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Abstract. We present below our first implementation results on a modular arith-
metic library for cryptography on GPUs. Our library, in C++ for CUDA, provides
modular arithmetic, finite field arithmetic and some ECC support. Several algo-
rithms and memory coding styles have been compared: local, shared and register.
For moderate sizes, we report up to 2.6 speedup compared to state-of-the-art library.
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Introduction

Modular operations on large integers are used in many applications such as cryptogra-
phy, coding and computer algebra. Efficient algorithms and implementations are required
for a ± b mod p, a × b mod p where a, b and p are multiple precision integers and p
is prime. Those operations are required in finite field arithmetic over Fp and in elliptic
curve cryptography (ECC) where sizes are about 200–600 bits. Graphic processor units
(GPUs) are used in high-performance computing systems thanks to their massively mul-
tithreaded architectures. But due to their specific architecture and programming style,
porting libraries to GPUs is not simple even using high-level tools such as CUDA [8].

This paper presents our first implementation results on modular arithmetic for large
integers, arithmetic over Fp and ECC scalar multiplication application on GPUs. This
work is a part of a software library called PACE [5]. This library is aimed at providing a
very large set of mathematical objects, functions and algorithms to facilitate the writing
of arithmetic applications. Below, we only deal with the use of GPUs as accelerators for
parallel computations with different sets of data. In asymmetric cryptography applica-
tions, this kind of parallelism level is required for servers on which cyphering and/or dig-
ital signatures are computed for parallel sessions. This paper presents sequential arith-
metic operations (one thread per operation) but for massively parallel computations on
independent data sets. We compare our code with mpFq library[3] and the work from [9].

1. Large Integers on GPU

We consider modular arithmetic for arbitrary values of the modulo (i.e. p) and size N of
numbers in the range 160–384 bits. The operands a and b are integers in the range [0, p−
1] (reduced values). Standard modular arithmetic algorithms and some implementation



guidelines on standard processors may be found in good books such as [4]. But this is not
the case for GPU implementation. The design and optimization of arithmetic operations
is done using a complex trade-off between: number representation (width, radix), the
algorithm(s) and some architecture constraints (type and number of functional units and
memory latencies). Our goal is to define an efficient layer which can be used on a single
thread, since our parallelism is only on the data. We will see that the memory mapping of
the integers into various memories is a key element for this kind of GPU implementation.

1.1. Integers Representation and Memory

Large integers are usually stored into an array of words such as depicted below.

a = an−1 an−2 . . . a0 =
∑n=−1

i=0 aiβ
i

The word size depends on the functional units characteristics. This size leads to
various values for the radix β. The choice of β and the word’s datatype is clearly related
to GPUs capabilities. According to NVIDIA CUDA programming guide [8], the possible
native datatype for a word can be either 32-bit integer, 32-bit or 64-bit floating-point (FP)
numbers. Considering current lower1 throughputs of the 64-bit FP numbers compare to
32-bit datatype on newest GPU (GT200 core), one can avoid for the time being the use
of 64-bit FP number as word.

Considering 32-bit arithmetic units on GPU, one can issue one of the following op-
erations in 4 clock cycles on a GPU multiprocessor: one exact multiply-and-add (MAD)
operation on 10-bit operands with float, one exact multiplication on 16-bit operands
with int and one exact addition with carry on 16-bit operands with int.

Looking at the school book multiplication2 onN -bit integers this gives the following
theoretical clock cycle counts:

160-bit 192-bit 224-bit 256-bit 384-bit
# cycle with float, β = 210 1024 1600 2116 2704 6084
# cycle with int, β = 216 724 1252 1460 1924 4420

It seems clear from this comparison that 32-bit integers with β = 216 is a better
choice than 32-bit FP numbers. Moreover, a smaller word number saves memory. Fur-
thermore, bit manipulations remain easier with integer representation.

The main difficulty with GPU is to fully benefit from high memory bandwidth within
the global memory (the RAM of the GPU). In particular, one needs to design code such
that many concurrent memory accesses from many concurrent threads of a multiproces-
sor can be coalesced into a single transaction. The basic idea is that the i-th thread of a
multiprocessor needs to read/write the i-th data in a particular segment of memory. See
[8, Chapter 5] for further details.

In our computational model, integers are not gathered between threads and using
linear array to store integer’s words leads to non-coalesced memory patterns. To fulfill
this requirement, we provide functionality to load (resp. store) integer from (resp. to)
global memory. These functions change the words order to ensure coalesced access. We
define the following rule to reorder words of a same variable across all threads:

1Throughput of 64-bit float is barely equal to 1/8 of 32-bit float throughput.
2School book multiplication requires N2 multiplications and (N − 1)2 additions or N2 MAD



i-th thread a = a0 . . . an−2 an−1

(i+ 1)-th thread a = ā0 . . . ān−2 ān−1

Global memory reordering a0 ā0 . . . an−2 ān−2 an−1 ān−1

Figure 1. Global memory organization for coalesced integer access

To ensure memory alignment, two consecutive words of one integer of one thread
are distant of i word addresses, where i is the minimal power of 16 greater or equal to
the total number of threads launched on the GPU.

Global memory accesses are quite costly and must be avoided. Therefore, one would
prefer to store integers in a non-coalesced form in another memory region (local memory
or shared memory). Fetching all data in local or shared memory at the beginning of a
GPU kernel function will ensure that all reads from global memory are coalesced.

1.2. Large Integer in GPUs Registers

For efficiency reason it would be interesting to map large integers directly into GPU reg-
isters. This should save at least the latency of memory load/store instructions. However,
as all hardware registers, GPU’s registers are not indexable. This means that no arrays
can be mapped into registers. The only way to map large integers into registers is to de-
sign specific structures with one variable per integer word. This approach is feasible but
not used for generic and portable code.

Fortunately, C++ and template metaprogramming [1] can help. In particular, one can
design a generic structure which defines fixed number of variables with compile time
indexable access.

t empla te <u i n t N> s t r u c t I n t e g e r R e g : I n t e g e r R e g<N−1> {
u i n t word ;
I n t e g e r R e g ( ) : I n t e g e r R e g<N−1>() {word = 0 ;}} ;

template<> s t r u c t I n t e g e r R e g<1> {
u i n t word ;
I n t e g e r R e g ( ) {word = 0 ;}} ;

# d e f i n e AT( x , i ) x . I n t e g e r R e g<i +1>:: word

Figure 2. A register-compliant structure for large integer with indexable access.

IntegerReg structure defined in Figure 2 uses C++ recursive inheritance to define
a proper number of variables to store an N -word integer. One can access a particular
variable from this structure by using the index given within the template parameter. The
macro AT defines the proper accessor to the (i+1)-th word of the integer x. The only
drawback of this structure is that all indices need to be known at compile time, meaning
no runtime loop can be executed. Here again C++ templates come to rescue to define
compile time loop as illustrated in Figure 3.

Compile time loop consists of completely unrolling loops by duplicating code with
proper register values. This technique can be very efficient if the compiler is able to
discover registers reusability. In case of GPU, nvcc compiler (the CUDA compiler)



template<u i n t beg , u i n t end>
s t r u c t I n t e g e r L o o p {

template<u i n t N>
s t a t i c bool e g a l ( c o n s t I n t e g e r R e g<N>& a , c o n s t I n t e g e r R e g<N>& b )
{ re turn AT( a , beg )==AT( b , beg ) && I n t e g e r L o o p<beg +1 , end > : : e g a l ( a , b ) ; } } ;

template<u i n t end>
s t r u c t I n t e g e r L o o p<end , end> {

template<u i n t N>
s t a t i c bool e g a l ( c o n s t I n t e g e r R e g<N>& a , c o n s t I n t e g e r R e g<N>& b )
{ re turn AT( a , end )==AT( b , end ) ; } } ;

Figure 3. C++ compile time loop for register-compliant integers comparison.

seems to not be very friendly with such a technique. In particular, with quite simple
code nvcc might ran out of registers when it tries to compile code for the GPU. This
comes from GPUs code generation which uses intermediate PTX code in SSA form
(Single Static Assignement) before to call open64 compiler3 to generate code for GPU.
The SSA forms of compile time loops are usually quite large and discovering registers
mapping from this form is not well handled by nvcc. To reduce SSA code and register
usage, we change the base β value to 232 whenever register-compliant integers are used.

2. Modular Arithmetic on Large Integers

We investigate GPU implementation of the 3 basic modular arithmetic operations on
large integers: addition, subtraction and multiplication. We do not investigate division
since it can be avoided in most of our target applications. Memory accesses within GPU
can be very costly depending where data are localized. For instance one access to global
memory costs around 400–600 cycles while one register or one shared memory access
cost around 10 cycles. Minimizing data access and intermediate variables is thus critical.

For the modular addition/subtraction the basic algorithm can suffice since it requires
only an integer addition (potentially with a carry) and a conditional subtraction. More-
over, this operation can be done inplace (a += b mod p) with only one extra regis-
ter for the carry propagation. We use classical integer algorithm with carry propagation
along limbs as described at [4, pp.30].

In the case of register version of integers, we have β = 232 and no instruction is
available to get the carry of addition or subtraction of words. Thus, we need to calculate
explicitly the carry using the following trick: the carry of a + b is equal to the result of
the test a+ b < a. A similar trick is available for subtraction.

Separated operation and reduction become too costly for multiplication. The product
a× b is 2n words long. Then the reduction to a single n words number is close to a divi-
sion by p. In that case, the operation and the reduction are interleaved using a bit-serial
scan of one operand (usually, the multiplier a). At each step, the partial product ai,j × b
(where ai,j is the jth bit of the word ai) a is accumulated and reduced modulo p. We use
the well known Montgomery’s algorithm to avoid the use of multi-precision division [7].
In order to reduce memory usage we use an interleaved Montgomery’s method which
consists of doing multiplication and reduction at the same time. Our implementation is

3http://www.open64.net/



based on the Finely Integrated Operand Scanning (FIOS) method described in [6] which
required only 3 extra words. Using β = 216 with 32-bit integers, we do not suffer from
carry propagation along word additions.

We compare our arithmetic layer performance when data are localized in the differ-
ent memory regions: local memory, shared memory and registers. In Table 1, we report
computation times of modular operations for N in 160–384 bits. Operands are chosen
randomly with full limb occupancy and the GPU kernel function consists in 1024 threads
within 64 blocks. Each thread loads its two operands from the global memory to the cho-
sen memory space (local, shared, register) and then compute a loop of 10 000 operations
(using result in the loop as a new operand for the next operation). We perform our GPU
computation on a Geforce 9800GX2 card.

addition multiplication

N local shared register local shared register
160 9 2.3 0.7 88 40 22
192 11 2.3 0.7 125 51 33
224 23 5.0 1.1 172 107 55
256 26 3.1 1.5 214 80 81
384 38 7.4 3.9 673 221 261

Table 1. Computation times in ns for modular addition and multiplication.

One can see from this table that GPU data location in memory is important, and
register usage can improve speed. One can also remark that multiplication for N > 256
registers version becomes less efficient than shared version. This comes from the CUDA
compilation chain which is not able to handle code with large register usage. Note that
each thread can use at most 128 registers of 32-bit integers.

In order to demonstrate benefits of GPU for multiprecision modular arithmetic, we
compare our layer with the mpFq library [3] which is currently the best library to perform
modular arithmetic on CPU with modulo of moderate size (i.e. less than 600 bits). In
Table 2 we report the comparison of our best GPU modular arithmetic implementation
(register version) with mpFq library. Benchmarks are identical as in previous section, ex-
cept that mpFq handles sequentially the 1024 threads on a Core(TM)2 Duo E8400-3GHz
processor. For N less than 384 bits GPU beats CPU calculation. However, speedup fac-
tors are moderate since CPU processor has higher frequency than GPU multiprocessor.
Moreover, mpFq uses well tuned code with SIMD SSE-2 instructions, which allows to
be more efficient implementation of large integers than our GPU implementation.

addition mod p multiplication mod p

N our impl. mpfq speedup our impl. mpfq speedup
160 0.7 15 ×21 22 64 ×2.9
192 0.7 16 ×22 33 70 ×2.1
224 1.1 21 ×19 55 105 ×1.9
256 1.5 21 ×14 81 109 ×1.3
384 3.9 30 ×7 261 210 ×0.8

Table 2. Time comparison in ns of software library mpFq and our best GPU implementation.



3. ECC Application

In order to evaluate our library in a realistic application, we use it for scalar multipli-
cations. This is the main operation required in ECC. For instance, servers performing
many digital signatures have to compute parallel and independent scalar multiplications.
Below, we consider an elliptic curve (EC) E(Fp) defined over the prime finite field Fp (a
is the parameter of the curve). See [4] for background, details and notations. In order to
avoid modular inversions, we use the Jacobian coordinates system (P = (X,Y, Z) where
X , Y and Z are in Fp). Montgomery representation is used for fast multiplications. All
threads share p and a parameters but points P and Q are different.

All operations presented in this section are used in the same way. Data are sent to
the GPU global memory in coalesced form. The GPU kernel loads the selected memory
(local, shared or registers) from the global memory, converts necessary values to the
Montgomery form, performs the curve operation, and converts back to standard form.
Then results are sent from the GPU to the CPU.

3.1. Point Addition and Doubling

Two basic operations are used for points P and Q on E(Fp): point addition P + Q (for
P 6= Q) and point doubling 2P (specific addition for P = Q). Those point operations
are defined using several additions, multiplications over Fp. Point addition and doubling
require respectively 2 and 3 extra integers (and 6 for P andQ). These intermediate values
are stored in same memory than the other data.

Timings are reported in Table 3 for the three considered memory schemes: local,
shared and registers. The computation was launched on 1024 threads (64 blocks of 16
threads) and 100 operations for each thread. Due to the limited number of registers for
one thread, the CUDA compiler was unable to build the code for N greater than 192 bits
(ror is reported for compilation aborted due to “run out of register” compiler error).

point addition point doubling

N local shared register local shared register
160 2.57 0.78 0.70 1.64 0.50 0.54
192 3.51 1.01 1.13 2.30 0.58 0.70
224 4.41 1.95 ror 2.73 1.01 ror

256 5.89 1.56 ror 3.71 1.09 ror

384 13.9 7.50 ror 13.3 2.42 ror

Table 3. Computation timings in µs for point addition and doubling.

For both operation, local memory is the worst due to its high latency. Except for
point addition with N = 160, the shared memory implementation is the best. One draw-
back of shared memory is the fact it limits the number of threads per block to 16. In the
shared memory version, the huge timing gap between N = 256 and N = 384 is due to
the card occupancy which is twice for N = 256 (or less) than for N = 384. For point
doubling, occupancy is the same for allN and the factor 2 is due to the computations. We
notice that register version is slower than shared version due to the fact that the compiler
was unable to use correctly all the registers it has and put data in local memory.



In Table 4, we compare our best implementation with the PACE library coupled to
mpFq running on the CPU for the same data. The shared memory version is at least twice
faster than the CPU version for point doubling, but is no more than twice for addition.
The difference comes from the number of Montgomery multiplications required in each
operation: 9 for point doubling and 16 for point addition and the fact that the speedup
factor for one Montgomery multiplication is small.

point addition point doubling

N our impl. mpfq+pace speedup our impl. mpfq+pace speedup

160 0.78 1.52 1.9 0.50 1.99 4.0

192 1.01 1.91 1.9 0.58 1.99 3.4

224 1.95 2.65 1.3 1.01 2.69 2.6

256 1.56 2.65 1.7 1.09 2.65 2.4

384 7.50 5.11 0.7 2.42 5.01 2.0

Table 4. Time [µs] for our GPU implementation and (PACE+mpFq) on CPU.

3.2. Scalar Multiplication

Scalar multiplication Q = [k]P = P + · · · + P (with k additions of point P ) where
k is an N -bit integer and P a point of E(Fp), is the main operation in ECC protocols
(see [4] for details and algorithms). We use a right-to-left double-and-add algorithm since
it does not require pre-computations and additional storage. It uses point addition and
point doubling for each step of a loop over the bits of k. Furthermore, it allows some
threads to follow the same execution pattern as the base point is doubled at each step of
the loop.

Table 5 reports times and operation throughput (in [k]P/s) for our best implementa-
tion (i.e., the shared version) and mpFq+PACE implementations. Our tests use the same
N for k and Fp and the Hamming weight of k equal to N/2. For N = 384, our scalar
multiplication on GPU is slower than the CPU version (computed with mpFq+PACE).
We noticed that the speedup factor decreases for larger numbers. This is mainly due to
the small factor between the mpFq+PACE version and our shared memory version of the
Montgomery multiplication (1.6 for N = 160 and 1.3 for N = 256).

computation time in µs operation throughput in [k]P/s

N our impl. mpfq+pace our impl. mpfq+pace speedup

160 179 464 5586 2155 2.6

192 304 550 3289 1818 1.8

224 507 878 1972 1138 1.7

256 617 1003 1620 997 1.6

384 4609 2941 216 340 0.6

Table 5. Scalar multiplication result for our GPU implementation and (PACE+mpFq) on CPU.

In [9], a seminal GPU implementations of [k]P is provided with N = 224. Their
throughput is about 1412.6 [k]P/s using mixed affine-Jacobian coordinates and left-to-
right double-and-add algorithm. Our implementation is a little better than this result.



3.3. w-NAF Implementation of Scalar Multiplication

Some signed-digit representations are used for recoding k in the [k]P . This is motivated
by the fact that point subtraction on an EC is just as efficient as addition. Among these
representations, w-digit windows non-adjacent forms (w-NAF) are frequently used in
ECC [4]. Using w-NAF, k =

∑l−1
i=0 k

′
i2

i where non-zero digits k′i are odd, |k′i| < 2w−1

and at most one digit of any w-digit window is non-zero. Thus w-NAF recoding de-
creases the number of point additions/subtractions (≈ 1/(w+ 1) w.r.t. 0.5 for binary). It
is also used as a simple countermeasure against side channel attacks [2].

Several versions have been implemented: w ∈ {2, 3} as well as basic and optimized
storage. The basic storage uses a complete word for each w-NAF digit. The optimized
storage uses the minimal number of bits for a w-NAF digit (i.e., 2 bits for w = 2 and 3
bits for w = 3) through a dedicated multiple precision storage. For w = 3, 3P is pre-
computed and stored. Addition of−P and−3P are obtained by subtracting respectively
P and 3P . Recoding from integer k into w-NAF is performed on the GPU.

Due to nvcc compiler limitations, it was not possible to compile more than
N = 256 bits with w = 2 and N = 160 for w = 3. Using a w = 3 leads to 10%
speed improvement compared to w = 2. The number of operations is reduced, but the
additional internal value 3P puts a too high pressure on scheduling. Surprisingly, basic
and optimized storage of the w-NAF recoding gives very close results.

Conclusion and Future Prospects

In this work we report our first implementation results on modular arithmetic for large
integers on GPUs which achieves a speedup of 2.6 compared to state-of-the-art library.
We show that porting modular arithmetic algorithms on GPUs is not direct. Our long
term goal is to design a high-performance arithmetic library for cryptography.

Acknowledgments

The authors are grateful to the Nvidia donation program for its support with GPUs cards.

References

[1] Andrei Alexandrescu. Modern C++ design: generic programming and design patterns applied. Addison-
Wesley Longman Publishing Co., Inc., Boston, MA, USA, 2001.

[2] A. Byrne, N. Meloni, A. Tisserand, E. M. Popovici, and W. P. Marnane. Comparison of simple power
analysis attack resistant algorithms for an ECC. Journal of Computers, 2(10):52–62, 2007.
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