effects. Those artefacts are due to the poor quality of the retrieve Y plane
since lots of wavelet sub-bands are nullify. In Table 1 we should essentially remark that
PSNRs between the original color image and the rebuild color image are below 31 dB. In
conclusion, this approach is only useful for printing applications. We will see in the next

section another similar approach (Campisi et al., 2002) which gives higher PSNR and images
visually more pleasant.

(a) (b) (c)

(d) (e)
Fig. 4. Application of the substitution-based approach of (Queiroz & Braun 2006): a) Luminance
of the original color image, b) Grey-level image embedding the chrominance planes, c)
Wavelet decomposition of the grey-level image, d) Original color image, e) Rebuilt color
image from the grey-level image.

Images PSNR (luminance, grey-level) PSNR (original color, rebuilt)
baboon 21.03 dB 23.93 dB
barbara 23.93 dB 26.33 dB
airplane 26.47 dB 28.56 dB
peppers 21.24 dB 28.82 dB

lena 21.02 dB 30.31 dB
house 25.18 dB 30.75 dB

Table 1. PSNR between the luminance image and the grey-level image and PSNR between the
original color image (RGB space) and the rebuilt color image (RGB space) using the grey-level
image embedding its color information.

2.2. Campisi et al. color hiding
The objective of the solution proposed by (Campisi et al., 2002) is to improve the
compression efficiency of a color image. The idea is to transform a color image into a single
grey-level image which embeds the chrominance planes. The solution principle is thus very

similar to (Queiroz & Braun 2006) approach. Nevertheless, the distortion between the
original color image and the rebuilt one is smaller.

The approach, illustrated in Figure 5, consists in:

a) expressing the color image into the Y, I, Q color space,
b) sub-sampling by 16 the two planes I and Q in order to obtain ILL2 and QLL2 planes;

Note that this sub-sampling is process by applying a 2-levels wavelet Daubechies
9/7 (Daubechies & Sweldens, 1998) decomposition and keeping the low-pass sub-
band of I and Q,

c) applying a 1-level wavelet Daubechies decomposition to the Y plane and re-apply a
1-level wavelet decomposition to the sub-bands HL and LH; The decomposition of
sub-band HL (resp. LH) give four sub-bands and the low-pass one is noted Yll,HL

(resp. Yll,LH),
d) normalizing the two planes ILL2 and QLL2 with values NI and NQ; those values will

be transmitted as side information,
e) substitute the sub-band Yll,HL (resp. Yll,LH) by ILL2 (resp. QLL2),
f) compress the data.

Fig. 5. Sub-band replacement for color embedding of (Campisi et al., 2002).

To recover the embedded color information i.e Y, I, Q planes, from the grey-level image and
then rebuild a color image, one should:

a) apply the wavelet transforms,
b) extract ILL2 and QLL2 and rescale them thanks to normalizing values NI and NQ,
c) up-sample the ILL2 and QLL2 in order to retrieve I and Q planes,

g) set sub-bands coefficients of Yll,HL and Yll,LH to 0 and apply the invert wavelet
transforms.

Figure 6 illustrates the recovering principle.

Fig. 6. Recovering of a color image from a grey-level image (Campisi et al., 2002).

Figure 7 shows some key images of the process for the baboon image. One could remark
that the reconstructed color image (Figure 7.d) from the grey-level image has a good visual
quality. Since, the Campisi et al. approach does not degrade too much the Y component and
that chrominance planes are good enough, the rebuilt color image is visually pleasant. We
just notice some small ringing effects. In Table 2 we should essentially remark that the
PSNRs between the original color image and the rebuild color image are above 29 dB. Thus,
the Campisi et al. approach performs better objective and subjective results than (Queiroz &
Braun 2006). We will see in the next section, that the palette based approach give rebuilt
color images of even better quality.

(a) (b) (c) (d)

Fig. 7. Application of the substitution-based approach of (Campisi et al., 2002): a) Grey-level
image embedding the chrominance planes, b) Wavelet decomposition of the grey-level
image, c) Original color image, d) Rebuilt color image from the grey-level image.

Images PSNR (luminance, grey-level) PSNR (original color, rebuilt)
baboon 27.37 dB 29.8 dB
barbara 30.61 dB 31.75 dB
peppers 25.82 dB 32.36 dB
airplane 34.12 dB 32.58 dB
house 30.76 dB 31.76 dB
lena 26.91 dB 36.75 dB

Table 2. PSNR between the luminance image and the grey-level image and PSNR between
the original color image (RGB space) and the rebuilt color image (RGB space) using the grey-
level image embedding its color information.

3. Two palette-based approaches

In order to obtain a grey-level image embedding its color information, we decompose a
color image in an index image and a color palette. Figure 8 illustrates a decomposition of the
Baboon color image into an index image and a color palette. Note that the decomposition is a
quantization since the total number of colors is reduced. The color palette is then hidden in
the index image. The index image should be similar to the luminance of the color image, the
embedding process should be of week magnitude and the color palette should be cleverly
ordered. We proposed in previous work two solutions for this problem: the fuzzy approach
(Chaumont & Puech, 2007b) and the reordering approach (Chaumont & Puech, 2007a).

Original Quantized Index Color palette

Fig. 8. Decomposition of a color image into an Index image and a color palette.

3.1. The fuzzy approach

The originality of the fuzzy approach is to propose a solution for the very constrained
decomposition problem. Thus, the main contribution of this work is the proposition of an
energetic function in order to model the decomposition of the color image. The optimization
of the energetic function leads to the obtaining of a well suit index image and a well sorted
color palette. The fuzzy approach is then decomposed in two parts: the energetic function
optimisation and the data-hiding.

3.1.1. The problem formulation and its resolution

The goal of the first step is to find an index image and a color palette with the following
constraints:

- the index image should be close from the luminance of the original color image,
- the color quantized image should be close from the color image,
- and, for data-hiding purpose, the color palette should own consecutive couples of

close color.

The problem of the computation of a color palette made of couples of close colors and an
index image similar to the luminance may be expressed by three constraints. Mathematically
this comes to found the K colors C(k) (C is the color palette) and the Pi,k ownership values
giving the degree of belongingness of a pixel i to the kth color. Note that Pi,k belongs to [0,1]
and are named fuzzy membership values in fuzzy c-mean clustering approach (Dunn, 1974).
Also note that the Pi,k give indirectly the index image such that: Index(i) = argk maxk Pi,k.

Thus, we are looking to minimize the above energetic model in order to obtain

 fE/1

(1)

 and C(k):

with I the color image, Y the luminance image, λ1 and λ2 two scalar values and m]1, ∞ [the
fuzzy coefficient tuning the equi-probability. Note that m is set to 2 for computational
complexity reduction.

The first term is expressing the constraint of color quantization. The aim is to found the best
representative K colors. The second term stands for getting the index image the nearest to the
luminance image Y. The last term constrain couples of consecutive color from the palette to
be close.

The minimization of Equation (1) such that:

is performed iteratively in a two steps loop as in conventional fuzzy c-mean algorithms. In
the first step, colors C(k) are updated, given Pi,k, by solving the linear system below:

In the second step, Pi,k (with m=2) are updated given the colors C(k) with:

Mathematical details are given in (Chaumont & Puech, 2007b).

3.1.2. Spatial data hiding
For this approach, we have used an algorithm to embed the color palette information in the
Least Significant Bit (LSB) of an image of N pixels. The objective is thus to embed a message
M made up of m bits bj (M = b1b2...bm). The embedding factor, in bit/pixel, is Ef = m / N.

The original image is then divided in areas of size pixels. Each area is used to hide
only one bit bj of the message. This splitting procedure guarantees that the message is

spread homogeneously over the whole index image. In order to hide the color palette, we
need to embed 3 × 256 × 8 = 6144 bits (the number of colors is K=256) in the index image.

Consequently, the embedding factor Ef, only depends on the image size N. In our process, a
Pseudo-Random Number Generator (PRNG) selects randomly, for each region, a pixel
Index(i). In order to get a marked pixel IndexM(i), the LSB of this selected pixel Index(i) is then
modified according to the message bit bj (the formula is given for index values belonging to
[0,K-1]):

This way to embed the color palette ensures that each marked pixel is at worst modified by
one grey-level and in the same time that the rebuilt color pixel would not be very far from
the right color value. Indeed, the third term of Equation (1) ensures that consecutive couples
of color are close.

3.1.3. Evaluation of the fuzzy approach
In order to illustrate the performance of the fuzzy approach, we present results on few color
images of size 256×256 pixels. For all the experiments, λ1 = 1 and λ2 = 0.01 × N/(K+1) (see
Equation (1)). The obtained results show that the approach is efficient whatever the image
type. Below, the different steps of the algorithm are commented on the baboon image.

(a) (b) (c) (d) (e)

Fig. 9. Application of the fuzzy approach: a) Luminance of the original color image, b) Index
image, c) Color palette, d) Original color image, e) Rebuilt color image from the index-
marked image.

After achieving the minimization of Equation (1) on the baboon image with K=256 colors,
we obtain an index image, illustrated in Figure 9.b, and its color palette illustrated in Figure
9.c. The luminance image of the original color image is given in Figure 9.a. One could
observe the good similarity between index image and luminance image. The good PSNR
value of 29.74 dB confirms this subjective feeling. We can notice that lots of index values are
unused which explain the presence of some useless colors on the color palette of Figure 9.c.
Also note that in the color palette in Figure 9.c, consecutive couples of color are
colorimetricly close as expressed by the third term of Equation (1). Finally, we should
precise that the computational cost for the minimization Equation (1) is very high. The
article (Chaumont & Puech, 2007c) proposes a solution to reduce this cost but in
counterpart, the results are less good.

(2)

The length of our embedded message (color palette) is 6144 bits which gives an embedding
factor for an image of 256 × 256 pixels of Ef = 6144 / (256×256) = 0.093 bit/pixel. The index
image is then cut in block of 10 pixels. In each 10-pixel block, one bit of the color palette is
embedded at the position selected by the PRNG. The secured is obtained through the use of
a secret key of 128 bits as a seed for the PRNG. The distribution of the message over the
image is then key-related.

Figure 9.e shows the rebuilt color image from the index-marked one. This image is not
visually far from the original color image even if the PSNR value of 27.90 dB is of middle
quality. Note that the degradation due to the data-hiding method is weak because it
disturbs index values of a maximum of one. This is made possible thanks to the color palette
property to own consecutive couples of close colors.

PSNRs values are given in Table 3. Rebuilt color images are of middle quality (over 27 dB)
but visually pleasant. Compared to the substitution-based approach of (Campisi et al., 2002)
the rebuilt color images, with the fuzzy approach, are sometimes better and sometimes
worse. On the other side, the index image is extremely close to the luminance image. We will
see, in the next section, with the reordering approach, that if we reduce the strong constraint
on the luminance, the rebuilt color images are of better quality.

PSNR values for index-marked images are over 29 dB. Since the grey-level images (i.e. the
index-marked images) are of good quality, images may be colorized semi-automatically
(Chaumont & Puech, 2008). This colorization may be seen as an indirect attack since an
attacker is able to retrieve a pleasant color image and then fraudulently use it. Next section
will expose a solution where index image have a weak quality and the rebuilt color image of
have a better quality.

Images PSNR (luminance, index-marked) PSNR (original color, rebuilt)
baboon 29.74 dB 27.90 dB
barbara 34.86 dB 30.74 dB
peppers 35.03 dB 31.68 dB
airplane 35.95 dB 33.66 dB

lena 37.87 dB 34.78 dB
house 35.40 dB 35.45 dB

Table 3. PSNR between the luminance image and the index-marked image and PSNR
between the original color image (RGB space) and the rebuilt color image (RGB space) using
the index-marked image embedding its color palette.

3.2. The reordering approach

3.2.1. The image decomposition
Reducing the color number of a color image is a classical quantization problem. The optimal
solution, to extract the K colors, is obtained by solving:

(3)

where I is a color image of dimension N pixels, C(k) is the kth color of the research K colors,
dist is a distance function in the color space (L2 in the RGB color space), and Pi,k {0, 1} is
the membership value of pixel i to color k.

A well known solution to minimize the Equation (2), and then to obtain the K colors, is to
use the ISODATA k-mean clustering algorithm (Ball & Hall, 1966). Pi,k is defined as:

with

Nevertheless, in our approach the K number is significant (K=256). If we proceed with a
classical k-mean algorithm, the number of colors extracted will often be below K. Indeed, it
is the well known problem of death classes. Moreover, the k-mean algorithm is quite long in
CPU time in comparison to non optimal but faster algorithms such that octree color
quantization algorithm of Gervautz and Purgathofer (Gervautz & Purgathofer, 1990), Median
Cut algorithm (Heckbert, 1982)... To overcome those two problems ("death classes" and "CPU
time"), we are using the octree color quantization algorithm as an initialization to the k-mean
algorithm: Pi,k are set from the result obtained with the octree color quantization algorithm.

3.2.2. The Layer Running Algorithm
Once the color quantization has been processed, the obtained K color image could be
represented by an index image and a color palette. The index image is noted down Index and
is defined such that:

The color palette is noted down Palette and

Our goal is to get an index image where each grey-level is not too far from the luminance of
the original color image. A second weakest constraint is that in the color palette, two
consecutive colors should be close. Thanks to the color quantization, we already own an
index image and a color palette. Our problem is then to find a permutation function which
permutes in the same time the values of the index image and the values of the color palette.
The best permutation function Φ is found by solving:

where Y is the luminance of the original color image, and λ a constant value. The Φ
permutation function is a bijective function in N defined such that Φ: [1..K] → [1..K].

In a first approximation, Equation (3) is solved thanks to an heuristic algorithm: the layer
running algorithm (Chaumont & Puech, 2007a). The aim of this algorithm is to find an
ordering for the K colors such that consecutive colors are close and such that colors are

ordered from the darkest to the lightest. This ordering defines for each kth color a k' position
which gives us the Φ function such that Φ (k) = k'.

Fig. 10. A view of the layer running in the RGB cube.

To find an ordering of the K colors, the algorithm runs the color space to build the ordered
suite of colors, illustrated Figure 10. This running is obtained by jumping from color to
color, into the color space, by choosing the closer color from the current one. The first color
of this suite is chosen as the darkest one among the K colors. An additional constraint to this
running is that we limit the color research to colors which are very close in luminance. This
signifies that the running in the color space is limited to a layer defined on luminance
information. This layer running algorithm could then be seen as a kind of 3D spiral run in the
color space. A description of the algorithm may be found in (Chaumont & Puech, 2007a).

This layer running algorithm owns an implicit hidden parameter which is the layer size used
during the color running in the color space. Since our goal is to minimize the Equation (3), a
satisfying way to automatically set this parameter is to test all the possible values for this
layer size parameter and to keep the layer size value minimizing the equation. Knowing that
the possible values of the layer size parameter belong to the range [1, K] and that it is very fast
to make just one run in the color space, this gives an elegant and fast solution to
approximate the Equation (3).

Another problem still unsolved is the tuning of the lambda parameter. The equation below
gives more details on the way lambda is expressed: λ = α×N / (3×(K-1)), with α the value
balancing the two constraints evoke above and expressed by Equation (3). For example, α
value set to 1 means giving the same weight to the two constraints, an α value set to 0.5
signifies an index image nearest to the luminance image, a contrario an α value set to 2 means
a color palette more continuous.

3.2.3. Spatial data hiding
Similarly to the fuzzy approach, we embed the color palette information by modifying
pixels of 0 or +1 or – 1. The embedding approach is also substitutive but it is not a simple

LSB approach. The objective is again to embed a message M made up of m bits bj (M =
b1b2...bm). The original image is divided in areas of equal sizes and each area is used to hide
only one bit bj of the message.

A Pseudo-Random Number Generator (PRNG) selects randomly, for each region, a pixel
Index(i). In order to get a marked pixel IndexM(i), the selected pixel Index(i) is modified
according to the message bit bj:

Thus, the index value Index(i) is modified of +1 or -1 when bj ≠ Index(i) mod 2. The best choice
for this modification is then to choose the closest color between Palette(Index(i)+1) and
Palette(Index(i)-1) in order to minimize the distance to the color Palette(Index(i)). This way to
embed the color palette ensures that each marked pixel is at worst modified by one grey-
level and in the same time that the rebuilt color pixel would not be very far from the right
color value.

3.2.4. Evaluation of the reordering approach
In order to illustrate the performance of the reordering approach, we present results on few
color images of size 256×256 pixels. The obtained results show that the approach is efficient
whatever the image type. Below, the different steps of the algorithm are commented on the
baboon image.

(a) (b) (c) (d) (e)

Fig. 11. Application of the layer running algorithm: a) Luminance of the original color image,
b) Index image after color ordering, c) Color palette after color ordering, d) Original color
image, e) Rebuilt color image from the index-marked image.

After the fast quantization step (with K=256 colors) and the optimized layer running
algorithm step, we obtain an index image and its color palette shown in Figures 11.b and 11.c.
Note that the index image (Figure 11.b) is more contrasted than the luminance of the original
color image (Figure 11.a) but keeps its semantic intelligibility. Also note that in the color
palette, Figure 11.c, consecutive colors are colorimetricly close.

In order to be able to recover the embedded color-palette at the receiver, the embedding
factor for an image of 256×256 pixels, is set to Ef = 6144 / (256×256) = 0.093 bit/pixel. The
index image after color ordering is then cut in block of 10 pixels. In each 10-pixel block, a bit
of the color palette is embedded at the position selected by the PRNG. The secured is

obtained through the use of a secret key of 128 bits as a seed for the PRNG. The distribution
of the message over the image is then key-related.

Figure 11.e shows the rebuilt color image from the index-marked one. This image is visually
near from the original quantified one and the PSNR(quantized , rebuilt) of 42.3 dB confirms this
feeling. Some PSNRs values are given in Table 4. We could notice that rebuilt color images
are of good quality (over 33 dB). PSNR values for index images are below 20 dB which is in
general a poor result but in our case, it helps us to counter-attack the colorization attack
(Chaumont & Puech, 2008). Moreover, index images are still semantically understandable.

Images PSNR (luminance, index−marked) PSNR (original color, rebuilt)
baboon 16.75 dB 33.31 dB
peppers 19.76 dB 36.32 dB

lena 19.11 dB 38.63 dB
house 18.64 dB 39.27 dB

airplane 12.87 dB 39.9 dB
Table 4. PSNR between the luminance image and the index-marked image and PSNR
between the original color image (RGB space) and the rebuilt color image (RGB space) using
the index-marked image embedding its color palette.

4. The 512 colors into an 8-bit-grey-level image approach

In this section we present a new approach based on a reversible data-hiding method
allowing us to hide a color palette of 512 colors in the index image (Chaumont & Puech,
2008). Compared to the previous work of (Chaumont & Puech, 2007a, Chaumont & Puech,
2007b) presented in Section 3, the three main contributions of this approach are:

- the used of 512 colors (index values belongs to [0, 511]; index image is thus a 9-bit
coded image; and there are 512 colors in the palette) but a resultant grey-level
image owning values belonging to [0, 255]. The stored image (grey-level image) is
then a classical 8-bit grey-level image and embeds a color palette plus a bitplane.

- the compression of a bitplane and the color palette,
- and the use of a high capacity reversible watermarking algorithm.

The overview of the embedding/extraction scheme is given in Figure 12. During the
embedding scheme, the color image is quantized in a 512 color image. The 9-bit index image
is split into an 8-bit grey level image and a bitplane. The extracted bitplane and the color
palette are then embedded in the 8-bit grey level image.

The quantization of a color image into an index image and a color palette is achieved
similarly to the color image decomposition detailed in Section 3.2.1. One applies the octree
color quantization algorithm of Gervautz and Purgathofer (Gervautz & Purgathofer, 1990)
follows-up with a k-mean clustering (Ball & Hall, 1966). Note that we decompose the image
in 512 colors and not in 256 colors.

The palette re-ordering uses the Layer Running Algorithm which is detailed in Section 3.2.2.
This re-ordering produces an index image visually similar to the luminance image and also

give a color palette whose consecutive color values are very close. Note that those two
properties are necessary for the compression and data hiding parts.

Fig. 12. The general embedding/extraction scheme.

Once index image and color palette are computed and re-ordered, the data hiding is
achieved. Section 4.1 explains what is the message to embed, how to format it and how the
reversible-watermarking algorithm works. After the watermarking process, the resultant
grey-level image may be stored on a public website. The reversible extraction scheme,
illustrated in Figure 12, is the exact inverse of the embedding scheme.

4.1. Data-hiding

4.1.1. Message construction
Once the color image decomposition (into 512 colors) and its re-arrangement (layer running
algorithm) have been achieved, one bitplane of the index image is removed in order to create
the cover image. The extracted bitplane and the color palette are then compressed in order
to be embedded into the cover image (see Figure 12). The solution retained to compress the
color palette is to statistically encode the error of prediction (differential encoding +
arithmetic encoding) of each color belonging to the color palette.

The compression rate of the chosen bitplane is not enough efficient if directly achieved. One
has to modify the statistics in order to reduce the entropy (theoretical rate cost). Thus, the
bitplane vector (noted bp) is transformed in a prediction error vector (noted e) owning three
possible values: {-1, 0, 1}. Each bit bp(i), i [0, N], of the bitplane vector is then substituted
by e(i) {-1, 0, 1} before the lossless coding.

For each pixel I(i) at position i, we first compute a prediction Predpixel(i):

with A, B and C the neighbors pixels of current pixel I(i) as defined below:

previous line A B
current line C I(i)

This kind of prediction is used in the Differential Pulse Code Modulation (DPCM) approach.
It essentially takes into account the edges in order to predict more cleverly than with a
simple mean. Note that some more sophisticated predictions may be explored in
particularly by looking at lossless compression techniques. Nevertheless, this predictor is
enough efficient for our approach. Also note that for image border the prediction is achieved
with the available values.

The second step is to find the best prediction for the bit bp(i) of the bitplane vector. At the
coder and the decoder sides, the information of all the other bitplanes is known. Thus, one
have two possible prediction solutions: either predict a 0 knowing the other bitplanes, either
predict a 1 knowing the other bitplanes. Knowing the prediction Predpixel(i), one have to
decide which is the best hypothesis: having a 0 in the bitplane (in this case the pixel value is
noted I0(i)) or having a 1 (in this case the pixel value is noted I1(i)). This best hypothesis (best
prediction) is chosen in accordance to the maximum of the two probabilities p(Predpixel(i) |
I0(i)) and p(Predpixel(i)| I1(i)). This is a classical two hypothesis choice and with Gaussian
pdf assumptions the best choice is:

The last step in order to obtain the e prediction error vector is to compute the prediction
error (error values are either -1, 0 or 1):

e(i) = bp(i) − Predbit(i).

The prediction e error vector may now be encoded and because of the good prediction
behaviour, the entropy is low and then the encoding cost is low.

4.1.2. Reversible watermarking scheme
The algorithm used for the reversible embedding is one of the three most efficient for its
embedding capacity. A brief description is given below; for more details see (Chaumont &
Puech, 2009). The algorithm lies on congruence computations. The congruence properties
allow defining three possible states for a pixel:

- the state embedding which corresponds to a pixel embedding an integer coefficient
belonging to [1, n],

- the state to-correct which corresponds to a pixel that has been modified but does not
embed any information; this pixel will be corrected during the reverting process,

- the state original which corresponds to an original pixel (i.e unchanged).

(5)

(6)

(4)

Let’s define a constant integer value n greater or equals to 3. Let’s also define the T
transform which takes two integers x1 and x2 as input and return an integer:

We will name the coding process, the act of embedding a message into an image and the
decoding process, the act of extracting the message and rebuilding the original image. Let’s
now define the three possible states and the coding-decoding algorithms.

Embedding state
A pixel i in the embedding state is a pixel such that:

with I the original image (of N pixel size) whose grey-levels belongs to [0,L]. In the case of 8-
bits images, L equals to 255. All pixels i in the embedding state:

- are T transformed such that IT(i) = T(I(i), I(i+1)), with IT(i) the resulting
transformed pixel,

- must then embed a coefficient w belonging to [1, n] such that Iw(i) = IT(i) + w.
Note that after the embedding of a coefficient w belonging to [1, n], it is impossible to
recover I(i) with the only knowledge of I(i+1). Indeed Iw(i) = (n+1).I(i) - n.I(i+1) + w with w ≠
0, thus and so:

The congruence property of Equation (5) allows detecting an embedding pixel during the
decoding process. Note that during the decoding process, the Iw(i+1) pixel should have been
previously reverted to I(i+1) in order to compute this congruence. This implies that the
image scan order used during the decoding process is the opposite of the one used during
the coding process.

To-correct state
A pixel i in the to-correct state is a pixel such that the negation of Equation (4) is true:

All pixels that are in this to-correct state are then modified such that:

The c coefficients belong to [-n, n] and are embedded (into the embedding pixels) in order to
enable the reversibility of the to-correct pixels during the decoding process. We name the c
coefficients the corrective codes. Note that after the modification expressed by Equation (6),
pixel Iw(i) checks the property:

(7)

The congruence property of Equation (7) allows detecting a to-correct pixel at the reverting
process. Note that at the decoding process the Iw(i+1) pixels should have been previously
reverted to I(i+1) in order to compute this congruence.

Original state
Given an image order scan for the coding, a pixel in the original state (i.e. unmodified pixel)
must always be present just before a pixel in the to-correct state. For a top-bottom-left-right
scan order, if a pixel at position i is in the to-correct state, then the pixel at position i-1 must
be in the original state. In order to ensure this strong property (original and to-correct pixels
go by pairs), during the scan, when a pixel at position i is detected as a to-correct one, a
forward research is achieved in order to find the next embedding position (noted next).
Original and to-correct states are then alternates between the i (or i-1) position and the next-1
position.

This grouping constraint breaks the problematic dependencies during the decoding process.
Remember that during the decoding, the image scan order is inverted. A to-correct pixel at
position i may not be reverted immediately if its associated corrective code is still not
extracted. Nevertheless, because the pixel at position i-1 is an original pixel, the pixel at
position i-2 may be treated immediately and the decoding process may continue (pixel at
position i will be corrected later, in a second pass).

Coding and decoding algorithms
The coding process is composed of two steps:

- classify each pixel in one of the three states: embedding, to-correct, original,
- embed into the embedding pixels, the watermark made of corrective codes plus the

message.
For the decoding process, the image scan order is inverted. The decoding process is also
composed of two steps:

- extract the watermark from the embedding pixels, revert (during the scan) all those
pixels and localize the to-correct pixels,

- from the extracted watermark retrieve the corrective codes and the message, and
correct the to-correct pixels.

Note that the security is ensured by the secrecy of the scan order. The user secret key is used
as a seed of a pseudo-random number generator. The obtained pseudo-random number
sequence is used to generate an adapted scan order. Thus, no information about the message
(color palette + bitplane) may be extracted by an attacker. Moreover, an attack by
colorization (Chaumont & Puech, 2008), which consists in retrieving semi-automatically (a
small human intervention is necessary) the colors of each pixels, is difficult since the final
grey-level image has a poor quality. Also note, that this reversible watermarking scheme is
not robust to any signal processing but it is not a deficiency for this application.

4.2. Evaluation of the 512 colors into an 8-bit-grey-level image approach
We have applied the “512 colors approach” on well known color images of size 256×256
pixels. For all the experiments, n = 4 for the reversible watermarking. The obtained results
show that the approach is efficient whatever the image type. In Figure 13, the main steps of
our approach are comment for the peppers image.

a) Original b) Quantized (i.e. rebuilt) c) Color palette

d) Luminance e) Index (512 levels) f) Without 8th plane

g) Marked image h) 8th plane i) Embedding sites

Fig. 13. Steps of the “512 colors” approach.

After achieving the color decomposition of the peppers image (Figure 13.a) we obtain an
index image whose index values belongs to [0, 511] (Figure 13.e), and a color palette made of
K=512 colors (Figure 11.c). The quantized image, which is rebuilt with the knowledge of the
index image and the color palette, is illustrated in Figure 13.b. The PSNR of this quantized
image equals to 38.95 dB. The best PSNR obtained with a palette-based approach was 36.32

dB with the re-ordering one (Chaumont & Puech, 2007a). The obtained gain with the “512
colors” approach is more than to 2 dB for the rebuilt color image.
The luminance image of the original color image is illustrated Figure 13.d. One could
observe the good visual similarity between this luminance image and the index image. The
index image is more contrasted but keeps its semantic intelligibility.

Once color image decomposition has been achieved, the index image is split into an 8-bit
image (Figure 13.f) and a one bitplane image (a binary image). The chosen bitplane is the 8th
for peppers image. The binary image is then modified in order to obtain a ternary error
prediction image of very low entropy. This error prediction image is illustrated in Figure
13.h (in grey the 0 value, in black the -1 value, and in white the 1 value). The error prediction
image and the color palette are then encoded with an arithmetic coder (Said, 2003). The
embedded message is then made of the two bitstreams concatenations. Figure 13.i is a map
giving the localization of the embedding site (white pixels) with the reversible
watermarking approach of (Chaumont & Puech, 2009). Figure 13.g shows the final 8-bit
image embedding a color palette (of 512 colors) and a bitplane image (the 8th bitplane of the
index image).

The quality of the watermarked image (see Figure 13.g) is poor but as previously explains
this is a good property. Indeed, this image yields difficult the colorization attack (Chaumont
& Puech, 2008). On the contrary, the rebuilt color image (knowing the secret key) gives a
very good quality color image (PSNR = 38.95 dB).

a) Original b) Watermarked c) Rebuilt (i.e quantized)
Fig. 14. Example on barbara image.

Another result is shown for barbara 315×230 image in Figure 14. Figure 14.a is the original
image, Figure 14.b is the watermarked image and Figure 14.c is the rebuilt (i.e quantized)
image with a PSNR of 38.75 dB. Note that the semantic content is preserved in this
watermarked image.

Images Queiroz & Braun Campisi et al. Fuzzy Re-ordering 512 colors
baboon 23.93 dB 29.8 dB 27.90 dB 33.31 dB 35.86 dB
peppers 28.82 dB 32.36 dB 31.68 dB 36.32 dB 38.95 dB

lena 30.31 dB 36.75 dB 37.87 dB 38.63 dB 40.93 dB
house 30.75 dB 31.76 dB 35.45 dB 39.27 dB 41.67 dB

airplane 28.56 dB 32.58 dB 33.66 dB 39.90 dB 42.96 dB
Table 5. PSNR between the original color image and the rebuilt color image.

In Table 5, few PSNRs are computed between the original color image and the rebuilt one.
For all the images, the 512 colors approach is 2 dB greater than the second best approach of
(Chaumont & Puech, 2007a).

5. Conclusion

In this chapter, we discussed about various solutions in order to protect the color
information. First, we remind two quite far-off techniques usable for protecting the color
(Queiroz & Braun, 2006, Campisi et al., 2002). Those techniques are based on wavelet sub-
bands substitutions. They provide good solutions for a first approach. Second, we talk about
two palette-based approaches: the re-ordering approach (Chaumont & Puech, 2007a) and
the fuzzy approach (Chaumont & Puech 2007b). We conclude that the solution using the re-
ordering layer running algorithm (Chaumont & Puech, 2007a) gives the best results in term
of quality for the rebuilt color image, in term of security facing the colorization attack
(Chaumont & Puech, 2008a) and in term of CPU computational complexity. Third, we
present a new proposition: the 512 colors approach (Chaumont & Puech, 2008b).

The 512 colors approach consists to hide a 512 color palette in an 8-bit-grey-level image. The
method is based on a decomposition of a color image in an index image and a color palette
with 512 colors. The index image is then split in an 8-bit image and a binary image. The
binary image and the color palette are then reversibly embedded in the 8-bit image. The
resultant watermarked image is still semantically understandable.

Some objective PSNR measures are given and show that the 512 colors approach improves
the general rebuilt color image quality compared to other approaches. Moreover, the
security (only confidentiality is of interest: color retrieving should be difficult without the
key) is reinforced by reducing the grey-level quality. Finally, the computational complexity
is low.

In conclusion, protecting the color information providing a degraded grey-level image,
semantically understandable, and a rebuilt color image of good quality is possible.
Improvements are probably also possible by mixing the different approaches or with prior
knowledge from both embedding and extracting sides.

6. References

Ball, G. H. & Hall, D. J. (1996). “ISODATA, A novel Method of Data Analysis and Pattern
Classification,” in Proceedings of the International Communication Conference, June 1966.

Campisi, P.; Kundur, D.; Hatzinakos, D. & Neri, A. (2002). “Compressive Data Hiding: An
Unconventional Approach for Improved Color Image Coding,” EURASIP Journal on Applied
Signal Processing, Vol. 2002, No. 2, pp. 152–163, 2002.

Chaumont, M. & Puech, W. (2007a). “A Fast and Efficient Method to Protect Color Images,” in
IS&T/SPIE 19th Annual Symposium on Electronic Imaging, Visual Communications and Image
Processing, VCIP’2007, SPIE’2007, vol. 6508, San Jose, California, USA, Jan. 2007.

Chaumont, M. & Puech, W. (2007b). “A Grey-Level Image Embedding its Color Palette,” in IEEE
International Conference on Image Processing, ICIP’2007, Vol. I, pp. 389–392, San Antonio, Texas,
USA, Sept. 2007.

Chaumont, M. & Puech, W. (2007c). “Fast Protection of the Color of High Dimension Digital Painting
Images,” in the 8th International Workshop on Image Analysis for Multimedia Interactive Services,
WIAMIS’2007, Santorini, Greece, 6-8 June 2007.

Chaumont, M. & Puech, W. (2008a), “Attack By Colorization of a Grey-Level Image Hiding its Color
Palette,” in IEEE International Conference on Multimedia & Expo, ICME’2008, Hannover,
Germany, June 2008.

Chaumont, M. & Puech, W. (2008b). “A 8-Bits-Grey-Level Image Embedding its 512 Color Palette,“ in
the 16th European Signal Processing Conference, EUSIPCO’2008, Lausanne, Switzerland, 25-29
August, 2008.

Chaumont, M. & Puech, W. (2009). “A High Capacity Reversible Watermarking Scheme, “ in IS&T/SPIE
21th Annual Symposium on Electronic Imaging, Visual Communications and Image Processing,
VCIP’2009, SPIE’2009, Paper 7257-54, San Jose, California, USA, 18–22 Jan. 2009.

Queiroz, De R. L. & Braun, K. (2006). “Color to Gray and Back: Color Embedding Into Textured Gray
Images,” IEEE Transaction on Image Processing, Vol. 15, No. 6, pp. 1464–1470, 2006.

Daubechies, I. & Sweldens, W. (1998). “Factoring wavelet transforms into lifting steps,” Journal of Fourier
Analysis and Applications, Vol. 4, No. 3, pp. 247–269, 1998.

Dunn, J. C. (1974). “A Fuzzy Relative of the ISODATA Process and its Use in Detecting Compact Well-
Separated Clusters,” Journal of Cybernetics, Vol. 3, pp. 32–57, 1974.

Fridrich, J. (1998). “A New Steganographic Method for Palette-Based Images,” in proceedings of the IS&T
PICS conference, Apr. 1998.

Gervautz, M. & Purgathofer, W. (1990). “A Simple Method for Color Quantization: Octree
Quantization,” Graphics Gems, A.S. Glassner, pp. 287–293, 1990.

Heckbert, P. (1982). “Color Image Quantization for Frame Buffer Display,” Computer Graphics, Vol. 16,
No. 3, pp. 297–303, 1982.

Said, A. (2003), Chapter about Arithmetic Coding, In : Lossless Compression Handbook, Academic Press,
2003.

Tzeng, C.H.; Yang, Z.F. & Tsai, W.H. (2004). “Adaptative Data Hiding in Palette Images by Color
Ordering and Mapping With Security Protection,” IEEE Transaction on Communications, Vol.
52, No. 5, pp. 791–800, 2004.

Wu, M.-Y.; Ho, Y.-K. & Lee, J.-H. (2003). “An Iterative Method of Palette-Based Image Steganography,”
Pattern Recognition Letters, Vol. 25, pp. 301–309, 2003.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

