N

N

Operational Semantics of a Timely Bounded Agent
Abstract Machine
Abdelkader Gouaich

» To cite this version:

Abdelkader Gouaich. Operational Semantics of a Timely Bounded Agent Abstract Machine. RR-
09028, 2009, pp.19. lirmm-00425502

HAL Id: lirmm-00425502
https://hal-lirmm.ccsd.cnrs.fr /lirmm-00425502
Submitted on 21 Oct 2009

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.

https://hal-lirmm.ccsd.cnrs.fr/lirmm-00425502
https://hal.archives-ouvertes.fr

An operational semantics of a timely bounded
agent abstract machine

Technical Report LIRMM #RR-09028

Abdelkader GOUAICH Michael BERGERET
gouaich@lirmm.fr bergeret@lirmm.fr

12/10/2009

Abstract

This paper presents a domain specific programming language dedi-
cated to timely bounded agents. Timely bounded agents are expected to
deliver the most appropriate response to a stimuli and this response has
to be delivered at the right time, otherwise it is ignored. This modifies
assumptions and action models used in most of current agent program-
ming languages and frameworks. We propose a domain specific language
by specifying an agent abstract machine and its operational semantics.
The dynamics of the agent abstract machine is a sequence of perception-
deliberation-influence cycles where an agent: (i) gets its perceptions (that
remain unchanged during the cycle) (ii) evaluates its behaviors to generate
a set of influences; (iii) commits all influences at once within its environ-
ment. An important property is the fact that perceptions are unchanged
and side effects are not allowed until the end of a cycle. This property
makes possible efficient implementation of the agent abstract machine
using parallel evaluations. Simplicity and expressiveness are important
features when working on operation semantics. To meet these require-
ments we have proposed a simple and yet expressive framework inspired
from REST (Representation State Transfer) to consider agent actions as
manipulation of resources within environments using only a limited set of
primitives. This makes both the agent abstract machine and its opera-
tional semantics easy to comprehend and the implementation straightfor-
ward. Finally, we demonstrate how our proposal has helped building a
serious game for upper limb rehabilitation.

1 Introduction

Many efforts have been recently made within multi-agent systems (MAS) com-
munity to facilitate building large-scale distributed software systems using agents
as building blocks. In fact, starting from foundational works in the 80’s MAS

have been considered as an appropriate framework when both the control and
data are inherently distributed. Despite this potential, MAS are not considered
yet as a mainstream paradigm for software engineering. Our objective is to
specify an agent-oriented programming language to facilitate building software
systems with the following properties:

e Expressiveness and pragmatism: current works on agent oriented pro-
gramming are mostly based on logic. These works offer solid theoreti-
cal basis to develop theories about agents and reason about their actions.
However, the dominant culture of programming is imperative which makes
adopting logic based agent-programming languages difficult. It would be
interesting to have a hybrid approach using logic to express states of affair
and let the control expressed imperatively.

o Target real-time systems: When the environment is dynamic agents are
timely bounded to react at a proper time. Few works have tackled this
issue and deliberation process of agents are assumed to be unbounded.
Our objective is to introduce explicitly the time dimension to program
agent based real-time systems.

The rest of the paper is organised as follows: section 2 presents the Agent-REST
framework used to unify agent concepts with REST; section 3presents the formal
model of an agent abstract machine; section 4 presents the implementation of
the agent virtual machine (VM); section 5 presents a simple test case and a
benchmark; section 6presents related works; and finally section 7concludes the
paper and presents some perspectives.

2 Agent-Rest Framework

REST (REpresentational State Transfer) is an architectural style introduced by
T. Fielding [6] to facilitate building networked applications. The central concept
of REST is resource: a resource is identified using a uniform resource identifiers
(uri) [22] and owns an internal state. Access to a resource is performed using
HTTP operations. The semantics of these operations is expressed as follow:

e ‘put’ and ’delete’ are used to respectively store and delete resources
e ‘post’ modifies the state of a resource
e ‘get’ is used to retreive a representation of the resource’s state

REST has gained popularity and is becoming a de facto architectural style of
Interned based applications. This is explained by the flexibility, scalability and
efficiency offered by REST architectures, which are consequences of encapsu-
lation of states within resources rather than in proceses. Thus, it is possible
to use coherently multiple stateless threads to handle incoming requests. The
other advantage of REST is its simplicity and expressiveness. From a software

Influence:
new, delete,
post, get

>
Agent - Resource
<+
Representation
Environment

Figure 1: The Agent-REST framework

engineering point of view, simplicity is very useful to diminish complexity and
consequently ease maintenance of large scale systems.

Within MAS some architectural styles have been also proposed for building
software systems [3, 10]. However, most of these frameworks are centered on
the concept of agent or organisation and have neglected persistency and data
management.

We present Agent-REST framework (Figure 1) that combines both REST
and MAS concepts as follow:

e Environment: an environment represents a container of resources and
agents. The environment handles agents’ commands (or influences) to
either modify resources’ state or read their representation using respec-
tively ’'post’ and ’get’ commands

e Resource: a resource encapsulates an internal state and is identified by a
uri

e Agent: an agent is an autonomous process that reads resource represen-
tations as inputs and submit influences on the environment

e Influence: the term ‘influence’ is preferred to ‘command’ because an agent
does not modify directly a resource’s state. Thus, a resource state modifi-
cation is always an attempt that has to be validated by the environment.

e Resource representation: as said previously, a resource is an abstraction
and agents have access only to their representations. Resource represen-
tation are taken as perceptions wihtin the agent’s deliberation process.

3 Agent abstract machine

3.1 Modeling influences and representations

Influences and resource representations are expressed as syntaxic terms using
the following definitions.

Definition 3.1 Let N be a countable set of names and V a coutable set of
values.

We build a set of influence terms Sipfiuence 05 0 syntazic construction over
N and V as follows (withn € N,veV):

Stnfluence = getn
post nv
new n
delete n
0

Terms for resource representation is also built syntazically over N andV as
follows (withn € N,veV):

SRepresentation L= repr nv
0

3.2 Behavior structure

Current works on agent-oriented operational semantics often describe two levels
of abstraction at the same time: (i) an agent level that describes how an agent
abstract machine evolves over time and a behavior level describing the decisional
process. This makes operational semantics difficult to comprehend as different
concerns are addressed at the same time. Our proposal differentiates among
these levels and this article is focused on the agent level operational semantics.
Still, we need to provide a structure to reify agents’ behaviors and exhibit their
properties.

Definition 3.2 Let C be a countable set of capabilities. The set of behaviours
generated from C is defined by the power set P(C) equipped with set union as
composition law. As a notation, we represent the structure (P(C),U) as (C,+)

Lemma 3.1 The structure (C,+) is a commutative monoid with + being idem-
potent.

Example In the rest of the paper examples are inspired from the educational
agent-programming language developed by [21]. Let suppose a turtle agent with
the following capabilities:

C ={1,l,—, <, penup, pendown, canMove}

These capabilities are interpreted as follows: a turtle is able to move in four
directions (up, down, right and left); put down a pen to start drawing, take
off the pen to stop drawing, and finally check if the movement is allowed (for
instance by checking if the turtle has enough energy)

From this set we are able to create behaviors using the composition law.
For instance, (— +pendown) € (C,+) expresses the willing to turn right and
stmultaneously putting down the pen.

The composition law + is commutative and idempotent. This means that
duplication and order of tasks are not important. More formally, this means
that t+¢ =t and u + v = v+ u This is useful to express behaviors that involve
simultaneously several capabilities.

Definition 3.3 We denote by (C,+,.) the freely generated monoid having as
generator the set (T,+); . (dot) is the formal composition law.

Example By introducing the . (dot) law, we are able to express a second level
of composition that is not commutative. This could be useful for instance to
express guards. For instance, one can construct formally the following element:
canMove.(— +pendown) € (T,+,.) to express the fact that ’canMove’ must
succeed before turning right and starting the draw mode.

3.3 Capabilities substitution in behaviors

Modularity along with re-usability are crucial in software engineering. These
principles are about constructing a complex system as sub-components that can
be easily reused, modified and assembled.

The presented behavior structure captures naturally the idea of modularity.
In fact, any element can be composed with another using either + or . (dot)
laws. Concerning re-usability, we introduce a first level of customization through
capabilities substitution.

Definition 3.4 A capabilities substitution from set X toY,0: X — Y is a
function o : (X, +,.) — (Y,+,.) mapping an element of X with an element of
Y where all capabilities, ¢, are replaced by their image o(c)

X, denotes the set of generated behaviors from X with substitution o

Definition 3.5 We define the category of behaviors Cat(beh) as follows:
e Objects are behavior structures (C,+,.)
e Morphisms are capabilities substitutions:f : (X,+,.) — (Y, +,.)
o Identity morphism is the identity function
o Morphism composition if simply function composition: f.g= fog

Capabilities substitution are introduced to express an elementary level of
behavior customization by changing some capabilities with others. Although
theoretically this is simply expressed as term substitution, in practice this is an
interesting feature to construct specialization relationship among behaviors. In
fact, starting from an elementary behavior, another behavior can be derived by
changing capabilities. This is similar to overriding methods in object-oriented
programming.

Example In this example a mirror turtle is built from an existing one. This is
simply performed by providing the following substitution:

o1(—=) == 01(«) ==;01(]) =T;01(1) =T ;

For instance, when o, is applied to a behavior this gives:

x = canMove.(— +pendown) (1)
o1(x) = canMove.(« +pendown)

Whenever the base turtle wants to go in a direction, the new turtle goes in the
opposite direction.

Now suppose that we want to define a safer implementation of canMove
capability:

o2 (canMove) = SaferCanMove

The fact that capabilities substitution builds a category [2] Cat(beh) simply
says that substitutions are composable. In fact, one can build a mirror turtle
with the new version of canMove capability by taking o; o o2 as substitution.
So the example presented in (1) becomes:

o1 0 o3(x) = SafercanMove.(«— +pendown)

3.4 Taskgram structure

To be evaluated, a behavior needs input representing agent’s perceptions. To
represent this unit of evaluation comprising a behavior and its associated set of
perceptions we introduce the concept of taskgram.

Definition 3.6 A taskgram is defined as a couple (t,i) element of (B,+,.) X
P (Sperception) Where t represents a behavior and i is its associated input data.
3.4.1 Taskgram evaluation

As an execution unit a taskgram is evaluated as a whole using an evaluation
device to produce a set of influences:

Definition 3.7 An evaluation device M is considered as a black-bozx capable of
producing a mapping between o taskgram and a set of influences. Formally, this
device is modelled as a partial function:

M : (B7 +a) X P(SPerception) - P(Slnﬂuence)
(t,i) — M)

with the following properties:

M{l},i) = evalp(l,i) (2)
M(0,1) 0 (3)
Mu+wv,i) = M(u,i)UM(v,i) (4)

M(uw,i) = {M(u’i)UM(U’i) iff M (u,i) # 0

1] otherwise.

Lemma 3.2 M is a monoid homomorphism from (B,+) to P(Sifluence)

Equation (2) indicates that any singleton containing a capability label is
directly evaluated by the device; (4) indicates that the evaluation process is
linear on + law. (3) and (4) are necessary to prove lemma 3.2. (5) defines
an evaluation of behaviors of the form w.v: whenever the evaluation of the first
operand is an empty-set then the overall expression is evaluated as an empty-set.
This models a conditional evaluation of task v according to w.

3.4.2 Timely bounded evaluation

In the last section we have defined a theoretical evaluation device that is able
to map any taskgram to a set of influences. However this raises the classical
decidability problem: given a set of inputs, does the evaluation of a taskgram
terminate?

To solve this problem, we suggest using evaluation devices with a timeout.
Whenever the timeout is exceeded, the evaluation device returns an empty-set
as result.

Definition 3.8 A timed evaluation device is an evaluation device Ms with a
timeout § € N such that:

My(t,i) = M(t,i) , when evaluation time < 6
o B 0 , otherwise.

Within real-time systems, agents have to take the correct decision at the
right time. This is a consequence of to the dynamic nature of their surround-
ing environment [18]. Consequently, any deliberation process has to be timely
bounded. Whenever the timeout is exceeded the deliberation process is halted
and an empty-set is returned as result.

This does not mean that lengthy deliberation processes cannot be defined. In
fact, several mechanisms such as continuation style passing can be used to halt
the deliberation process, store the current state before exceeding the timeout,
restore the stored state to resume the deliberation process when a new cycle is
started.

3.5 Fluents

Fluents have been introduced by situation and fluent calculus to represent facts
about situations [8]. We use a simpler notion of fluents to express conditions
that trigger behaviors. Conditions are expressed on resource representations
using selectors. A selector is a pattern used to match some uri and select the
value of an attribute. For conciseness, the full syntax of fluents is not presented;
only notations illustrate how they are express and evaluated.

Definition 3.9 Fluents are expressed through syntactic constructs as follows:

P == exp exp = uri_selector
| pi (P...) | Q; (exp,...)
—— ———

i elements i elements
With p; being usual logic operators: {T,L,—, A,V} and Q; standard com-
parison operators such as =,#,<,...

Example Let us consider a turtle with the following perception set:

‘ uri ‘ attributes ‘
grid:/ /turtles /turtle#10 (color,red)
agent://self (color,blue);(mode,peace)

The following fluent checks that the observed turtle is not an enemy:

(grid:/ /turtles/{z}[color] I= agent://self[color])
A(agent://selffmode]=war)

The current evaluation of this fluent is false. However, when a context
making this fluent true arrives a special behavior (flee for instance) can be
trigged.

3.6 Environment

The presented framework follows ideas developed in [9] to expose environments
explicitly as a first-class entity within a multi-agent system. From an agent
perspective, an environment is considered as a container of resources and in-
teraction among agents holds through common resources. In fact, to exchange
data agents have to perform simply post and get operations on common re-
sources shared through uri. This unifies several interaction mechanisms such as
asynchronous messages and generative communication [7]

In the theoretical model, an environment is considered as a black-box with
two primitives to: (i) send an influence to a resource, (ii) and get a resource
representation. These operations are noted respectively as follow: E(r) and
E «— p where r represents an influence of type ’get’ and p a request of type
post’.

signal(startcycle)*

Get Perceptions
Commit Influences Evaluate Fluents

|Evaluate Behaviors H Select Behaviors |

Figure 2: Agent abstract machine phases

3.7 Agent Abstract Machine
3.7.1 Agent structure

An agent program is given by describing a set of behaviours; a set of fluents and
a set, of triggers that relate fluents to behaviours.

Definition 3.10 Let C be a set of capabilities; an C-agent program is given by
a 3-uplets (B, F,G) where:

e B:{b; € (C,+,.)} is a set containing behaviors
o F:{f; € F} is a set containing fluents

e G C F x B is a trigger relation between fluents and behaviours

3.7.2 Agent abstract machine configuration

The operational semantics methodology suggests to specify formally all states
or configurations of the abstract machine. The dynamics of this machines is
then given as evolution rules linking configurations.

Definition 3.11 A configuration of the agent abstract machine is given by the
5-uplet (s,b,i,0,n) where:

e s € Z/5Z represents the state of the machine; 5 stages are needed for the
complete evaluation cycle.

b C B represents the set of active behaviors

® i € P(Sperception) represents the set of current perceptions

0 € P(Smfluence) represents the set of current influences

n € N represents the cycle number.

3.7.3 Agent abstract machine dynamics
The agent abstract machine dynamics is characterized by five stages :

1. Get perceptions phase: this is the starting point of each cycle where agent’s
perceptions are gathered by retrieving requested resource representations

2. Evaluate fluents phase: during this phase all fluents are evaluated to de-
termine their truth values

3. Select behaviors phase: the last phase has calculated the truth values of
fluents which permit to select triggered behaviors

4. Evaluate behaviors phase: all triggered behaviors along with perceptions
are used to construct taskgram that are submitted to the evaluation device

5. Commit influences phase: the evaluation of taskgrams produces a set of
influences that are submitted to the environment. This ends the current
cycle and a new cycle is started when a heartbeat signal is received.

These phases are described more formally by evolution rules described hereafter.
FE and M; represents respectively an environment and an evaluation device.

get perceptions rule

" = E(mget(0))
(0,b,4,0,n) — (1,b,4',0,n)

(6)

This rule states that a new perception set, ', is calculated by selecting only
influences of type ’get’ from the set of influences using the projection function
mget These influences are submitted to the environment that replies with repre-
sentations of resources.

fluents evaluation rule

b ={te B|(f.t)e G A Hold(f)}
(1?b7i703 n) - (2’ b/77:7 O’n)

(7)

This rule constructs a new set, b’, of behaviors that have been triggered by
holding fluents.

behaviors evaluation rule

o = Ua:eb Ms(x,1)
(27 b7 i7 O’ n/) - (3’ b7 Z" 0/, n)

(8)

Behaviors are used to construct takgrams using perceptions as an input.
These taskgrams are submitted to the evaluation device to calculate influences.
It is worth noting that side effects are not allowed until all influences are returned
from the evaluation device. This is an interesting proterty that will be used
to enable parallel evaluations of behaviors using a multi-threaded evaluation
device.

10

submit influences rule

E — Tpost,new,delete (0>
(37 b,i, o, n) - (43 bvi) o,n + 1)

9)

This rules submit influences of type ’post’, 'new’ and ’delete’ to the envi-
ronment. Since influences are submitted to the environment the agent’s cycle
number is increased.

restart cycle rule
signal(heartbeat)

(47 b7 /1:7 0? n) - (07 b7 7:7 07 n)
This rule is used to restart a new cycle for an agent when receiving a heart-
beat signal.

(10)

3.8 From agents to multi-agents system

A multi-agent systems is an aggregation of individual agents that collectively
behave as a whole and create system level functionality. However this informal
definition of a MAS does not specify the semantics of the aggregation. Thanks
to the algebraic structures of our agent framework we are able to suggest two
semantics for the aggregation of agents: (i) holonic semantics that considers
a MAS as a bigger agent, and (ii) reductionist semantics that differentiates
between the system level and the sub-system composed of autonomous agents.

3.8.1 Holonic MAS

Definition 3.12 Let A; : (B;, F;,G;) be a family set of agent structures; An
holonic multi-agent system built on A; is an agent defined as follows:

Ha, = (JBiJF. G

The system H 4,is still an agent built by making a union of all behaviours,
fluents, and triggers.

3.8.2 Reductionistic MAS

Definition 3.13 Let A; : (B;, F;, G;) be a family set of agent structures; An re-
ductionistic multi-agent system R 4, is defined by three set (B,F,G) representing
disjoint unions of agents:

Since, the union is disjoint we can identify each part of the union. We define
projection function m;(R) to isolates the i-th agent from the system R.

11

08| [+ |04

Cycle# n Cycle# n+1

Figure 3: Example of a holonic MAS composed of two turtle agents (while and
grey). The evolution of such as system is atomic from cycle n to n + 1.

o8] |+ #lo

Cyclest i,j Cyclest i,j+1
\
|0 b~ |Oé
Cyclestt i+1,j Cyclest# i+1,j+1

Figure 4: Example of a reductionistic MAS composed of two turtle agents. Each
agent has its cycle number and the evolution of the system is reduced to the
evolution of its agents.

3.8.3 Dynamics of holonic and reductionistic MAS

As a holistic MAS can be considered as a single agent which dynamics follows
what have been described in §3.7.3.

The dynamics of the a reductionistic MAS R is reduced to the dynamics of its
individual agents. Each agent m;(R) is considered independently and evaluated
as described in §3.7.3.

Consequently, agents of a holistic system are always synchronised on their
cycle number. By contrast agents of a reductionistic MAS evolve independently
and each agent owns its own cycle number.

Example Let us consider two turtle agents a;,as with a simple behavior: at
each cycle they move to the right cell.

When building a holonic MAS Hy,, 4,1the system behaves a single agent.
Figure 3 illustrates for instance the dynamics of this system by moving both
turtles in a single atomic cycle.

By contrast, a reductionistic MAS Ry, 4.} keeps information about each
agent and the dynamics of the system is defined by the proper dynamics of each
agent. Figure 4 illustrates this situation by showing all possible evolutions to
reach the final situation where both turtles have moved to the right cell.

4 Implementation of the abstract machine

We have followed principles developped in [1] for the development of the DSL
by distinguishing between different phases (front-end and back-end) and estab-
lishing an intermediary representation (IR). The agent IR specifies an agent
program as a set of behaviours, fluents and triggers. Different front-ends can be

12

Virtual Machine Device

Situated in ?
*

Contains

Agent Send Taskgrams Give back Influences Evaluation
T v

Multithreaded
Evaluation Device

Environment

Figure 5: Architecture of the MAS interpreter

used, such as graphical programming, to generate agent IRs that are interpreted
by the agent virtual machine. The architecture of the MAS interpreter is de-
scribed in Figure 5. Environments are organized as a hierarchy and responsible
for: (i) updating resource states when getting new, delete and post influences
and (ii) retrieving resource representations in case of a get influence. The agent
virtual machine implements the abstract agent machine as described in §3.7.3.
The evaluation device is responsible for computing taskgrams to produce in-
fluences. The current implementaion of MAS interpreter takes advantage from
taskgram properties: In fact, as demonstrated by functional programming [17],
computations that are bounded to a static data set and that avoid side effects
are efficiently parallelized. Taskgrams exhibit such property so a multi-threaded
evaluation device has been used to enhance performances.

5 Test case: Agent Serious Game

To experiment with the presented framework an application has been devel-
oped whithin the context of a health oriented serious game project for upper
limb reeducation (the name and reference to the project have been removed to
comply with the blind review process) Within this project, patients play move-
ment based games to improve their gesture. Developed games are required to
be intelligent enough to adjust gameplay to patient’s skills. Movements are
captured using motion capture devices and the game system must react at real-
time. To develop such flexible serious games, timely bounded agents are used
to control all game elements (sprites and non playing characters) Although sev-
eral game scenarios are investigated, we will present one specific game based
on prey-predator principle. The scenario of this game is as follows: the patient
controls a predator and wants to catch several moving preys controlled by soft-
ware agents. Obviously, the game has to pay attention to player’s frustration by
adjusting the difficulty of catching preys. This is performed by changing prey
agents’ cycle duration. The more this cycle is long, the slower prey agents will
react decreasing by the way the difficulty of the game. When the player starts
succeeding in catching preys the cycle duration is decreased to make agents
more reactive until reaching a threshold when the player is no longer able to
make catches. Again the agents’ cycle duration is adjusted since the game has

13

exceeded patient’s skills. The rest of subsection shows how this game has been
modelled and implemened.

5.1

Resources

Three types of resources are defined for the game:

Resource‘ Description ‘ URI ‘

This is a 2D grid com-
posed of cells. Each cell
has a position (x,y) and
can hold an agent

Arena /arena/cell

Represents a prey agent.
Prey Attributes are: location, | /prey
velocity, angle and cyle.

Represents mouse pointer
Predator| location. Attributes are: | /predator
location.

5.2

Programming prey agents

5.2.1 Capabilities:

move_safe : according to the near position of the ball, move the object

move__unsafe : according to the very near position of the ball, accelerate
and move the object

restore : no predator in sight, don’t move and restore from being tired

do_nothing

5.2.2 Fluents:

predatornear : the predator is near

predatorverynear : the predator is very close in the catch range

wallnear : a wall is in the move range of th object

tired : the prey agent is tired, and his velocity isn’t in his maximal power

adrenaline : adrenaline cooldown is complete. This is used to make brief
acceleration.

5.2.3 Triggers

ballnear N —~wallnear N\ —ballverynear = movesafe

ballverynear A\ —wallnear A adrenaline = moveunsafe

14

40,000

35,000

30,000

25,000

20,000 :;gg

15,000 71000

5,000 7

0,000

0 1000 2000 3000 4000 5000 600D
’ #agents\ #iteration \ 100 \ 500 \ 1000 ‘

100 0,097 s | 0,311s | 0,549 s
500 0,272s | 1491s | 2,817 s
1000 0,565s | 2,407s | 5,179 s
5000 2,565 s | 12,828 s | 34,022 s

Figure 6: Prey-Predator benchmark results (Y duration, X number of agents)

’ #agents\ #iteration \ 100 \ 500 \ 1000 ‘
100 0,00097 | 0,00062 | 0,00055
500 0,00272 | 0,00298 | 0,00282
1000 0,00565 | 0,00481 | 0,00518
5000 0,02565 | 0,02566 | 0,03402

Table 1: Stability of the ratio time/number of iterations

ballverynear A ~wallnear N\ —adrenaline = movesafe
—ballnear A tired = restore

—ballnear N\ —tired = donothing

5.2.4 Implementation of the game

This case study was implemented and tested using the stackless python. Stack-
less Python is an enhanced version of the Python programming language. It
allows programmers to reap the benefits of thread-based programming without
the performance and complexity problems associated with conventional threads.
The microthreads that Stackless adds to Python are a cheap and lightweight
convenience. Some usefull fonctionnality are also provided like channel for com-
munication and task scheduling. For this scenario, we consider the stackless
scheduling device as a multi-threaded evaluation device.

5.3 Benchmarks

15

The game described in the last section was also considered as a benchmark
to test performances of the agent VM. In this case, the palyer is replaced by
a random movement of the predator. Results' of benchmark are presented in
Figure 6. They show that despite the large number of agents that have been
used, the implementation gives interesting performances: the duration time
progresses linearly with the increase of agents. This is a pretty behaviour that
demonstrates that the implementation scales with the number of agents. This
is due to the use of parallel evaluations and stackless Python library to evaluate
taskgrams. Table 1 shows another interesting result: one can observe a stability
of the ratio execution time/number of iteration for a given number of agents.
This indicates that the dynamics of MAS has reached a steady regime in which
the time to compute a complete iteration making all agents deliberating is stable.
This can be explained by decomposition of the activities as taskgrams and the
use of efficient and stable multithreading library.

6 Related works

Since Y. Shoham [19] has introduced agent-oriented programming, many works
have contributed in creating an agent style of thinking, designing and program-
ming software systems. As mentioned in [4] works on agent programming fits
in the classical decomposition of programming languages being either declara-
tive or imperative. Declarative approaches are affiliated to the AI heritage of
knowledge representation and reasoning. In this area we could find languages
based upon Prolog and BDI, like AgentSpeak [15] or 3APL [11], which are great
to deduce knowledge from knowledge, by using predifined rules. However, these
approaches often suffer from practices of software engineering and complexity
of real world applications that cannot be captured at once as a set of first-order
logical expressions. For imperative style one can mention works like Jack or
CLAIMS [5] to model mobile agents. These works belong the process algebra
tradition initiated by R. Milner in the beginning of the 80’s. This approach
is purely syntactic and all properties have to be given as rewriting rules. As
consequence, the operational semantics is a big collection of rules that are not
easy to comprehend. To avoid this, we have adopted an algebraic semantics
approach that uses algebraic properties of structures. This makes the struc-
ture of the abstract machine more readable and its dynamics easy to express
and comprehend. Peter Novak has proposed the Behaviour State Machine [14]
framework as a way to manage knowledge representation by using an external
KR module. To some extent, we follow the same idea by considering a more
general approach using REST framework to encode knowledge within resources.

Management of realtime agents has not been widely addressed. In fact, works
on situation culculus [13], event calculus [16], IMPACT [20] and Temporal Agent
Reasoning [12], consider time as an additional dimension of a logical problem
but are not bounded to it. For instance, the time consumed by the agent to make

lhardware and software configuration: Intel(R) Core(TM)2 Duo CPU E7300 @ 2.66GHz
running under Linux Ubuntu 9.04

16

inferences using Prolog is not taken into accound. This makes these approaches
very useful for making analysis about specification of realtime systems but not
suitable to actually run realtime systems since they cannot be bound to wall
clock.

Our model defines formally an operational semantics to run timely bounded
agents by defining a timely bounded evaluation of taskgrams. By saying that
we can introduce a paradigm shift in building agent-based real-time systems. In
fact, since computation time is finite, we will always face the problem of bounded
evaluation of taskgrams. Consequently what matters in an agent based real-
time systems is not only defining intelligent behaviors but a strategy to adopt
to execute some behaviors while delaying or cancelling others. In fact, the most
complex and intelligent behavior could be useless if it get delayed by other
activities and consequently fails in meeting its time boundaries.

7 Conclusion

The framework presented in this paper defines a simple but yet powerful way
to program agent oriented application. Our proposition uses the REST archi-
tecture for interaction between agents, and also with the environment. That
guarantees many important properties in AOP programming, like agent auton-
omy because all information passing from an entity to another is considered as
representations of a resource. The dynamics of the abstract machine expresses
a well specifies agent’s cycle, with clear transition from a step to another. The
evaluation device ensures computation of influences within a timely-bounded
period. The framework has been implemented and tested in a real test case,
and the benchmarking shows some interesting and promising results. Future
works will consider using the proposed framework to design multi-agent system
in two application domains. The first one is the serious gaming to define real-
time games used in reeducation of upper limb. The second domain is embedded
system, where the use of this framework will be efficient because of the con-
sideration of the time. An interesting extension of the presented framework is
about introducing special events such to notify urgency and cancelation of be-
haviors during a cycle. In fact, we have considered that an agent is completely
isolated from the external world during the evaluation of a cycle of perception-
deliberation-influence. It could be interesting to consider some exceptions to
handle urgency and cancellation events. Execution of multiple parallel cycles is
an interesting approach to investigate.

References

[1] A. V. Aho, M. S. Lam, R. Sethi, and J. D. Ullman. Compilers: Principles,
Techniques, and Tools (2nd Edition). Addison Wesley, 2 edition, August
2006.

17

2]

3]

[4]

[5]

[6]

7]

8]

19]

[10]

[11]

[12]

[13]

[14]

[15]

M. Barr and C. Wells. Category Theory for Computing Science. Centre de
recherches mathématiques, Montreal, Canada, third edition, August 1999.

F. L. Bellifemine, G. Caire, and D. Greenwood. Developing Multi-Agent
Systems with JADE. Wiley, 2007.

R. H. Bordini, M. Dastani, J. Dix, and A. E. F. Seghrouchni. Multi-Agent
Programming: Languages, Tools and Applications. Springer Publishing
Company, Incorporated, 2009.

A. E. Fallah-Seghrouchni and A. Suna. Claim and sympa: A programming
environment for intelligent and mobile agents. In Multi-Agent Program-
ming, pages 95-122. 2005.

R. T. Fielding. Architectural Styles and the Design of Network-based Soft-
ware Architectures. PhD thesis, University of California, 2000.

D. Gelernter. Generative communication in linda. ACM Trans. Program.
Lang. Syst., 7(1):80-112, 1985.

G. D. Giacomo and H. J. Levesque. An incremental interpreter for high-
level programs with sensing. In H. J. Levesque and F. Pirri, editors, Logi-
cal Foundation for cognitive agents: contributions in honor of Ray Reiter,
pages 86—102. Springer, Berlin, 1999.

A. Gouaich and F. Michel. Towards a unified view of the environment(s)
within multi-agent systems. Informatica International Journal, 29(4):423—
432, 2005.

O. Gutknecht and J. Ferber. The madkit agent platform architecture.
In Revised Papers from the International Workshop on Infrastructure for
Multi- Agent Systems, pages 4855, London, UK, 2001. Springer-Verlag.

K. V. Hindriks and F. S. D. Boer. Agent programming in 3apl. AAMAS
Journal, 2:357-401, 1999.

S. K. Jurgen Dix and V. Subrahmanian. Temporal agent reasoning.
127(1):87-135, 2001.

J. McCarthy and P. J. Hayes. Some philosophical problems from the stand-
point of artificial intelligence. In B. Meltzer and D. Michie, editors, Machine
Intelligence 4, pages 463-502. Edinburgh University Press, 1969. reprinted
in McC90.

P. Novak. Thehavioural state machines: Programming modular agents. Pa-
pers from the AAAI Spring Symposium, Technical Report SS-08-02: Archi-
tectures for Intelligent Theory-Based Agents, AITA’08,AAAI Press, 2008.

A. S. Rao. Agentspeak(l): Bdi agents speak out in a logical computable
language. pages 42-55. Springer-Verlag, 1996.

18

[16] M. S. R.Kowalski. A logic-based calculus of events. 6795, 1986.

[17] P. Roe. Parallel Programming using Functional Languages. PhD thesis,
Glasgow University, 1991.

[18] S. Russell and P. Norvig. Artificial Intelligence: A Modern Approach.
Prentice-Hall, Englewood Cliffs, NJ, 2nd edition edition, 2003.

[19] Y. Shoham. Agent-oriented programming. Artificial Intelligence, 60:51-92,
1993.

[20] V. Subrahmanian, P. Bonatti, J. Dix, T. Eiter, S. Kraus, F. Ozcan, and
R. Ross. Heterogeneous Agent Systems: Theory and Implementation. MIT
Press, 2000.

[21] S. Tisue and U. Wilensky. Netlogo: A simple environment for modeling
complexity. 2004.

[22] W3C. Rfc 1630, universal resource indentifiers in www. Technical report,
W3C, 1994.

19

