
HAL Id: lirmm-00423026
https://hal-lirmm.ccsd.cnrs.fr/lirmm-00423026

Submitted on 13 Oct 2009

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A Reliable Architecture for Parallel Implementations of
the Advanced Encryption Standard

Giorgio Di Natale, Marion Doulcier, Marie-Lise Flottes, Bruno Rouzeyre

To cite this version:
Giorgio Di Natale, Marion Doulcier, Marie-Lise Flottes, Bruno Rouzeyre. A Reliable Architecture
for Parallel Implementations of the Advanced Encryption Standard. Journal of Electronic Testing: :
Theory and Applications, 2009, 25 (4-5), pp.269-278. �10.1007/s10836-009-5106-6�. �lirmm-00423026�

https://hal-lirmm.ccsd.cnrs.fr/lirmm-00423026
https://hal.archives-ouvertes.fr


1 

 

A Reliable Architecture for Parallel 

Implementations of the Advanced Encryption 

Standard 

G. Di Natale, M. Doulcier, M. L. Flottes, B. Rouzeyre 

Laboratoire d’Informatique, de Robotique et de Microélectronique de Montpellier 

Université Montpellier II / CNRS UMR 5506 

161 rue Ada, 34392 Montpellier Cedex 5, France 

Tel: +33 467 41 85 01 

Fax: +33 467 41 85 00 

Email: dinatale@lirmm.fr 

 

Abstract 

This paper presents an on-line self-test architecture for hardware implementation 

of the Advanced Encryption Standard (AES). The solution exploits the inherent 

spatial replications of a parallel architecture for implementing functional 

redundancy at low cost. We show that the solution is very effective for on-line 

fault detection while keeping the area overhead very low. Moreover, the 

architectural modification for on-line test does not weaken the device with respect 

to side-channel attacks based on power analysis. 

1. Introduction 

Standard cryptographic functions such as the Advanced Encryption Standard 

(AES) are today implemented in a wide range of devices targeting various 

application domains with security requirements. In addition to the inherent 

property of these devices, allowing storage and transmission of sensitive 

information across insecure networks, many applications require high reliability 

for guarantying a proper digital security.  Consequently, as other parts of the 

system, crypto-cores must be carefully designed in order to provide reliable 



2 

 

processing of sensible data. Design for on-line testability of such cores prevents 

structural failures to cause loss of service and compromise the security.  

Fault detection and tolerance schemes for various implementations of 

cryptographic algorithms have been recently considered. Mainly, two approaches 

have been developed: based on information redundancy (e.g. the use of codes, [1] 

[2] [3]) or functional redundancy ([3] [4] [5]). 

All the techniques based on codes add some bits to the original data word in order 

to check its validity. The main issue in these approaches is the prediction of the 

value of the code on an output, given the input value and the executed operation. 

For instance, the prediction of a parity bit is almost straightforward for the 

ShiftRows, MixColumns and AddRoundKey operations performed in the AES [7] 

because these transformations are either linear or they just perform some bit 

permutations (see Section 2 for a detailed description of the AES). Conversely, 

the prediction of the parity bit is not trivial for the SubBytes operation performed 

by the so-called S-Boxes. As a consequence, the parity prediction requires larger 

circuitry. Solutions based on parity codes ([1] [2]) lead to an overhead of about 

20% and high single error detection. However they are not effective in case of 

multiple faults or single faults that lead to an even number of errors. Other 

solutions based on the use of more complex codes such as CRC [1] or systematic 

nonlinear robust codes [3] lead to higher fault coverage but at the expense of a 

significant area overhead (> 60%). 

Alternatively, the techniques presented in [3], [4], and [5] are based on functional 

redundancy. They can be used whenever encryption and decryption modules are 

implemented on the same circuit. Each encoding phase is followed by a decoding 

and compare phase in order to check if the resulting decoded text matches with 

the initial plaintext. A similar procedure is employed when the circuit is used for 

decoding a cipher-text. 

Conversely to most of the previously proposed approaches that focus on the S-

Boxes only (dominant component, counting up to 75% of the circuit area), we 

propose a low cost self-test architecture for detecting single and multiple faults in 

most of the AES hardware. The form of testing is accomplished using duplication 

and comparison. The main idea is to implement the datapath in such a way that 

several identical blocks can be defined. With an additional block, online pair wise 



3 

 

comparisons of blocks are implemented to check the functionality of the AES 

hardware. Efficiency and low area overhead are achieved by exploiting the spatial 

duplication inherent to the parallel implementation of the algorithm.  

Moreover, since any structural modification on the hardware implementation may 

jeopardize the digital security, the proposed architecture is also checked with 

respect to one of the most common attack based on power analysis [6]. 

The paper is organized as follows. Section 2 introduces the basic concepts and the 

characteristics of the Advanced Encryption Standard algorithm. Section 3 presents 

the proposed on-line self-test approach, while section 4 discusses the results in 

terms of area overhead and fault detection capability. Section 5 introduces the 

problem of side channel attacks based on power analysis, and presents 

experimental results showing the resistance of the proposed architecture to such 

an attack. Eventually, Section 6 concludes the paper. 

2. Advanced Encryption Standard 

AES [7] is a block cipher adopted as an encryption standard by the U.S. 

government. AES began immediately to replace the Data Encryption Standard 

(DES, used since 1976) for the reason that it outperforms in long-term security 

thanks to, among other things, larger key sizes (128, 192, or 256 key bits). For 

sake of simplicity, we focus on 128-bit key in the sequel of the paper  

Another major advantage of AES is its efficient implementation on various 

platforms. It is suitable for small 8-bit microprocessor platforms, common 32-bit 

processors, and dedicated hardware implementations that can reach throughput 

rates in the gigabit range. Several hardware implementations are presented in [8].  

The AES algorithm’s internal operations are performed on a two dimensional 

array of bytes called State. The State consists of 4 rows of 4 bytes. Each byte is 

denoted by Si,j (0 ≤ i < 4, 0 ≤ j < 4) . The four bytes in each column of the State 

array form a 32-bit word, with the row number as the index for the four bytes in 

each word. The initial plain text is a 128-bit block that can be expressed as 16 

bytes: in0, in1, in2… in15. Encryption and decryption processes are performed on 

the State, at the end of which the final value is mapped to the output bytes array 

out0, out1, out2, … out15. 



4 

 

The AES is an iterative process composed of 10 rounds. The plain text to cipher is 

first copied to the State array. After the initial secret key addition (roundkey(0)), 

the first 9 rounds are identical, with small difference in the 10th round. As 

illustrated in Figure 1, each of the first 9 rounds consists of 4 transformations: 

SubBytes, ShiftRows, MixColumns and AddRoundKey. The final round excludes 

the MixColumns transformation. The encryption scheme in Figure 1 can be 

inverted to get a straightforward structure for decryption. 

SubBytes Transformation 

The SubBytes transformation is a non-linear byte substitution that operates 

independently on each byte of the State using a substitution table (S-Box). This S-

Box is constructed by composing two transformations: 

1. Take the multiplicative inverse in the finite field GF(28); the element 

(00000000)2 is mapped to itself; 

2. Apply the following affine transformation (over GF(2)): 

 
iiiiiii cbbbbbb   8mod)7(8mod)6(8mod)5(8mod)4(

'  (1) 

for 0 ≤ i < 8, where bi is the ith bit of the byte, and ci is the ith bit of a byte c whose 

value is fixed and is equal to {01100011}.  

This transformation can be pre-calculated for each possible input value since it 

works on a single byte (only 256 values). S-Boxes can be implemented either as a 

ROM or as combinational logic. 

Figure 1: AES Algorithm (encryption) 

ShiftRows Transformation 

In this transformation, the bytes in the first row of the State do not change. The 

second, third, and fourth rows shift cyclically to the left one byte, two bytes, and 

three bytes, respectively. 

Plaintext(128 bits)

Ciphertext (128 bits)

roundkey(0)

for i=1 to 9

SubBytes

ShiftRows

MixColumns

roundkey(i)

SubBytes

ShiftRows

roundkey(10)



5 

 

MixColumns Transformation 

The MixColumns transformation is performed on the State array column-by-

column. Each column is considered as a four-term polynomial over GF(28) and 

multiplied by a(x) modulo x4 + 1, where:  

 a(x) = (00000011)2 x
3 + (00000001)2 x

2 + (00000001)2 x + (00000010)2 (2) 

 

AddRoundKey Transformation 

In AddRoundKey transformation, a roundkey is added to the State array by 

bitwise XOR operation. Each roundkey consists of 16 bytes generated from the 

Key Expansion operation described below. 

Key Expansion 

The key expansion routine, as part of the overall AES algorithm, takes the input 

secret key of 128 bits and outputs an expanded key of 11*128 bits composed of 

the input secret key and 10 roundkeys, one for each round. Details of the 

algorithm for determining the value of each roundkey are given in [7]. 

3. Functional redundancy for on-line fault detection 

The technique we propose in this paper is designed for all the AES cores 

(encryption and decryption) that use 16 S-Box repetitions. We do not consider 

low-area implementations, where there is only one S-Box at the cost of several 

clock cycles for completing one encryption/decryption round.  

 

S-Boxes

ShiftRows

MixColumns

AddRoundKey

Register

 

Figure 2: Typical AES Implementation 



6 

 

 

Typical hardware architecture of the AES with 16 S-Boxes is sketched in Figure 

2. Here, sixteen 8-bit registers feed the 16 identical S-Boxes (S). Shiftrows 

involves only wires for shifting the bytes of the State, it operates on 128 bits. Four 

identical MixColumns blocks operate on 32 bits each.  

Our goal is to identify a partitioning of the circuit that allows a repetition of 

identical sub-blocks. These sub-blocks will be compared two-by-two for on-line 

fault detection thanks to the implementation of an extra sub-block. In the classical 

architecture depicted in Figure 2, ShiftRows unfortunately prevents such a 

partitioning since it operates on all the 128 bits. 

However by inspecting the AES algorithm, it can be seen that SubBytes and 

Shiftrows functions can be switched. We thus propose to perform ShiftRows 

before SubBytes, and even before loading the registers. Figure 3 depicts the 

proposed operation switching, where an RS block represents a Register/S-Boxes 

pair, whereas MA represents a MixColumns/AddRoundKey pair. In this figure we 

described the proposed method for a smaller part of the whole circuit. In 

particular, the figure depicts the reordering on 8 RS blocks and 2 MA blocks 

instead of the actual 16 and 4 ones, respectively. 

The same procedure can be applied to the whole circuit and, as a consequence, the 

datapath can be divided in 4 identical slices that operate on 32 bits each, and that 

we call RSMA (32-bits Register, 4 S-Boxes, 1 Mixcolumns and 32 xor for the 

Addroundkey operation). 

ShiftRows

RS1 RS2 RS7 RS8

MA 1

RS3 RS4 RS5 RS6

MA 2

 

RS3 RS1

MA 1

RS7 RS5

ShiftRows

RS2 RS8

MA 2

RS6 RS4

RSMA1 RSMA2

 
Figure 3: Switch between Shiftrows and SubBytes 



7 

 

The main idea of the proposed approach is to use one additional RSMA block, 

and to compare a pair of RSMA blocks at each clock cycle. In particular, at each 

clock cycle two blocks are fed by the same inputs and the related outputs are 

compared in order to detect possible faults. Figure 4 details the behavior of a part 

of the circuit where one extra RSMA block has been added. In this figure, 

LMux(2), LMux(3) and LMux(4) are multiplexers with an additional output 

that is asserted whenever the two inputs are equal (i.e., a multiplexer with a 

comparator). 

Table 1 details the signals controlled and observed by the control unit. For 

instance, when RSMA4 and RSMA3 work together, the UMux(3) let the input 

I(4) go into the RSMA3. Among the five signals coming from the comparators, 

only one at a time is considered by the control unit. For example, in the above 

case, the check(4) signal is verified, i.e., the two related RSMA blocks are 

checked. 

I(1)I(2)I(3)I(4)

Reg

Mix Columns

Reg

Mix Columns

Reg

Mix Columns

Reg

Mix Columns

Reg

Mix Columns

=

O(1)O(2)O(3)O(4)

=

K
(4
)

K
(3
)

K
(2
)

K
(1
)

From the
Control Unit

um(3)

um(2)
um(1)

um(4)

From the
Control Unit

lm(0)
lm(1) check(1)

check(2)

check(3)
check(4)

check(0)

u(
3)

u(
2)

u(
1)

u(
4)

RSMA 4 RSMA 3 RSMA 2 RSMA 1 RSMA 0

UMux(4)
0 1

UMux(3)
0 1

UMux(2)
0 1

UMux(1)
0 1

0 1 =
LMux(4)

0 1 =
LMux(3)

0 1 =
LMux(2)

U
M
ux

(1
)

1
0

U
M
ux

(2
)

1
0

U
M
ux

(3
)

1
0

U
M
ux

(4
)

1
0

 

Figure 4: AES Architecture with RSMA duplication and comparison 

 

The scheduling of the comparisons of a pair of RSMA blocks is a very important 

issue of the proposed method. One AES encryption lasts 10 clock cycles and there 

are 5 different configurations. Therefore it’s possible to use each of the 5 

configurations twice during one encryption. Through the 5 configurations, each 



8 

 

RSMA block is compared twice (once with the left block, once with the right 

block). Thus, if the 5 configurations are activated twice, each RSMA block is 

compared 4 times during one encryption. A counter is in charge of the test 

configuration scheduling. 

Table 1: Signals controlled and observed by the Control Unit 

Compared Um Lm To check 
RSMA4, RSMA3 1000 11 check(4) 
RSMA3, RSMA2 1100 01 check(3) 
RSMA2, RSMA1 1110 00 check(2) 
RSMA1, RSMA0 1111 00 check(1) 
RSMA0, RSMA4 0000 11 check(0) 

 

4. Results and Fault Detection Analysis 

 

This section provides results related to the area overhead and the fault detection 

analysis of the proposed approach. The proposed architecture has been described 

in VHDL and synthesized using Synopsys Design Compiler [9] using a 130nm 

CMOS library provided by STM [10]. We considered that all the keys used in the 

AddRoundKey step (see Section 2) are pre-computed and stored in the circuit.  

The area of the original circuit is 52961 µm2 (corresponding to 9660 logic cells) 

while the area of the proposed architecture is 71357 µm2 (corresponding to 13084 

logic cells and 34.7% of area overhead). The speed penalty is only 6% due to the 

insertion of the additional multiplexers. 

Concerning the efficiency of the proposed architecture with respect to the fault 

detection, our functional redundancy strategy differs from the classical Double 

Modular Redundancy (DMR) scheme. 

A classical DMR architecture allows detecting all the faults (single and multiple) 

that lead to an error (i.e., a difference at the output of one of the duplicated 

modules). Starting from the moment of appearance of the fault, the fault latency 

depends on the inputs applied to the circuit, only. In other words, the fault is 

detected as soon as the input vector can sensitize the fault and propagate it up to 

the output of the module (i.e., the input of the comparator between the two 

modules). Anyway, a system based on classical DMR scheme does not deliver 

faulty responses without noticing it (unless in case of equivalent faults in the two 

modules).  



9 

 

Our technique is able to detect any single or multiple fault leading to a wrong 

RSMA output value (as for the classical DMR) but only when the affected RSMA 

is compared with another one. Conversely to DMR, the dynamic reconfiguration 

of the modules leads to a comparison of each module twice every 5 clock cycles. 

Therefore it can happen that the system produces erroneous responses without 

noticing it even in presence of a single stuck-at. 

We question here the probability to get an error on the AES output and to not 

detect it. This probability can be analyzed by computing the probability Perr(f) of 

not detecting an error on the circuit's outputs while a given fault f affects the 

circuits. Here, only non-redundant faults are of interest, i.e. we focus on testable 

faults. For this analysis we focus on single stuck-at faults only, because the 

number of multiple faults is too high to be analyzed. However, unless the 

extremely very low probable case of multiple faults composed of 5 equivalent 

faults in the 5 RSMA modules, all multiple faults are covered by our technique. 

With regard to the proposed architecture, Perr(f) is the probability that the fault f is 

activated (i.e. sensitized and propagated in such a way that it leads to an error) 

during at least one of the 6 clock-cycles during which the faulty RSMA is not 

compared, and it is not activated during the 4 clock cycles when the RSMA is 

compared. 

Let denote pf the probability of activation of a fault f into an RSMA module, i.e., 

the probability that for a random input pattern the fault is sensitized and the error 

is propagated to its output. In the hypothesis to have several distinct functional 

inputs, we can consider that the device is fed by a random source. In addition, as 

demonstrated in [11], the inherent properties of the AES makes that the sequence 

of input values that are applied to consecutive rounds of the same encryption can 

be considered as random. Therefore, the probability pf is equal to the ratio of input 

vectors that test f over the number of possible input vectors. The number of 

possible input vectors for the RSMA, is 232. Since fault simulation cannot be 

applied in exhaustive way, we split the problem in two parts. From one side, S-

Boxes have 8 input bits only, consequently exhaustive analysis is possible and pf 

can be obtained for each fault through simulation. Since MixColumns and 

AddRoundKey are invertible functions, all the errors appearing on the output of 

the S-Boxes propagate through the functions to the comparator. From the other 



10 

 

side, pf of the MixColumns has been calculated thanks to its modular structure 

involving 4 identical 8-bit inputs sub-functions (28 combinations). Finally, the 

AddRoundKey operations involve only xor operations and are very easily tested. 

For both MixColumns and AddRoundKey, each fault is tested with pf=50%. Since 

Sboxes are bijective functions, randomness properties are still kept at the input of 

MixColumns and AddRoundKey. 

For the proposed architecture, the probability that f is not activated during the 

clock-cycles of comparison is equal to  41 fp  while the probability that f is 

activated during at least one of the clock-cycles without comparison is equal to 

 611 fp . Finally, it comes: 

     64 111)( fferr ppfP   (3) 

Figure 5 represents Perr(f) in function of pf. It must be noticed that the hard-to-test 

faults  0fp  and the easy-to-test faults  1fp  are not those that most likely 

produce undetected errors. On the contrary, the maximum value (32.57%) 

corresponds to faults with pf  equal to 0.14. 

5%

0%

10%

15%

20%

25%

30%

0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1

35%

 

Figure 5: Perr(f) 

In order to calculate the overall error probability, we simulated all the faults in the 

Sboxes to determine the distribution of probabilities of activation of the faults. An 

overall of 3860 stuck-at faults are present in our implementation. Basically, we 

calculated how many faults are activated by one test pattern (pf = 1/256), how 

many faults are activated by 2 patterns (pf = 2/256), and so on. Figure 6 

summarizes, for each probability pf, the number FD(pf) of faults with that 

activation probability.  
 



11 

 

 

 

Figure 6: Fault Distribution FD(pf) 

Assuming that each fault has the same probability to appear in the circuit, the 

overall error probability PERR-Sbox of each Sbox is calculated as the weighted 

average of the values Perr(f) according to the distribution FD(p): 

 %18.10
256

11
256

1
256#

1 256

1

64









































 






 






 




iSbox
SboxERR

iii
FD

Faults
P  (4) 

 

Concerning the MixColumn and AddRoundKey, there are #FaultsMCAK=750 

faults, all of them with pf=50%. Therefore the error probability PERR-Sbox of 

MixColumns and AddRoundKey is calculated based on equation (3). 

It comes that the overall probability PERR of the RSMA is: 

 %99.9
#

#4#



 

RSMA

MCAKERRMCAKSboxERRSbox
ERR Faults

PFaultsPFaults
P  (5) 

The architecture has thus a probability of 90.01% to detect any fault in the RSMA 

during a single encryption (10 clock cycles). 

Let's now analyze the evolution of this probability based on the number of 

encryptions. When we perform E encryptions, an RSMA block is compared 

during 4E clock cycles, while it is not compared during 6E clock cycles.  

The error probability can therefore be rewritten as follows: 

        E
f

E
ferr ppfEP   64 111,  (6) 

Considering the fault distribution FD given in Figure 6 and the probability of error 

detection in the MixColumns and AddRoundKey, we can re-calculate the overall 

error probability PERR of the RSMA block in function of the number of 

encryptions (Figure 7). As it can be seen, the error probability slightly increases 

up to 14% for 5 encryptions, while for higher encryption numbers it tends to 0. 



12 

 

The error probability augmentation from 0 to 5 encryptions can be explained by 

the fact that at the beginning the probability to exercise the faulty module with 

random test patterns increases more quickly than the probability to compare the 

faulty module with a good one while exciting the fault. Since we focus on 

permanent fault, after a while (i.e. 5 encryptions) the probability to detect the fault 

(from comparison) is predominant. Namely, for 300 encryptions, the fault 

detection probability is equal to 99.9% 
 

0 50 100 150 200 250 300

Number of Encryptions (E)

E
rr

or
 P

ro
ba

bi
lit

y 
P

E
R

R
(E

)

0%

2%

4%

6%

8%

10%

12%

14%

16%

 

Figure 7: Error probability w.r.t. the number of encryptions 

 

Equivalent curves would be obtained in case of 192-bit or a 256-bit key, since the 

datapath of the device does not change. The only difference in case of longer keys 

is a higher number of executed rounds. Therefore, we expect lower number of 

encryptions for achieving the same error probability. 

5. Differential Power Analysis 

An important issue when dealing with cryptographic cores is the sensitivity of the 

architecture implementation to side-channel attacks, in particular against 

Differential Power Analysis (DPA). We focused on this attack because among all 

the known possible attacks, this is one of the cheapest and easiest to perform. 

Basically, the DPA attack is a statistical technique relying on the correlation that 

exists between the current consumed by the device and the processed data. 



13 

 

We now introduce some theoretical issues that allow the reader to understand the 

principle underlying the DPA attack. 

Let’s consider the output of a gate whose state depends on both the plain text 

under ciphering (primary inputs) and the secret key. It is called the target node. 

Let’s consider now a sequence of input patterns P0, P1, …, Pn that generate the 

transitions T1 (P0P1), T2 (P1P2), ..., Tn(Pn-1Pn) on the circuit primary inputs. 

A logic simulation of the circuit while monitoring the target node allows 

classifying these input transitions in two sets, according to a guess on the key: 

 PA, composed by the transitions that make the target node to commute 

from 0 to 1 and therefore that make the target gate to consume; 

 PB, composed by the transitions that do not lead the target gate to 

participate to the power consumed by the circuit (i.e., transitions from 0 to 

0, 1 to 1, and 1 to 0 on the target node). 

 

Figure 8 represents the power consumption of the device when stimulated by 

numerous input vectors. We assume in this example that the guess on the secret 

key is correct. In other word, the simulation is performed with the key actually 

used in the circuit from which power consumptions are collected. Each rectangle 

represents the total power consumed by the circuit when a new vector is applied to 

the inputs. In this figure, and just for clarity of explanation, the power 

consumption is represented by a rectangle corresponding to the average of the 

consumption over the transition time. In the following, this issue will be re-

defined in a more precise way. The set of transitions on the circuit inputs is split 

in the two sets: in the left part there are the PA transitions and the related 

consumptions while in the right part there are the PB transitions and their 

corresponding consumptions. A part of the power consumption related to the 

transitions belonging to PA is due to the power consumed by the target gate 

(shaded rectangles). Obviously, the commutation from 0 to 1 of non-target nodes 

also contribute to the power consumption of the circuit, however the input 

transitions that lead to such commutations are assumed to be evenly distributed to 

sets PA and PB. If a large number of transitions are considered, mean 

consumptions related to sets PA and PB are almost equal, except for the 

contribution of the target node. 



14 

 

In other words, since the two sets are classified in such a way that the set PA 

always leads to a component of power consumption that is not present in the set 

PB, the difference between the two mean powers computed from set PA and set 

PB must show a noticeable difference.  

 

Figure 8: Power consumption after pattern partitioning 

During a DPA attack, the target node is chosen in such a way that it depends on a 

small part of the key only, so that all the key suppositions can be considered. For 

example, when DPA is conducted against the AES, the target node is chosen as 

the output of an S-Box that depends on only 8 (of 128) secret key bits. Thus, only 

256 key guesses are needed, instead of 2128. The process is iterated on every S-

Box. 

For each key guess, the two sets PA and PB are created according to the results of 

the logic simulation and the key guess under evaluation. The power mean values 

are calculated for each set using the simulated power traces of the circuit under 

attack for each transition. Finally, the differences of the mean values of the two 

sets are calculated. When the key guess is correct (and only in this case), PA 

actually includes the input transitions that lead to a transition 0 to 1 on the target 

node while PB does not include any of these transitions. The difference between 

the mean power obtained from PA and PB can be observed in this case. On the 

contrary, when the curves are classed in PA or PB independently from the actual 

value of the secret key, the two average curves do not present any noticeable 

difference. The classification process is illustrated in Figure 9 where Kx is 

assumed to be the correct key, the one actually used during ciphering. 

 

 



15 

 

T1

T2

Average

T4 T6 T8 T10

T9 T11T7T5

PA)

PB)

T1

T4

T6

T8
T12

T10

T9 T11

T7

T2

T3 T5
PA)

PB)

AverageK1

Kx

...

K256

...

PA – PB = 

PA – PB  0

T1 T4

T6T8 T10

T9

T11

T7

T2
Average

T5

PA – PB  0

PA)

PB)

T12

T12

T3

T3

 
Figure 9: Pattern classification for several key guesses 

It’s important to note that the actual attack is performed by measuring and 

analyzing the instantaneous power consumptions over the whole transition period, 

and not using the time-averaged value as shown in Figures 8 and 9.  

Figure 10 shows the appearance of the result of an attack over a period of 1ns and 

8 key guesses. Each of the 8 curves represents the DPA curve, i.e. the difference 

between the mean powers issued from the transitions classified in sets PA and PB, 

in function of time. The curve that shows the higher peak (bold line in Figure 10) 

corresponds to the correct key guess. 

 

Figure 10: Real DPA curve 

 

Concerning the proposed architecture, we performed DPA on the base AES 

architecture and on the proposed redundancy-based solution using an in-house 

DPA simulator [12]. We found that the DPA attack is slightly more difficult to 



16 

 

perform on the proposed architecture including one additional RSMA block and 

comparison circuitry. Figure 11 shows the DPA curves for the standard and the 

proposed implementations. The DPA attack succeeds when the curve with largest 

peak corresponds to the right secret key. After 256 encryptions the curve 

corresponding to the secret key clearly emerges among the others for the AES 

Standard implementation while, for our architecture, at least 512 encryptions are 

necessary to have the same confidence level. In fact, after only 256 encryptions 

the highest peak (red line) does not correspond to the correct key. This result is 

explained by the fact that, for the same input, this architecture has several power 

profiles based on the configuration of the pairs of RSMA blocks. In particular, for 

the same input, the circuit can be in 5 different states, i.e., 5 different power 

profiles. 
 

AES Standard implementation
DPA after 256 encryptions

Proposed architecture
DPA after 256 encryptions

Proposed architecture
DPA after 512 encryptions  

Figure 11: DPA Curves 
 

6. Conclusions 

In this paper we proposed a low cost architecture for detecting single and multiple 

faults in the hardware implementation of the Advanced Encryption Standard 

(AES) during its mission mode. The solution, based on spatial redundancy, 

reorders the AES algorithm subtasks. This modification does not influence the 

actual encryption function and it allows the implementation of 4 identical blocks 

working on 32-bits each. Thanks to this parallel and duplicated architecture, only 

one additional 32-bits block is added in the circuit leading to 4 tests per 

encryption cycle for every block. The solution is very effective in terms of fault 

latency and fault coverage while keeping the area overhead very low (about 

34.7%). Finally, it is shown how the proposed implementation reduces the 



17 

 

correlation between the power consumption and the processed data, therefore it 

does not make easier attacks based on Differential Power Analysis. 

 

References 

[1] K. Wu, R. Karri, G. Kuznetsov, M. Goessel, “Low Cost Concurrent Error Detection for the 

Advances Encryption Standard”, Proc. Int’l Test Conference, pp. 1242-1248, 2004 

[2] G. Di Natale, M.-L. Flottes, B Rouzeyre, “An On-Line Fault Detection Scheme for SBoxes in 

Secure Circuits”, Proc. IEEE Int. On-Line Testing Symposium, 2007, pp. 57-62 

[3] R. Karri, K. Wu, P. Mishra, Y. Kim, “Concurrent Error Detection Schemes for Fault-Based 

Side-Channel Cryptanalysis of Symmetric Block Ciphers”, IEEE Trans. Computer-Aided 

Design of Integrated Circuits and Systems, vol. 21, no. 12, Dec. 2002, pp. 1509-1517 

[4] C. Yen, B. Wu, “Simple Error Detection Methods for Hardware Implementation of Advanced 

Encryption Standard”, IEEE Trans Computers, vol. 55, no. 6, June 2006, pp. 720-731 

[5] G. Bertoni, L. Breveglieri, I. Koren, P. Maistri, V. Piuri “Error Analysis and Detection 

Procedures for a Hardware Implementation of the Advanced Encryption Standard”, IEEE 

Trans. Computers, vol. 52, no. 4, pp.492-505, Apr. 2003 

[6] P. Kocher, J. Jaffe, B. Jun, “Differential Power Analysis”, Proc. CRYPTO’99, 1999, pp 388-

397 

[7] “Advanced Encryption Standard (AES)”, Federal Information Processing Standards 

Publication 197, November 26, 2001. 

[8] X. Zhang, K. K. Parhi, “Implementation Approaches for the Advanced Encryption Standard 

Algorithm”, IEEE Circuits and Systems Magazine, vol. 2, Issue 4, pp. 24-46, 2002 

[9] http://www.synopsys.com  

[10] http://www.st.com  

[11] P. Hellekalek, S. Wegenkittl, "Empirical evidence concerning AES", ACM Trans. Model. 

Comput. Simul., Vol. 13, Issue 4 (Oct. 2003), pp 322-333. 

[12] G. Di Natale, M.-L. Flottes, B. Rouzeyre, “An Integrated Validation Environment for 

Differential Power Analysis”, IEEE International Symposium on Electronic Design, Test & 

Applications (DELTA 2008), Hong Kong, January 2008, pp. 527-532 

 


