
HAL Id: lirmm-00424282
https://hal-lirmm.ccsd.cnrs.fr/lirmm-00424282

Submitted on 14 Oct 2009

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Optimizing Elliptic Curve Scalar Multiplication for
Small Scalars

Pascal Giorgi, Laurent Imbert, Thomas Izard

To cite this version:
Pascal Giorgi, Laurent Imbert, Thomas Izard. Optimizing Elliptic Curve Scalar Multiplication for
Small Scalars. Mathematics for Signal and Information Processing, 2009, San Diego, CA, United
States. pp.74440N, �10.1117/12.827689�. �lirmm-00424282�

https://hal-lirmm.ccsd.cnrs.fr/lirmm-00424282
https://hal.archives-ouvertes.fr

Optimizing Elliptic Curve Scalar

Multiplication for small scalars

Pascal Giorgia and Laurent Imberta,b and Thomas Izarda

aLIRMM, CNRS, Université Montpellier 2

161 rue Ada, 34090 Montpellier, France;

bPIMS, CNRS, University of Calgary

2500 University Dr. NW, Calgary, T2N 1N4, Canada

ABSTRACT

On an elliptic curve, the multiplication of a point P by a scalar k is defined by a series of operations over the
field of definition of the curve E, usually a finite field Fq. The computational cost of [k]P = P + P + · · · + P

(k times) is therefore expressed as the number of field operations (additions, multiplications, inversions). Scalar
multiplication is usually computed using variants of the binary algorithm (double-and-add, NAF, wNAF, etc).
If s is a small integer, optimized formula for [s]P can be used within a s-ary algorithm or with double-base
methods with bases 2 and s. Optimized formulas exists for very small scalars (s ≤ 5). However, the exponential
growth of the number of field operations makes it a very difficult task when s > 5. We present a generic method
to automate transformations of formulas for elliptic curves over prime fields in various systems of coordinates.
Our method uses a directed acyclic graph structure to find possible common subexpressions appearing in the
formula and several arithmetic transformations. It produces efficient formulas to compute [s]P for a large set
of small scalars s. In particular, we present a faster formula for [5]P in Jacobian coordinates. Moreover, our
program can produce code for various mathematical software (Magma) and libraries (PACE).

Keywords: Elliptic curve cryptography, scalar multiplication, s-ary method, double-base chains

1. INTRODUCTION

Security of elliptic curve cryptography1,2 relies on the ECDLP, the elliptic curve version of the discrete logarithm
problem. Over a group (E(Fq),+), where E(Fq) is the set of points of the curve E defined over the finite field
Fq, and + denotes the group law, solving ECDLP consists in finding the scalar k ∈ Z given the points P and
Q = [k]P = P + P + · · · + P (k times). The operation denoted [k]P is called the point or scalar multiplication.
The operation P + Q with P,Q ∈ E(Fq) is defined by two series of operations over the field of definition Fq; one
for P = Q (doubling) and one for P 6= Q (addition). The scalar multiplication [k]P for k of cryptographic size
(more than 160 bits) is computed by classical algorithms such as double-and-add and NAF.3 Both algorithms
perform one doubling for each digit of the representation of k, plus one addition for each non-zero digit. NAF
decreases the number of non-zero digits in the representation, and therefore reduces the number of additions.
Others interesting ways to compute [k]P are s-ary and double-base number system algorithms. While double-
and-add uses binary representation of k, s-ary algorithm uses a radix-s representation of k = {kl, . . . , k0}s with
ki ∈ {0, . . . , s − 1} such that k =

∑

i kis
i. For each digit ki, the s-ary operation [s]P is computed and for

each non-zero digit, [ki]P is added. This algorithm requires the precomputation of [ki]P . Double-base number
system (DBNS) is a number representation scheme where an integer is written as the sum of mixed powers of
two co-prime numbers p and q. Let consider p = 2 and q = s. Then k =

∑

ki2
aisbi with ki ∈ {−1, 1}. This

representation has been used to speed-up exponentiation and scalar multiplication.4 The efficiency of both the
s-ary and the double-base algorithms relies upon the efficiency of the computation of [s]P , where s is a small
scalar.

Further author information: Send correspondence to T. Izard: Thomas.Izard@lirmm.fr.
This work was funded by the Université Montpellier 2 and the Pacific Institute for the Mathematical Sciences (PIMS).
This project was completed during Laurent Imbert and Thomas Izard’s long term visits at the University of Calgary
thanks to a PIMS-CNRS agreement and the “Conseil Scientifique” of the Université Montpellier 2 respectively.

Efficiency of [s]P can be assessed in terms of field operations appearing in the computation: additions,
multiplications and inversions. Inversion is the most expansive field operation, but projective coordinate systems
introduce a third coordinate in the elliptic curve equation in order to avoid them. In the following we consider
projective coordinate systems. The cost of group operations (P +Q, [2]P , [3]P , [s]P , etc) is therefore dominated
by the number of field multiplications. In Table 1 we present the cost of each operation in term of multiplication
equivalent. Example 1 presents the doubling formula in Jacobian coordinates. It is extracted from the explicit
formulas database.5

Table 1. Cost of different operations over the field

Operation Notation Cost

Multiplication M 1M
Square S 0.67M ≤ S ≤ 0.8M

Multiplication by small constant c cM Depends on the size of c

Addition-Subtraction A Negligible

Example 1. In Jacobian coordinate system, a doubling operation costs 3M + 6S + 6cM + 4A, as the point
[2]P = (X3, Y3, Z3) = [2](X1, Y1, Z1) is given by:

X3 = (3 × X2
1 + a × Z4

1)2 − 8 × X1 × Y 2
1

Y3 = (3 × X2
1 + a × Z4

1) × (4 × X1 × Y 2
1 − X3) − 8 × Y 4

1

Z3 = 2 × Y1 × Z1

Multiplications, squares, additions and subtractions are performed with operands of size at least 160 bits.
The multiplications by small constants c are special cases; their cost depends on the size of c. In example 1,
a represents a parameter of the curve, which can be chosen in Fq as a 160 bits number or can be small. In
particular, choosing a = −3 allows a transformation reducing the cost of the formula.

Optimizing the computation [s]P is achieved by decreasing the number of operations over the field. By hand,
the optimizations are difficult, even impossible, for s > 5 because of the number of operands and operations,
and the number of possible arithmetic transformations. Our solution consists in automating the optimizations.
Thanks to directed acyclic graph we first eliminate common-subexpressions appearing in the computations.
Then we apply some arithmetic transformations in order to increase the efficiency of the multiplication [s]P . We
conjecture this problem of optimization is NP-complete, but simple heuristics work fine for small scalar s. In
particular, we propose a new formula to compute [5]P in Jacobian coordinates system.

The rest of the paper is organized as follows. In section 2 we define the problem and its complexity. Then,
in sections 3 and 4 we present our heuristic and our scheme to automate the optimization. Section 5 shows our
experimental results.

2. THE FORMULA OPTIMIZATION PROBLEM

Definition 2.1. We call formula, noted F , the set of operations corresponding to the computation of [s]P . The
cost of a formula, noted C(F), is the sum of the costs of each operation (see table 1). We say that two formulas
are equivalent (noted F ∼ G) if they give the same results for identical inputs.

Definition 2.2. In a formula F , a term can be either a variable, a constant, or an operator.

Example 2. Let λ = 3X2 +aZ4 be a formula. It can be represented by a tree as shown in Figure 1. The formula
λ has ten terms: two variables (X and Z), two constants (a and 3), and six operators (+, ×, ×, ˆ2, ˆ2, ˆ2).

Given a formula F which computes [s]P , the formula optimization problem consists in finding an optimal
formula G ∼ F computing [s]P , i.e. such that ∀Fi ∼ F, C(G) ≤ C(Fi).

+

× ×

3 ˆ2

X

a ˆ2

ˆ2

Z

Figure 1. The tree representing the 10-term formula λ = 3X
2 + aZ

4

For any s, the double-and-add or NAF algorithms can be used to produce a base formula F . Given such a
base formula, several transformations can be performed over it: first identify all common subexpressions so that
the same calculation is only performed once, then apply transformations in order to further reduce the number
of field operations, mainly multiplications. The formula optimization formula is clearly a difficult problem. We
conjecture it to be NP-complete for reasons given below.

Due to classical algorithms, the size of formulas grows exponentially following two parameters: the size and
the Hamming weight of the representation of s. Table 2 presents the number of terms (operators, variables and
constants) appearing in formulas to compute [s]P in Jacobian coordinate.

Table 2. Size of formulas in Jacobian coordinates system

Algorithm [2]P P + Q [3]P [7]P [13]P [17]P

Double-and-add 98 204 953 71898 611318 564585
NAF 98 204 8005 67811 5066371 564585

For [3]P , the formula generated by NAF is more than 8 times larger than that computed using the Double-and-
add algorithm. In both NAF and binary representations, 3 contains two non-zero digits, but NAF representation
has one more digit than binary representation. This explains the gap between NAF and double-and-add formulas
for [13]P . Reversly, even if the NAF representation of 7 is larger than the binary, it contains one less non-zero
digit. Note that the formulas to compute [17]P are shorter in both cases than those to compute [13]P . This is
due to the fact that 17 has only two non-zero digits in its representation. This table illustrates the first problem
of the optimization: the sizes of the formulas to optimize are huge, even for small scalars.

3. OPTIMIZATION METHODS

Let consider the binary tree T = (X, E) corresponding to the formula F , where internal nodes of T are the
operators and the leaves are the variables and the constants. We call arithmetical cost of T , denoted C(T),
the sum of the costs associated to each operator, then C(T) = C(F). The first step to optimize the formula
is to eliminate its common subexpressions, i.e. expressions in the formulas leading to the same result. In
order to find these common subexpressions, it is necessary to take into account associativity, commutativity
and distributivity properties. Directed acyclic graph (DAG) is a graph in which each subtree appears only one
time. By transforming the tree T in such a DAG T ′, each subexpression of F appears only once, and then
C(T ′) ≤ C(T).

Computing the minimal directed acyclic graph consists in finding the expressions, in the tree, which have
same result. Each internal node is a root of a subexpression which can be written as a polynomial in X, Y and
Z, as illustrated in example 3. The terms of this polynomial can be sorted by the power of (X, Y, Z), and then
two polynomials can be compared. Due to the size of the formula, this method requires exponential storage to
keep coefficients and powers of the polynomial for each node, and is therefore not practical. In section 4, we
propose a heuristic to address this problem.

Example 3. Let us consider the subexpression

E =
(

3 × X2
1 + a × Z4

1

)

×
(

4 × X1 × Y 2
1 −

(

(

3 × X2
1 + a × Z4

1

)2
− 8 × X1 × Y 2

1

))

which appears in the doubling formula (see example 1). The polynomial corresponding to this expression is

P (E) = −27X6
1 + 36X3

1Y 2
1 − 27aX4

1Z4
1 − 9a2X2

1Z8
1 + 12aX1Y

2
1 Z4 − a3Z1

12.

Figure 2 represents the DAG of the doubling formula in Jacobian coordinates (this graphic has been created
with Tulip,6 a GNU software from the LaBRI, Bordeaux, France). Remark that none of the subtrees of the DAG
appear more than once. Note that the DAG is still a binary tree from roots to leaves.

Figure 2. DAG of doubling formula in Jacobian Coordinates System

Main matter of the building of the minimal DAG is set by the associative and commutative operations
(addition and multiplication). Question is, given a set of multiplications (or addition), finding the minimal
number of products (or sums) needed to compute all the operations of the set. This problem is called ensemble
computation and is known to be NP-complete (see [7, p. 66]). Example 4 illustrates this problem in an arbitrary
case: how to compute a set of four multiplications chains with the smallest number of products.

Example 4. Let consider four chains of multiplications: aabcd, aab, abc, and ad. The problem is to find the
minimal number of products to compute all the multiplications. Clearly ab has to be compute as it appears in

three chains. The chain aab has to be computed, and can be used for the computation of the first chain, but third
chain multiplied by fourth is equal to the first. Then, the minimal number of products to compute the four chains
is five: A = ab, B = aA = aab, C = Ac = abc, D = ad and E = CD = abcad.

Let consider that we can compute the minimal DAG (minimal in terms of nodes). Each internal node of
the DAG is an operation which appears only once. We can now apply some transformations over this graph to
decrease its arithmetical cost. In projective coordinates system multiplication and square are the most expansive
operations. It is widely admitted that the cost of a square is between 0.67 and 0.8 times that of a multiplication.
With field identities, we can easily transform a multiplication in sum of squares,8 or subtraction of squares in
multiplication.

ab =
1

2
((a + b)2 − a2 − b2) (1)

ab =
1

2
(a2 + b2 − (a − b)2) (2)

ab =
1

4
((a + b)2 − (a − b)2) (3)

a2 − b2 = (a + b)(a − b) (4)

The transformation of multiplications in sum of squares by equations (1) and (2) will only be applied if two
of the three squares are needed elsewhere in the formula, because replacing the multiplication by more than one
square will be more expansive than the multiplication itself. Equation (3) needs only one square. Equation (4)
can be applied to transform a multiplication into a subtraction of squares, but if only the two squares (a2 and
b2) are needed in the computation, it is more interesting to perform a multiplication.

Example 5. Let consider the doubling formula introduced in example 1. Since X2, Y 2, Y 4 and Z2 have to be
computed in the formula, the two multiplications X1Y

2
1 and Y1Z1 can be transformed by (1) (or (2)).

Reducing the formula F to a minimal DAG also solves the problem of the minimal number of multiplication
(and addition) to compute a set of products (or sums) which is known to be NP-complete. For that reason, we
conjecture the formula optimization problem to be NP-complete. However, the heuristic presented below allows
to construct a DAG and then apply some transformations to reduce its arithmetical cost.

4. HEURISTIC AND IMPLEMENTATION

In this section we present our general method to optimize formulas automatically. This method was implemented
in C++. Due to the complexity of the problem, we first build the DAG using the heuristic presented in 4.1, then
all multiplications are tested to be transformed into sum of square.

4.1 Elimination of common subexpressions

The problem of the common subexpressions elimination is set by the associative and commutative operations.
As we saw in section 3, the storage for each node of coefficients and powers of its equivalent polynomial is
exponential. Our heuristic consists in evaluating, for each node, its polynomial at sufficiently many point. At
the beginning of the program, we randomly choose a list of values for X, Y , Z and a. During the construction of
the DAG, for each new node n we evaluate the polynomial rooted by n, modulo a 31-bit prime number (to avoid
multiple precision arithmetic). Each child of n has the list li of its own evaluations. We compute the operation
n with as operands the list(s) of values of the child(ren) of n and we obtain a new list ln. Then, we compare
ln with the list of each node already known in the DAG. If we find a node n′ which has the same list ln, the
node n is replaced by n′, else we add the new node n to the DAG. We choose to evaluate the polynomials at
1000 random points. The probability of errors is very small. Since our program also produces Magma scripts
for verification, these possible errors can be easily found. Example 6 shows the construction of the DAG of an
expression with small numbers.

Example 6. Let us consider the expression

E =
(

3X2
1 + aZ4

1

)

×
(

4X1Y
2
1 −

(

(

3X2
1 + aZ4

1

)2
− 8X1Y

2
1

))

used in Example 3. Table 3 gives the randomly chosen values for a, X1 and Z1. We choose as prime number
p = 101.

Table 3. Values for a, X1 and Z1

a 5 15 34 23 12 10

X1 34 56 23 72 39 87

Z1 20 45 98 47 14 68

We parse the formula from left to right, starting by the deepest term. We begin by evaluating the left subexpres-
sion: 3 then X1, then X2

1 , and so on. Table 4 gives the evaluation of each node of the subexpression (3X2
1 +aZ4).

(The constants and variables are not evaluated since they are already known). None of these expressions is known
in the DAG, so each is added to the DAG (figure 3(a)).

Table 4. Values of first nodes of the DAG

1 X2
1 mod p 45 5 24 33 6 95

2 3X2
1 mod p 34 15 72 99 18 83

3 Z2
1 mod p 97 5 9 88 95 79

4 Z4
1 mod p 16 25 81 68 36 80

5 aZ4
1 mod p 80 72 27 49 28 93

6 (3X2
1 + aZ4

1) mod p 13 87 99 47 46 75

The formula is parsed and the expression aZ4
1 is now evaluated. This node is already present in the DAG.

Same evaluation is made for the expression 3X2
1 . Both nodes are shared (see figure 3(b)). Then, we evaluate the

expression (aZ4
1 +3X2

1). This list is known in the DAG. It corresponds to the node 6 which is shared. Figure 3(c)
shows the DAG of the expression E.

Thanks to this heuristic, we are able to find common subexpressions appearing in the DAG, and to compute
them only once. The only nodes that cannot be shared are the nodes corresponding to the NP-complete problem
presented in previous section. But, by construction, this problem appears very rarely.

4.2 Reducing the arithmetical cost

Once the DAG has been created, we apply some transformations to reduce its arithmetical. We use field
identities to transform multiplications into sum of squares if it is possible. With field identities we consider only
multiplications involving two operands, but as the multiplication is associative and commutative, in case of chain
of multiplication (abc...) we have to test all the possible combinations, by considering that a multiplication of
the chain is an operand if it appears elsewhere in the computation. Example 7 shows the number of tests we
have to perform in each case of a four operands multiplications chain.

Example 7. Let consider the chain abcd. After DAG construction, four cases can appear:

• abcd (Figure 4(a)), the multiplication is totally free, we have to test six cases (ab, ac, ad, bc, bd, cd);

+6

× ×2 5

3 ˆ21

X1

a ˆ2

ˆ2

Z1

4

3

(a)

+

× ×

3 ˆ2

X1

a ˆ2

ˆ2

Z1

1

2 5

4

3

6

(b)

×

-

[. . .] ˆ2

+

× ×

3 ˆ2

X1

a ˆ2

ˆ2

Z1

1

2 5

4

3

6

(c)

Figure 3. Construction of the DAG

• a(bcd) (Figure 4(b)). This case corresponds to a two-operand multiplication: the multiplication bcd appears
elsewhere in the DAG. This multiplication bcd will be tested independently. Then, we just have to test the
multiplication a(bcd);

• ab(cd) (Figure 4(c)): multiplication cd cannot be broken. We have to test three multiplications: a(cd),
b(cd), ab. Note that ab(cd) cannot be transformed since we work on the DAG: ab appears inevitably only
once in the DAG: therefore it cannot appear in a square.

• (ab)(cd) (Figure 4(d)): corresponds to a two-operand multiplication, we just test (ab)(cd). The multiplica-
tions ab and cd will be tested independently.

×

a ×

b ×

c d

(a) Chain abcd

× . . .

a ×

b ×

c d

(b) Chain a(bcd)

×

a × . . .

b ×

c d

(c) Chain ab(cd)

×

× ×

a b c d

.

(d) Chain (ab)(cd)

Figure 4. Reducing the cost of the multiplication chain abcd

We try to transform each two-operand multiplication into a sum of squares with field identities. Let consider
m = a × b. Three cases have to be taken into account:

• (a + b)2 and (a− b)2 are both needed in F . In this case, this multiplication is transformed by (3), and the
new square is added to square set;

• (a+b)2 or (exclusive) (a−b)2 and a2 or b2 are needed in F . In this case, we chose (1) or (2): transformation
by (3) is less expansive, in the sense that (3) only needs one subtraction, contrary to (1) and (2) which
requires one subtraction and one addition. Point is that if only one square has to be created, (a − b)2 (or
(a + b)2) would serve only for the computation of a × b whereas computing a new square a2 (or b2) can
serve for other multiplications where a (or b) appears. In this case, all the multiplications have to be tested
again.

• a2 and b2 are known in F : transform m by (1) or (2), including case where one of the addition/subtraction
square is known.

Remark: Note that subtraction is not commutative. Tests has to be performed for both (a− b)2 and (b−a)2.

Remark: Coefficients 1
2

or 1
4

appear in each transformations. These rational coefficients can be easily re-
moved as the projective coordinates form an equivalence class: (X, Y, Z) ≈ (λcX, λdY, λZ). In case of Jacobian
coordinate, c = 2 and d = 3.

Remark: Because of the minimal cost of square (0.67M), we can test each multiplication independently: in
most cases, the transformation follow identities 1 or 2, and we have to know two of the three squares to transform.
If the cost of the square is smaller, we have to consider group of multiplications, as illustrated in example 8.

Example 8. Let consider the two multiplications ab and bc, and that we know a2 and c2. If S ≥ 0.67, we can
not transform since the global cost of the transformation will be 3 × 0.67 = 2.01 (we have to compute three new
squares: b2, (a + b)2, (b + c)2). If S ≤ 0.66, we cannot transform independently the multiplications: each needs
two new squares, but to transform the two multiplications, we need three new squares: 3×0.66M = 1.98M which
is cheaper than 2M .

The program takes as input the file containing the formula for basis operations (at least addition and doubling)
and then compute the optimized formula for a given s. In the next section we present the experimental results
in Jacobian coordinate system.

5. EXPERIMENTAL RESULTS

Thanks to our program, we were able to find a new formula to compute [5]P in Jacobian coordinates. The
quintupling formula presented in9 (15M, 10S) was given as input to our program which found a new formula
which only requires 7 multiplications and 16 squares. This formula has been validated with Magma. The
algorithm is given below.

A = 3 × X2 + a × Z4

B = 6 × ((X + Y 2)2 − X2 − Y 4) − A2

C = (A + B)2 − A2 − B2 − 16 × Y 4

D = 4 × Y 4 × C

E = 4 × D − B × B2

F = (E − C2) (5)

G = ((B + F)2 − B2 − F 2)

X5 = 4 × (X × E2 − ((Y 2 + C)2 − Y 4 − C2) × G)

Y5 = 4 × Y × (B × B2 × (E2 + C4 − 3 × F 2) − 8 × D × C4)

Z5 = (Z + E)2 − Z2 − E2

Table 5 presents the experimental results for special computation in Jacobian coordinates system. Both [2]P
and [3]P formulas are the best known formulas, extracted from the explicit formula database, and [5]P is the
formula (5). We can distinguish two main cases: the case of a single multiplication, [si]P or [sitj]P , and the
case of a multiplication followed by an addition. In the first case the program cannot optimize the formulas.
This is not surprising since the same pattern is applied over larger and larger formula. There is no common
subexpressions and the multiplications in the [s]P formulas are already simplified. More interesting, is the case
of a multiplication followed by an addition, we always save 2 multiplications in comparison to normal cost.

Our program generates code in several languages: generic pseudo-code, Magma code, or PACE code, and
can easily generate code for others languages or mathematical program. With Magma code, we can test and
certify our new formulas, using the same verification scripts as those presented in the explicit database.5 The
program generates the verification code using the Double-and-add algorithm to compute sure code. The Magma
verification script for our quintupling formula is given below.

Table 5. Cost of formulas for [k] in special case in Jacobian coordinates

[k]P Old cost New Cost

2P 1M+8S -

3P 5M+10S -

5P
15M+10S9

7M+16S
9M+15S10

2iP ± 2jP with 0 ≤ j < i (i+11)M+(8*i+4)S (i+9)M+(8*i+6)S

3iP ± 3jP with 0 ≤ j < i (5*i+11)M+(10*i+4)S (5*i+9)M+(10*i+6)S

5iP ± 5jP with 0 ≤ j < i (15*i+11)M+(10*i+4)S (7*i+9)M+(16*i+6)S

2i ∗ 3jP ± 1 - (i+5*j+9)M+(8*i+10*j+6)S

2i ∗ 5j - (i+7*j)M+(8*i+16*j)

2i ∗ 5j ± 1 - (i+7*j+9)M+(8*i+16*j+6)

3i ∗ 5j - (5*i+7*j)M+(10*i+16*j)

3i ∗ 5j ± 1 - (5*i+7*j+9)M+(10*i+16*j+6)

K<a,b,X1,Y1> := FieldOfFrractions(PolynomialRing(Rationals(),4));

R<Z1> := PolynomialRing(K,1);

S := quo<R|Y1^2-X1^3-a*X1*Z1^4-b*Z1^6>;

x1 := X1/Z1^2; y1 := Y1/Z1^3;

S!(y1^2-x1^3-a*x1-b);

lambda := (3*x1^2+a)/(2*y1);

x2 := lambda^2-x1-x1; y2 := lambda*(x1-x2)-y1;

S!(y2^2-x2^3-a*x2-b);

lambda := (3*x2^2+a)/(2*y2);

x4 := lambda^2-x2-x2; y4 := lambda*(x2-x4)-y2;

S!(y4^2-x4^3-a*x4-b);

lambda := (y4-y1)/(x4-x1);

x5 := lambda^2-x1-x4; y5 := lambda*(x1-x5)-y1;

S!(y5^2-x5^3-a*x5-b);

AB := (16*((Y1)^2)^2); AC := (a*((Z1)^2)^2);

AD := ((3*(X1)^2)+AC); AE := (X1+(Y1)^2)^2;

AF := ((AE-(X1)^2)-((Y1)^2)^2); AG := ((6*AF)-(AD)^2);

AH := ((AD+AG)^2-(AD)^2); AI := ((AH-(AG)^2)-AB);

AJ := (((Y1)^2)^2*AI); AK := ((4*(4*AJ))-(AG*(AG)^2));

AL := (AK-(AI)^2)^2; AM := (AG+(AK-(AI)^2));

AN := ((AM)^2-(AG)^2); AO := ((Y1)^2+AI)^2;

AP := (AO-((Y1)^2)^2); AQ := ((AP-(AI)^2)*(AN-AL));

AR := ((X1*(AK)^2)-AQ); AS := (((AI)^2)^2*(4*AJ));

AT := ((AK)^2+((AI)^2)^2); AU := ((AG*(AG)^2)*(AT-(3*AL)));

AV := (Y1*(AU-(8*AS))); AW := ((Z1+AK)^2-(Z1)^2);

X5 := (4*AR);

Y5 := (4*AV);

Z5 := (AW-(AK)^2);

S!(x5-X5/Z5^2); S!(y5-Y5/Z5^3);

This script first compute the symbolic set of points [5]P for an arbitrary curve in Jacobian coordinate system.
Then we compute [5]P with the new formula, and the two sets are compared by the last instruction. If the result
is (0, 0), the sets are equal and the new formula is correct. Else, the formula computed by the program is wrong.

6. CONCLUSION

The problem of formula optimization is to reduce the number of field operations to compute point multiplication
and is difficult, we conjecture NP-complete. By-hand, the optimization is very difficult, even impossible. We
present a method to automate these optimizations, using simple and efficient heuristics to reduce the number of
field multiplications: elimination of common subexpressions and transformations of multiplications into squares.
Thanks to this method, we were able to optimize formulas for [k]P for a large set of small scalar k in many
coordinates systems. With our program, we produce code for mathematical softwares (magma) and for library
(PACE). Moreover, the scripts produced for Magma allow the validations of the computed formulas.

REFERENCES

[1] Miller, V., “Use of elliptic curves in cryptography,” in [Advances in cryptology - CRYPTO 85], Lecture
Notes in Computer Sciences, 417–426, Springer (1985).

[2] Koblitz, N., “Elliptic curve cryptosystems,” Mathematics of Computation 48(177), 203–209 (1987).

[3] Hankerson, D., Menezes, A., and Vanstone, S., [Guide to Elliptic Curve Cryptography], Springer (2004).

[4] Dimitrov, V., Imbert, L., and Mishra, P. K., “The double-base number system and its application to elliptic
curve cryptography,” Mathematics of Computation 77(262), 1075–1104 (2008).

[5] Bernstein, D. J. and Lange, T., “Explicit-formulas database,” (2008). http://www.hyperelliptic.org/

EFD/index.html.

[6] Auber, D. and Mary, P., “Tulip software.” http://tulip.labri.fr/.

[7] Garey, M. R. and Johnson, D., [Computer and Intractability : a guide to the theory of NP-Completeness],
W. H. Freeman (1979).

[8] Longa, P. and Miri, A., “Fast and flexible elliptic curve point arithmetic over prime fields,” IEEE Transac-
tions on computers 57(3), 289–302 (2007).

[9] Dimitrov, V. and Mishra, P. K., “Efficient quintuple formulas for elliptic curves and efficient scalar multi-
plication using multibase number,” in [Information Security 10th International Conference], LNCS 4779,
390–406, Springer (2007).

[10] Longa, P. and Gebotys, C., “Setting speed records with the (fractional) multibase non-adjacent form method
for efficient elliptic curve scalar multiplication.” Cryptology ePrint Archive, Report 2008/118 (2008).

