
HAL Id: lirmm-00430646
https://hal-lirmm.ccsd.cnrs.fr/lirmm-00430646v1

Submitted on 9 Nov 2009

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

SAX: A Privacy Preserving General Purpose Method
applied to Detection of Intrusions

François Trousset, Pascal Poncelet, Florent Masseglia

To cite this version:
François Trousset, Pascal Poncelet, Florent Masseglia. SAX: A Privacy Preserving General Pur-
pose Method applied to Detection of Intrusions. ACM First International Workshop on Privacy and
Anonymity for Very Large Datasets, join with CIKM 09, Nov 2009, Hong Kong, China. pp.17-24.
�lirmm-00430646�

https://hal-lirmm.ccsd.cnrs.fr/lirmm-00430646v1
https://hal.archives-ouvertes.fr

SAX: A Privacy Preserving General Purpose Method
applied to Detection of Intrusions

François Trousset
LGI2P - Ecole des Mines

d’Alès, Parc Scientifique G.
Besse, 30035 Nîmes, France
francois.trousset@ema.fr

Pascal Poncelet
LIRMM UMR CNRS 5506, 161

Rue Ada, 34392 Montpellier
Cedex 5, France

poncelet@lirmm.fr

Florent Masseglia
INRIA Sophia Antipolis, route
des Lucioles - BP 93, 06902

Sophia Antipolis, France
florent.masseglia@sophia.inria.fr

ABSTRACT

To overcome the problem of attacks on networks, new Intru-
sion Detection System (IDS) approaches have been proposed
in recent years. They consist in identifying signatures of
known attacks to compare them to each request and deter-
mine whether it is an attack or not. However, these methods
are set to default when the attack is unknown However, it is
frequent that an attack has already been detected by another
organization and it would be useful to be able to benefit from
this knowledge to enrich the database of signatures. Unfor-
tunately this information is not so easy to obtain. In fact
organizations do not necessarily want to spread the informa-
tion that they have already faced this type of attack. In this
paper we propose a new approach to intrusion detection in a
collaborative environment but by preserving the privacy of
the collaborative organizations. Our approach works for any
signature even if it needs a complex program to be detected
and insure that no information is disclosed on the content
of any of the sites. For this pupose, we have developped a
general method (sax) that allows to compute any algorithm
while preserving privacy of data and also of the program
code which is computed.

Categories and Subject Descriptors

D.4.6 [Security and Protection]: Algorithms, Privacy

General Terms

Algorithms, Security

Keywords

Intrusion Detection, Attacks, Collaborative Organizations,
Privacy

1. INTRODUCTION
The fast growing computational Grid environments has

increased risk of attack and intrusion. Thus misuse detec-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
CIKM’09, November 2–6, 2009, Hong Kong, China.
Copyright 2009 ACM 978-1-60558-512-3/09/11 ...$10.00.

tion has become a real concern for companies and organi-
zations. Whereas earlier attacks focused on Web servers
(often misconfigured or poorly maintained), the most recent
ones take advantage of Security service and Web applica-
tion weaknesses which become more vulnerable [4, 2]. To
overcome this problem, new approaches called Intrusion De-
tection Systems (IDS) have been developed. Installed on
networks, they aim to analyze traffic requests and detect
malicious behavior (eg Prelude-IDS, Snort). They can be
classified into two broad categories (e.g. [8, 9]): the Anomaly
Detection Systems which attempt to detect attacks and the
Abuse Detection Systems which detects unknown comporte-
ment so called abuse from a specification of allowed ones.

Recently approaches called Collaborative Intrusion Detec-
tion Systems (CIDS) (e.g. [1, 12, 5, 7, 11]) have been pro-
posed. In comparison with isolated IDS, CIDS significantly
improve time and efficiency of misuse detections by sharing
information on attacks between distributed IDS from one or
more organizations. The main principle of these approaches
is to exchange information using peer to peer links. How-
ever the exchanged information are mostly limited to IP ad-
dresses of requests (e.g. [1, 5, 7]) and consider that data can
be freely exchanged among the peers. The last constraint is
very strong: companies, for reasons of confidentiality, do not
want to spread out that they were attacked and therefore are
unwilling to give any information on it.

In this article we propose a secure collaborative detec-
tion approach, called SAX (Secure Algorithm eXecution),
which ensures that private data and programs will not be
disclosed. Via our approach, any program from the various
collaborative sites can be executed without disclosing any
information from the local IDS to the outside. Collabora-
tive Sites are free to work with signatures of attacks or non-
attacks and may give information on the type of intrusion
detected. Thus, when new request is checked, the response
will be one of: it is an attack (with its type if available), it
is a non-attack, or unknown (if none of the IDS data leads
to a positive or negative conclusion). To our knowledge,
very little studies are concerned with this topic of security
in such collaborative environment. The only works [10, 7]
consider both collaborative and security aspects. In its con-
text, security mainly concerns information on IP addresses
and ports. It uses Bloom’s filters to manage data exchanges.
Our problem is different in that, we want to exchange data,
i.e. more complex than IP addresses and ports. In fact we
wants to be able to exchange and execute any algorithm of
anomaly detection on the full request.

In previous studies, we focused on those anomalies whose

signature detection may be expressed as a regular expres-
sions. But there is still a lot of cases that cannot be ex-
pressed like that and which need specific programs to be
detected. Instead of handling them one by one, we decided
to study a general purpose method able to execute any pro-
gram while preserving privacy of data and also of the pro-
gram code (once it has been translated into the adequate
formalism). This method is described in this article.

The article is organized as follows. In section 2, we present
the problem. An overview of our approach is given in sec-
tion 3 and 4. The various algorithms are described in section
5. Finally section 6 concludes and presents various perspec-
tives.

2. PROBLEM STATEMENT
DB is a database such as DB = DB1

S

DB2 ...
S

DBD.
Each database DBi is equivalent to a tuple < id, SAlg >
where id is the identifier of the database and SAlg is a set of
anomaly detection programs expressed as a finite state au-
tomaton and initial program data. The details are described
in section 3. The other part of input data of the program
is the request string R owned by the client site S. Each
program will provide two kinds of value: a three states flag
(True/F lase/Unknown) specifying whether the request is
an attack or not or has not been identified at all and an in-
teger (the type of the attack) when the request is effectively
identified as an attack (True state).

Definition 1. Given a database DB = DB1

S

DB2 ...
S

DBD and a request string R, the secure approach in such a
collaborative environment consists in finding a program Alg
from DB such that exection of Alg upon R gives a False or
True result (identify an attack or a non-attack) while ensur-
ing that the client site does not provide the request string
R to anyone and that none of the databases DBi provided
any information from its content to anyone (programs and
data).

3. THE SAX APPROACH
This section will provide an overview of the secure archi-

tecture SAX (Secure Algorithm eXecution). It is designed
to answer the problem of privacy preserving in a collabora-
tive environment. Inspired by the work of [6], this architec-
ture offers the advantage of achieving the various operations
while ensuring that neither party may have access to private
data contained in the initial databases. In addition to the
client site S which is responsible to provide the request to
be tested, the architecture requires four non-collaborative
and semi honest sites [3]: they follow the protocol correctly,
but are free to use the information they have collected dur-
ing the execution of the protocol. These independent sites
collect, store and evaluate information in a secure way. The
different functions provided by these sites are:

• The Control Site CTRL: CTRL is used to rule the
various operations needed to execute the program To
do this, it interacts with the two non colluding sites
NC1 and NC2.

• Non Colluding Sites NC1 and NC2: These two
symmetric sites collects garbled data from all databases
as well as the garbled request to be tested from S.

Under the control of CTRL and by interaction with
PS, they perform several secure operations in order
to insure that none of them will be able to infer any
of the intermediate results or the final result which is
returned to site S.

• The Processing Site PS: This site is used both by
NC1 and NC2 to process, in a secure way, the various
needed operations. Like NC1 and NC2, PS also can-
not deduce any pertinent value of intermediate or final
result from the data it processes.

Remark:The data kept by NC1 (
+
D) and NC2 (

−

D) are

random data such that
+
D ⊕

−

D = V where V is the real
value. But as NC1 and NC2 are non-colluding, the value of
V will never be known by any of the sites. (Details will be
explained in the following sections).

3.1 Encoding of the program
To perform a secure computation of client site S data by

a program comming from an external site DBi (which may
be anonymated), we consider the program as a deterministic
automaton < State, Trans, Init, F inal > where State is the
set of states of the automaton, Init is the initial state, Final
is the set of final states and Trans is the set of transitions.
Each transition is a quadruplet (SInitial, Action, SFinal0,
SFinal1) meaning that if the automaton is in state SInitial

and that Action is performed and returns a boolean value
then the automaton’s current state changes to SFinal0 if
the boolean value is false or to SFinal1 if it is true. The
automaton starts with state Init and ends when reaching
any of the final states from Final.

Remark: To ensure that computation is secure, none of
the perfomed action shall return any data to the site DBi

which gave the program to be computed. This means that
only the client site S gets results.

This encoding implies that all of the states (but final ones)
are connected to two other states in the graph of the automa-
ton (in fact SFinal0 and SFinal1). These links are designated
by ⊖ leading to SFinal0 and ⊕ leading to SFinal1.

Each action is in fact a list of 3-uplets (OpNum, Aff1,
Aff2) where OpNum is the number of the operation to be
processed, and Aff1 and Aff2 are two random sequences
of bits of of same length. Each 3-uplet of the list performs
the same action by using different operators which will be
effectively executed by NC1 and NC2. There is a list to
avoid NC1 and NC2 from deducing any link between the
value of OpNum and a “corresponding state” in CTRL

The automaton is managed by CTRL while NC1, NC2

maintain the memory and performs the operations on the
values through PS. If CTRL maintains the list of opera-
tion numbers to be performed for each node, the protocol
to be performed when executing this operation is aimed by
NC1 and NC2 and data used as input and output of this op-
eration will only be kept (garbled) in NC1 and NC2. Thus
CTRL will know nothing about the real operation that is
performed and no more on the values used and produced by
the operation. NC1 and NC2 also owns a list of Registers
which contains address in the memory. These register will be
used to perform indirect and based memory access. Instead
of the data kept in their memory which are garbled, the real
values of registers are known by both NC1 and NC2.

DB
1

DB
D

4
5

2

4

2

5

3

7

7

2 13

6 6

1

Non!Colluding Site Non!Colluding Site

NC1 NC

Processing Site

PS

2

Site

Control Site

CTRL

Figure 1: General Architecture of SAX

After Performing the Action associated to a state, CTRL
receives two bits (one fron NC1 and one from NC2). If
these two bits are identical then CTRL follows the link ⊕
otherwise it follows the link ⊖.

For each operation OpNum of CTRL, NC1 and NC2

have a corresponding 5-uplet (Protos, NCA, Arg1, Arg2,
Res, Incr) where Protos is a list of binary operations (p
elements), NCA is a random number (1+m+n+p+q bits),
Arg1 is the list of values from the memory that may poten-
tially be used as first argument of operation (n elements),
Arg2 is similar to Arg1 but for the second argument (m ele-
ments), Res is the list ot potential storages for the result in
the memory (q elements), and Incr is the list (r elements)
of couples (Register, IncrV al) giving increments to perform
on registers at the end of the operation. In fact the Arg1,
Arg2 and Res are couples (Position, Length) where Length
is the number of bits of the value and Position is either a
position in the memory or a a register number Reg and an
Offset to perform indirect or based memory addressing.

Remark: there is several ways to implement an action
that does only register increments, but it also exists a non
operation prototype named NOP S designed for this pur-
pose.

Remark: Aff1, Aff2 are such that Aff = Aff1 ⊕

Aff2 ⊕
+

NCA ⊕
−

NCA where
+

NCA is the part of NCA owned

by NC1 and
−

NCA is the part owned by NC2. Aff is a list
of boolean flags (true/flase) that are used to specify which
affectation shall be effectively done (see section 3.3). We

will use the notations
+

Aff = Aff1 ⊕
+

NCA owned by NC1

and
−

Aff = Aff2 ⊕
−

NCA owned by NC2.

In fact Aff1 =
+

Aff⊕RND1, Aff2 =
−

Aff⊕RND2,
+

NCA =

RND1 ⊕ RND3 is owned by NC1 and
−

NCA = RND2 ⊕
RND3 is owned by NC2 where RND1, RND2 and RND3

are generated by DBi and Aff =
+

Aff ⊕
−

Aff.

3.2 Initialization of the processus and global
processing

The exchange of data between the different sites is done

by using the secure method SENDS(
+
V |

−

V)′ which sends the

vector of bits V =
+
V ⊕

−

V to NC1 and NC2. It is defined

in order to send
+
V to NC1 and

−

V to NC2 (or vice versa).
A random vector R is used to garble transmitted data such

that
+
V = R and

−

V = V ⊕ R or vice versa. This method
is used in particular to send the data from the databases
DBi and to send the request from site S. Thus, the process
described in figure 1 starts in the following way.

* First, the site S sends its request to NC1 and NC2

using the SENDS method (See arrow number 1 in figure 1).
More precisely, the request R is taken in its boolean form:
a vector of bits.

* A random vector of bits AR is then generated with
the same size as the request R to compute the new vector
ZR = AR

L

R. ZR is sent to NC1 and AR to NC2 (or
vice versa).

* Each database DBi sends the transition matrix of its
automaton to CTRL (See arrows number 2) The size of the
needed memory, the number of needed adress registers and
their initial value are naturaly sent to NC1 and NC2 as their
real values are known by both sites. The initial value of the
memory is sent to NC1 and NC2 by using SENDS . DBi

also sends the list of actions to be performed (5-uplets) to
NC1 and NC2.

From this point, the computation of the request is done
under the control of CTRL. It will ask NC1 and NC2 exe-
cute action (See arrow number 3).

* The action is effectively performed securely by NC1

and NC2 throught PS (See arrow number 4 and 5).
* The result of the action is a boolean divided in two

parts, one is owned by NC1 and the other by NC2 such
that none are able to infer its real value. Both parts are
then securely returned to CTRL (see arrows 5 and 6)

* While NC1 and NC2 are updating the value of the
different registers as needed by the action, CTRL compares
the two values he received and updates the current state of
the automate in consequence.

* The process is repeated under control of CTRL unless
the automaton moves into a final state.

* When entering a Final state, the result value previ-
ously stored by the program by executing the secure action
AFFECT S is aggregated or sent to the client site S by NC1

and NC2 (See arrow number 7) under the control of CTRL.

This choice depends of the configuration of the anonymity
behaviour (See section 4).

3.3 Execution of action
When CTRL enter a non final state, he starts by ran-

domly selecting one of the 3-uplets (OpNum, Aff1, Aff2)
from the list associated to this state. It then generates a
random number ROP of same length than Aff1 and Aff2.

Then CTRL sends
+

AR = Aff1 ⊕ ROP to NC1 and
−

AR =
Aff2 ⊕ROP to NC2.

NC1 (respectively NC2) computes the vectors of bits
+
A =

+
AR⊕

+
NCA (respectively

−

A =
−

AR⊕
−

NCA) and extract
+
B

0 =
+
A[0],

+
B

1 =
+
A[1 . . . n],

+
B

2 =
+
A[n + 1 . . . n + m],

+
B

3 =
+
A[n + m +

1 . . . n+m+ p],
+
B

4 =
+
A[n+m+ p+1 . . . n+m+ p+ q] (and

repectively NC2 extract then
−

B parts from
−

A). We will use

the notation
+
B

i
j for

+
B

i[j] which is the jth bit of the vector of

bits
+
B

i and similarly for the
−

B form.

Now let
+
V

1 and
+
V

2 (respectively
−

V
1 and

−

V
2) be two distinct

vectors of bits of length greater or equal to the lengths on

any of the values in
+

Arg
1 for

+
V

1 and
+

Arg
2 for

+
V

2 used to store

the actual arguments of operations. We shall also use
+
R and

+

b (respectively
−

R and
−

b) to store the computed results of the
operation.

Now NC1 (respectively NC2) conputes the following se-
cure instructions (See notations in section 5):

foreach i ∈ [1.n] do AFFECT s(
+
V

1,
+
B

1
i,

+
Arg

1
i|

−

V
1,

−

B
1
i,

−

Arg
1
i);

foreach i ∈ [1.m] do AFFECT s(
+
V

2,
+
B

2
i,

+
Arg

2
i|

−

V
2,

−

B
2
i,

−

Arg
2
i);

(
+

b |
−

b)← (
+
B

0|
+
B

0);
foreach i ∈ [1 . . . p] do

(
+

RX,
+

bx|
−

RX,
−

bx)← Protoi(
+
V

1,
+
V

2|
−

V
1,

−

V
2);

AFFECT s(
+
R,

+
B

3
i,

+
RX|

−

R,
−

B
3
i,

−

RX);

AFFECT s(
+

b ,
+
B

3
i,

+

bx|
−

b ,
−

B
3
i,

−

bx);

foreach i ∈ [1..q] do AFFECT s(
+

Resi,
+
B

4
i,

+
R|

−

Resi,
−

B
4
i,

−

R);
foreach i ∈ [1 . . . r] do

Register[Regi] = Register[Regi] + IncrV ali
Remark: There exists more complex operators on in-

dexes but incrementation is sufficient for our purpose as we
shall care that operations on indexes are not private: NC1

and NC2 knows their real value. We shall also notice that
operation on indexes shall never combine data stored in the
memory otherwise NC1 and NC2 will gain access to the real
values of data stored in their memory.

3.4 Proof of privacy

Property 1. This implementation allows to compute se-
curely any program while encoded in the correct form.

Proof : The secure operations computed may be any boolean
operation. We have encoded the operation and (

V

S) and
not (¬S) that form a generator system of the booleans. That
means that any other boolean operation may be encoded se-
curely. If in theory, we consider the memory maintained by
NC1 and NC2 to be infinite it is easy to encode any Turing
Machine using CTRL, NC1, NC2 and PS. To do that we
only need one Register, and to decompose each transaction
of the Turing Machine in three single transactions of our
automaton, the first consists in testing the value at the cur-
rent (Register) position by using COMPARES , the second

stores new data at the current position using AFFECT S

and the third increments the Register with value 1 ou -1
using operator NOP S .

Property 2. This secure execution of a program pro-
hibits DB to know any of the client’s data.

Proof : The proof is evident as no data is returned to DB.
On the client side, it may not be true but it depends on
the program which is computed by the system which is of
the responsability of DB. Thus if the program deliver data
comming from DB to the client, that means that DB (who
writes the program) has decided that it shall be so and thus
it is a normal result approved by DB.

Property 3. CTRL does not know any of the incoming
and outgoing data and does not even know what processing
has been performed on the data.

Proof : CTRL does not have access to any of the data man-
aged by NC1 and NC2. It also has only access to operation
numbers and does not know to which protocols it corre-
sponds. Further more the values of Aff1 and Aff2 are pure
random values from which it cannot infer anything, even the
length of those may be greater that the one really needed
by NC1 or NC2. The only thing that CTRL may infere is
the sequence of states encoutered during a run.

Property 4. None of NC1, NC2 or PS can infere what
processing has been performed.

Proof : At each step, when executing an action, NC1 and
NC2 perform several operation using various values from
the memory and it does not know which of the values will
be used as inputs of the operator, nor which result is stored
in the memory no more than where it is effectively stored.
This is due to the usage of the secure conditional assignment
operator AFFECT S .

Secondly when NC1 is performing any boolean operation
it does not know if NC2 negates or not any of the value or
the result (because to implement the negation, only one from
NC1 and NC2 has to negate the value which is a property
of ⊕ : if A = X ⊕ Y then ¬A = ¬X ⊕ Y = X ⊕ ¬Y

Property 5. None of NC1, NC2 or PS can deduce any
real value of the incoming or produced data.

Proof : NC1 and NC2 own only garbled data at the begining
of the process. During the processing the usage of secure
operators insure that they get only garbled data from witch
they cannot infere any information on the real values. In the
case of PS it does not owns any data and gets pure random
data from NC1 and NC2 and returns random values. (See
proof of operators for more details).

Remark: The values of m, n, p, q and r arte chosen by
DBi when producing the automata. The cost in time is
linearly increassing with the value of m + n + p + q + r. At
the same time, the “randomness” of the resulting program
increasses by m ∗ n ∗ p ∗ q ∗ r. When encoding program
DBi must choose values such that time cost is bearable and
garbling of the algorith is the highest one.

4. ANONYMISATION
There is two main ways to do anonymization: in buffer-

ing inputs programs issued by databases DBi and execute
them randomly or in buffering results before sending them

randomly to the client. The first one essentialy introduce
costs in term of space (we need to store the automata in
CTRL and associated data in NC1 and NC2). The second
one essentially introduce time costs (we may process other
DBi’s programs while the desired result has already been
obtained. And we will do that until the client gets this re-
sult). A third way is to mix the two approches and adapt
parameters (size of both buffers) to adjust anonymization
process according to the needs and bearable costs.

As we are dealing with anomaly detection, the result is
not so complex: an algorithm may detect an attack and
then give the type of the detected attack, or identify a non
attack request or may not be able to identify the request. In
fact only the first positive or negative result has to be kept.
Then we only need to keep one result in NC1 and NC2 in
an Accumulator. Any new result may be aggregated in the
accumulator by computing securely

if (Accumulator == unknown) then Accumulator =
Result which may be easily computed by using the opera-
tors COMPARES and AFFECT S . At the origin, the ac-
cumulator is set securely with the value “unknown”. Thus,
when anonymization is done by buffering results, we only
get time costs, and the parameter is the number of aggrega-
tions to be performed before sending an agregated result to
the client.

5. THE SECURE ALGORITHMS
In this section, we present the various algorithms used in

SAX approach. In order to simplify writing, we consider the
following notations:

Let (
+
X|

−

X) ← hS(
+
Y1...

+
Yn|

−

Y1...
−

Yn) be a tripartite computa-
tion of any function hS between NC1, NC2 and PS where

NC1 owns some of the entries
+
Y1...

+
Yn and gets part of the

result
+
X and similarly NC2 owns some of the entries

−

Y1...
−

Yn

and gets part of the result
−

X.
The final result is obtained by applying the binary oper-

ator XOR (
L

) between
+
X and

−

X. However, this does not

mean that NC1 sends exactly
+
Y1...

+
Yn to PS an receives the

result
+
X from PS. In fact, NC1 garbles its inputs

+
Y1...

+
Yn

by adding random noise and gets
+

Y ′

1
...

+

Y ′

n
which are securely

sent to PS. Similarly, NC2 sends its garbled inputs to PS.
At the end of the process, both sites receives a part of

garbled result from PS (respectively
+

X′ and
−

X′). This inter-
mediate result may now be used as input of further compu-
tation.

We will also use the following simplifications:

1. gS(
+
x,

+
y |

−

x,
−

y) ⇔ gS(
+
x|

−

x;
+
y |

−

y)
2. Si hS() is a 2 argument function then

hS(
+

X1, · · · ,
+

Xn|
−

X1, · · · ,
−

Xn) will correspond to

hS(hS(· · ·hS(hS(
+

X1,
+

X2|
−

X1,
−

X2);
+

X3|
−

X3) · · ·);
+

Xn|
−

Xn)

5.1 The algorithm AFFECT S

The operator AFFECT S implements a conditional affec-
tation of value to a variable. The non secure equivalent
operator AFFECT could be sepcified as follows:

AFFECT (Var , Cond , Value)
⇔ if (cond) thenVar ← Value;

elseVar ← Var;
fi

The secure implementation of this operation (which is
shown in algorithm 1 ensure that no one can infer whether
the affectation has effectively been done or not. That means
that no one can predict the value stored in V ar unless it
already know the value of Cond (but NC1 and NC2 only
knows random values).

The secure operator AFFECT S shall be used in the fol-
lowing way:

AFFECT s(
+

V ar,
+

Cond,
+

V alue|
−

V ar,
−

Cond,
−

V alue);

where
+
∗ are owned by NC1 and

−

∗ are owned by NC2.
The implementation of AFFECT S require the secure op-

erators
W

S(
+
S1,

+
S2|

−

S1,
−

S2)→ (
+
V |

−

V) and
V

S(
+
S1,

+
S2|

−

S1,
−

S2)→ (
+
V |

−

V)
which implements respectively a secure computation of bit-
wise operators OR and AND on vectors of bits of same
length (S1 and S2) and returns the sequence V . At the
end of the process of AFFECT S , the new value computed

will be stored in the original variables
+

V ar for NC1 and
−

V ar

for NC2.

Algorithm 1: Algorithm AFFECT S

Data: V ar =
+

V ar ⊕
−

V ar of length n is the value of the
variable.

// V alue =
+

V alue⊕
−

V alue is the value to be
conditionally affected (of length n).

// Cond =
+

Cond⊕
−

Cond is the 1 bit condition true if the
affectation shall be done and false otherwise.

1. ∀k ∈ 1..n NC1,NC2 and PS compute

(
+

Wk
|

−

Wk
) =

V

S(
W

S(
+

Cond,
+

V aluek|
−

Cond,
−

V aluek);
W

S(¬
+

Cond,
+

V ark|
−

Cond,
−

V ark))

2. NC1 and NC2 respectively computes
+

V ar =
+
W and

−

V ar =
−

W .

Property 6. AFFECT S prohibits NC1 and NC2 to ac-
cess the value stored in the variable V ar. They even do not
know if the value stored in V ar has changed or not.

Proof : All the values stored in NC1 and NC2 are random-
ized. This count also for V ar, Cond and V alue. That means
that none knows the real value stored in V ar and V alue.
To know whether V alue is affected to V ar or not they shall
know the real value of Cond but as it is also randomized they
cannot infer whether the value of V ar has been changed or

not. In any case, the new value of
+

V ar and
−

V ar are new
random values whatever the affectation has been effective
or not.
Complexity: The methods

W

S and
V

S are used 2n and
n times respectively on one bit. By reusing the complex-
ity of operators

W

S and
V

S (see section 5.2), NC1 and
NC2 therefore perform 34n binary operations, generate 6n
aleatory bits, send 12n bits and receive 10n bits (including
parameters). PS performs 12n binary operations, generates
3n + 1 aleatory bits, receives 12n bits (6n from NC1 and
NC2 each) and sends 6n bits (3n to NC1 and NC2 each).
Obviously this has to be compared with the length of inputs
(n bits).

Algorithm 2: The Algorithm
V

S

Data: (
+
X,

+
Y |

−

X,
−

Y) vector of bit/s are such that
+
X and

+
Y are in NC1, and

−

X and
−

Y are in NC2

Result: (AR|BR) is such that

AR ⊕BR = (
+
X ⊕

−

X)
V

(
+
Y ⊕

−

Y)

1. NC1 and NC2 mutually generate and exchange
four random vector of bit/s RA, R′

A, RB and R′

B

such that:
+
X

′

=
+
X

L

RA,
+
Y

′

=
+
Y

L

R′

A,
−

X

′

=
−

X

L

RB and
−

Y

′

=
−

Y

L

R′

B .

2. NC1 sends
+

X′ and
+

Y ′ to PS.

3. NC2 sends
−

X′ and
−

Y ′ to PS.

4. PS computes
+
C =

+

X′

V

−

Y ′ and
−

C =
+

Y ′

V

−

X′ and
generates a random vector of bit/s RPS .

5. PS sends A′

PS =
+
C

L

RPS to NC1 and

B′

PS =
−

C

L

RPS to NC2.

6. NC1 computes AR = A′

PS

L

(
+
X

V

R′

B)
L

(
+
Y

V

RB)
L

(
+
X

V +
Y)

L

(RB

V

R′

A)

7. NC2 computes BR = B′

PS

L

(
−

X

V

R′

A)
L

(
−

Y

V

RA)
L

(
−

X

V

−

Y)
L

(RA

V

R′

B).

5.2 The algorithms
V

S and
W

S

In this section, we define algorithms used to implement
the secure operator

V

S and
W

S , the basic principle of these
algorithms is to add uniform random noise to the data which
could be deleted from the final result.

The
V

S protocol begins with NC1 and NC2 who modify
their data by doing XOR them with random values (see step
1 in algorithm). NC1 and NC2 share these random values
(also see step 1). Garbled data are then send to PS (step
2 and 3) which is now able to compute

V

in a secure way
(step 4). In fact, PS gets only garbled inputs indistinguish-
able from random and unrelated to each others and thus
calculates random values from its point of view.

To avoid NC1 and NC2 from inferring the final result,
it does XOR with random noise to the values it calculates
before sending them back to NC1 and NC2 (step 5). Now
NC1 and NC2 may both obtain their part of the final result
by removing the random noise they added on step 1 (see
step 6 and 7). The final result is obtained by computing:

AR
L

BR = A′

PS

L

(
+
X

V

R′

B)
L

(
+
Y

V

RB)
L

(
+
X

V +
Y)

L

(

RB

V

R′

A)
L

B′

PS

L

(
−

X

V

R′

A)
L

(
−

Y

V

RA)
L

(
−

X

V

−

Y)
L

(RA

V

R′

B)

where:
A′

PS

L

B′

PS = (
+
X

V

R′

B)
L

(
+
Y

V

RB)
L

(
−

X

V

R′

A)
L

(
−

Y

V

RA)
L

(
+
X

V +
Y)

L

(
−

X

V

−

Y)
L

(RA

V

R′

B)
L

(RB

V

R′

A)
L

RPS

L

RPS .

Using the property of the XOR operator: R
L

R = 0, we

get the desired result: AR
L

BR =
+
X

V +
Y

L +
X

V

−

Y

L

−

X

V +
Y

L

−

X

V

−

Y . Which is a re-written form of (
+
X

L

−

X)
V

(
+
Y

L

−

Y).
However, this operation is never performed by the non col-
laborative sites and the final result is kept shared between
NC1 and NC2.

The
W

S protocol is identical to the
V

S protocol except
for the last two steps (steps 6 and 7) performed by NC1 and
NC2. Thus we get the final result:

AR
L

BR =
+

C′

L

(
+
X

V

R′

B)
L

(
+
Y

V

RB)
L +

X

L +
Y

L

(
+
X

V

+
Y)

L

(RB

V

R′

A)
L

−

C′

L

(
−

X

V

R′

A)
L

(
−

Y

V

RA)
L

−

X

L

−

Y
L

(
−

X

V

−

Y)
L

(RA

V

R′

B).

This reduce to the desired result: AR
L

BR =
+
X

L +
Y

L

(
+
X

V +
Y)

L

(
+
X

V

−

Y)
L

−

X

L

−

Y

L

(
−

X

V +
Y)

L

(
−

X

V

−

Y) which

is a re-written form of (
+
X ⊕

−

X)
W

(
+
Y ⊕

−

Y).

Algorithm 3: The algorithm
W

S

Data: (
+
X,

+
Y |

−

X,
−

Y) vector of bit/s such that
+
X et

+
Y

belongs to NC1,
−

X and
−

Y belongs to NC2.
Result: (AR|BR) is such that

AR
L

BR = (
+
X

L

−

X)
W

(
+
Y

L

−

Y).

1..5. These steps are same as initial 5 steps of
V

S

function.

6. NC1 computes AR = A′

PS

L

(
+
X

V

R′

B)
L

(
+
Y

V

RB)
L +

X

L +
Y

L

(
+
X

V +
Y)

L

(RB

V

R′

A).

7. NC2 computes BR = B′

PS

L

(
−

X

V

R′

A)
L

(
−

Y

V

RA)
L

−

X

L

−

Y

L

(
−

X

V

−

Y)
L

(RA

V

R′

B).

Property 7.
V

S and
W

S forbid NC1 to gain any infor-
mation of private data of NC2 (and vice versa). Moreover,
the PS learns none of their private inputs.

Proof : From the protocol, B′

PS is the only value that NC2

can learn from the private data of NC1. Due to the noise,
RPS , added by PS, NC2 is still not able to deduce the values

of
+
X or

+
Y . As the roles of NC1 and NC2 are interchangeable,

the same argument holds for NC1, not able to learn the pri-

vate inputs
−

X or
−

Y of NC2. However, one key security aspect
of not leaking any information to PS is achieved by random-
izing the inputs before transmitting them to the Processing
Site. Due to the randomization performed during the initial
step, it just infers a stream of uniformly distributed values,
and cannot distinguish between a genuine and a random
value.

Complexity: Length of bit vector is 1: For the operator
V

S ,
NC1 and NC2 each performs 10 binary operations (6

L

and 4∧).
W

S does two more
L

that means 12 binary oper-
ations. For both operators NC1 and NC2 generate 2 random
bits, exchange 2× 2 random bits and send 2× 1 bits to PS.
PS generates 1 random bit and performs 4 binary operation
(2

L

and 2
V

) and returns 2 bits to NC1 and NC2 each.

5.3 The Algorithm COMPARES

Algorithm 4: The Algorithm COMPARES

Data: Half part of V and W is owned by NC1 and the
other part is owned by NC2

Result: (
+
R|

−

R) is such that
+
R⊕

−

R = 1 if V = W else 0

1. NC1 computes X ←
+
V ⊕

+
W where

X = (X1, X2, · · · , Xl) and l is the length of vector V
and W .

2. NC2 computes Y ←
−

V ⊕
−

W where
Y = (Y1, Y2, · · · , Yl).

3. (
+

R1|
−

R1)← ORS(X1, X2, · · · , Xl|Y1, Y2, · · · , Yl)

4. There is two ways to gets the resul either NC1, NC2

perform (
+
R|

−

R)← (¬
+

R1|
−

R1) or (
+
R|

−

R)← (
+

R1|¬
−

R1).

Property 8. NC1 and NC2 gain no information of the
real values which are compared and of the result of the com-
parison.

Proof: The input data sent to NC1 and NC2 are garbled
with random values. Thus they cannot distinguish them
from random values. In the same way, all values returned
by

W

S are also garbled with unrelated random bits. Thus
NC1 and NC2 only gets random values and then cannot
infer the actual values of the inputs or results. If PS keeps
history of intermediate results, it might deduce a part of
the aleatory bits that were used to encode its results sent
to NC1 and NC2. However, this gives no information of
actual data.
Complexity: Length of bit vector is l: COMPARES exe-
cutes l ⊕ operations and l − 1

W

S . Thus NC1 and NC2

compute 13l−12 binary operations (plus 1 negation in NC1

or NC2), generate 2l − 2 aleatory bits, receive 4l − 3 bits
(including inputs) and send 5l − 4 bits (including the re-
sult). On PS side, PS computes 4l − 4 binary operations,
generates l − 1 aleatory bits, receives 4l − 4 bits and sends
2l − 2 bits.

5.4 The Algorithm ¬S and NOP S

Both are very simple to implement, by negating or not the
value in NC1 and/or NC2: If none or both negate the value
it is a NOP S operation but if only one does it, it is a ¬S

operation. In the point of vue of NC1 (respectively NC2),
there is no way to know which operation is realy executed
as none of them knows whether or not the other site negates
or not its value. We also may implement these operation by
involving PS in the process to increse the confusion of NC1

and NC2 but it will consume extra time.

6. CONCLUSION
In this paper, we proposed a new approach to do any com-

putation in a collaborative environment while preserving pri-
vacy and applied it to the intrusion detection problematic.
Via our approach an application can use knowledge from
foreign databases to identify whether a request corresponds
to an attack or not. We have demonstrated that the pro-
posed architecture ensured that it is impossible to identify
which database has given the answer and that none of the

internal components of the architecture can infer knowledge
on the databases or on the request from the data they got.
Our approach may also provide the type of the attack when
they are specified in the databases. We also demonstrate
that the cost of this secure computation is linear with the
one of the same computation executed in a non-secure way.

The approach also seams to be very scalable and one of
our current focus is to study in which cases each site is re-
quired depending of the needs of programs code privacy or
anonymity of sites. The second one concern the hability to
detect when one or more of the non-colluding site does not
comform to the edicted protocol. And another one concern
the efficiency of operators (i.e introduce more powerfull and
efficient operators like arithmetic ones) and the definition
of a programming langage upon the SAX architecture to
simplify the task of encoding.

7. REFERENCES
[1] F. Cuppens and A. Miege. Alert correlation in a

cooperative intrusion detection framework. In Proc. of
the IEEE International Conference on Networks
(ICON 2005), pages 118–123, 2005.

[2] T. Escamilla. Intrusion Detection: Network Security
beyond the firewall. John Wiley and Sons, Ed., 1998.

[3] O. Goldreich. Secure multi-party computation. In
citeseer.ist.psu.edu/goldreich98secure.html, 2000.

[4] R. Heady, G. Luger, A. Maccabe, and M. Servilla. The
architecture of a network level intrusion detection
system. Technical Report CS9020, 1990.

[5] R. Janakiraman, M. Waldvoge, and Q. Zhang. Indra:
a peer-to-peer approach to network intrusion detection
and prevention. In Proc. of the 12th IEEE
International Workshops on Enabling Technologies:
Infrastructure for Collaborative Enterprises, 2003.

[6] M. Kantarcioglu and J. Vaidya. An architecture for
privacy-preserving mining of client information. In
Proc. of the Workshop on Privacy, pages 27–42, 2002.

[7] M. Locasto, J. Parekh, A. Keromytis, and S. Stolfo.
Towards collaborative security and p2p intrusion
detection. In Proc. of the 2005 IEEE Workshop on
Information Assurance and Security, 2005.

[8] J. McHugh, A. Christie, and J. Allen. Defending
yourself: the role of intrusion detection systems. IEEE
Software, pages 42–51, Sep/Oct 2000.

[9] P. Proctor. Practical Intrusion Detection Handbook.
Prentice-Hall, 2001.

[10] K. Wang, G. Cretu, and S. Stolfo. Anomalous
payload-based worm detection and signature
generation. In Proc. of the 8th International
Symposium on Recent Advances in Intrusion
Detection, 2005.

[11] G. Zhang and M. Parashar. Cooperative defence
against ddos attacks. Journal of Research and Practice
in Information Technology, 38(1), 2006.

[12] C. V. Zhou, S. Karunasekera, and C. Leckie.
Evaluation of a decentralized architecture for large
scale collaborative intrusion detection. In Proc. of the
10th IFIP/IEEE International Symposium on
Integrated Network Management, 2007.

