
HAL Id: lirmm-00431299
https://hal-lirmm.ccsd.cnrs.fr/lirmm-00431299v1

Submitted on 12 Nov 2009

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A New Method for Generating Safe Motions for
Humanoid Robots

Sebastien Lengagne, Nacim Ramdani, Philippe Fraisse

To cite this version:
Sebastien Lengagne, Nacim Ramdani, Philippe Fraisse. A New Method for Generating Safe Motions
for Humanoid Robots. Humanoids, Dec 2008, Daejeon, South Korea. �lirmm-00431299�

https://hal-lirmm.ccsd.cnrs.fr/lirmm-00431299v1
https://hal.archives-ouvertes.fr


A new method for generating safe motions for
humanoid robots

Sébastien Lengagne 1,2, Nacim Ramdani 1,3, Philippe Fraisse 1,4

1 LIRMM UMR 5506 CNRS Montpellier-France : www.lirmm. f r
2 project team DEMAR, INRIA Sophia Antipolis Méditerranée : www− sop.inria. f r/demar
3 project team COPRIN, INRIA Sophia Antipolis Méditerranée : www− sop.inria. f r/coprin

4 University of Montpellier 2 : www.univ−mont p2. f r

Mail : lengagne,ramdani, f raisse@lirmm. f r

Abstract—This paper introduces a new method for planning
safe motions for complex systems such as humanoid robots.
Motion planning consists on finding the best joint trajectories. By
using trajectory parameterization, the motion planning problem
can be seen as a Semi-Infinite Programming problem (SIP) since
it involves a finite number of parameters over an infinite set of
constraints. Most methods solve the SIP problem by transforming
it into a finite programming one by using a discretization over
a prescribed grid. We show that this approach is risky because
it can lead to motions which violate one or several constraints.
Then we introduce our new method for planning safe motions.
It uses Interval Analysis techniques in order to achieve a safe
discretization of the constraints. We show how to implement this
method and use it with state-of-the-art constrained optimization
packages. Then, we illustrate its capabilities for planning safe
motions for the HOAP-3 humanoid robot.

Index Terms—Motion planning, Semi Infinite Programming,
Discretization, Interval Analysis, Constraints.

I. INTRODUCTION

Motion planning is a classical topic in robotics research. For
complex systems such as humanoid robots, motion planning
deals with a great number of constraints, which increases the
computation time. Therefore, motion planning is usually done
off-line to create a database of benchmark motions [1]. Then
a simple on-line control loop can track one of these motions.

Motion planning includes the problem of digital actors’
locomotion [2], kick motion generation on HRP-2 robot [3],
computing a manipulator robot’s trajectory [4] or smoothing
pre-calculated motions [5]. In these works, the planned mo-
tions minimize a cost function and validate sets of equality and
inequality constraints. With a joint trajectory parameterization,
we transform the motion planning problem into a Semi-Infinite
Programming problem (SIP), since it involves a finite number
of parameters over an infinite continuous set of constraints.

To solve a SIP problem, the set of continuous inequality
constraints are usually discretized by picking up several values
over a given grid. Therefore, the obtained motions will satisfy
the constraints only for the grid nodes. However, between
two nodes the retained motion may violate some constraints
that can have disastrous consequences on the integrity of the
systems.

This paper presents a new method for planning safe motions,
i.e. motions which ensure that the inequality constraints remain

satisfied all over the motion duration. Our method uses the
same optimization algorithms as classical one but replace the
time-point discretization by a safe discretization that computes
the constraints over time-intervals using Interval Analysis [6].
Interval Analysis has already been used in order to solve in a
guaranteed way the problems of self-collision avoidance and
prevention for the arms of a 2-degrees of freedom robot [7]
or to solve the problem of finding collision-free paths [8].

A preliminary version of our safe discretization method was
tested successfully on a two degrees of freedom pendulum
where an optimal one-step motion was generated [9]. In
the present paper, we address motion planning issues for a
more complex system with six degrees of freedom. To be
able to yield results in tractable CPU time, our method has
been significantly improved. To illustrate the capabilities of
our new method, we generate optimal step motions for the
HOAP-3 humanoid robot in the sagital plane while considering
two different cost functions and also using two optimization
algorithms: C-FSQP [10] and IPOPT [11].

This paper is organized as follows: in section II we introduce
the 2-D model of the humanoid robot used to generate motion
in the sagital plane. Section III presents how the motion plan-
ning problem is transformed into a Semi-Infinite Programming
problem, by a joint trajectory parameterization and emphasizes
how risky the usual way of constraint discretization is. Section
IV introduces the main ideas of our safe motion planning
method and its practical implementation via Interval Analysis.
In section V, the comparison between the classical and the safe
motion planning methods is exposed for the two analyzed cost
functions.

II. MODELING

A. 6 dof serial chain

Let us consider the motions of the HOAP-3 humanoid
robot in the sagital plane and suppose that the balance in the
frontal plane may be controlled using, for instance, the method
presented in [12]. As a consequence, we can reduce the 3-D
humanoid robot into a 2-D plane system, assuming that the
upper parts of the body are equivalent to the chest (Cf. Fig
1). Furthermore, we will consider a serial chain starting from



the fixed foot and ending at the flying foot with 6 degrees of
freedom (2 ankles, 2 knees, 2 hips).

Fig. 1. 2-D model of the humanoid robot for a one-step motion in the sagital
plane

B. Joint trajectory

We define a motion via the vector X = [τ,p1,p2, . . . ,p6]
where τ is the motion duration and pi the coefficients of the
weighted sum of B-spline functions which model the ith joint
position trajectory qi(t), as follows:

qi(t) =
Ns

∑
j=0

pi, j×B j(t) (1)

The joint velocity and acceleration are obtained by differenti-
ating 1.

q̇i(t) =
Ns

∑
j=0

pi, j× Ḃ j(t) (2)

q̈i(t) =
Ns

∑
j=0

pi, j× B̈ j(t) (3)

C. Dynamic modeling

The dynamic model equation allows to compute the joint
torques Γ(t) knowing the joint angle, velocity and acceleration
vectors. This paper deals with the optimization of motions in
the sagital plane, therefore we use the classical Newton-Euler
method [13] for computing the joint torques of 2-D robots:

Γ(t) = NE(q(t), q̇(t), q̈(t), t) (4)

D. Balance

The computation of the Zero Moment Point (ZMP) gives
information about the balance of humanoid robots. The ZMP
is defined in [14] as a point, on the contact surface, where
total inertia force is equal to zero. If this point stays within
the base of support, the robot will keep its balance. The ZMP
depends on the joint angle, velocity and acceleration.

ZMP(t) = f (q(t), q̇(t), q̈(t), t). (5)

III. MOTION PLANNING

A. Semi-Infinite Programming

For motion planning, one usually solves a constrained
optimization problem in order to find out the optimal joint

trajectory q(t) which:

minimizes F(q(t)) (6)
subject to ∀i,∀t ∈ [0,T ] gi(q(t))≤ 0 (7)

and ∀ j h j(q(t)) = 0 (8)

where F denotes the cost or objective function, gi the set
of inequality constraint functions and hi the set of equality
constraint functions.

This is a classical optimal control problem where there are
a continuous function: q(t) and a set of continuous inequality
constraints gi(q(t)). Therefore we have to deal with an infinite
dimensional problem. The B-spline parameterization allow to
have a finite number of value to optimized and transform
the problem into finding out the optimal parameter vector X
which:

minimizes F(X) (9)
subject to ∀i,∀t ∈ [0,T ] gi(X, t)≤ 0 (10)

and ∀ j h j(X) = 0 (11)

This problem is defined as a Semi infinite Programming
problem (SIP) , because there is a finite number of constraints
which must be satisfied over a continuous time that can be
expressed as an infinite number of instant t [15].

B. Cost function

The choice of the cost function F(X) for motion planning
must take into account the features of the robot and the desired
application. Some authors minimize motion duration [16] or
jerk [4] for robot manipulators. Some others minimize the
energy consumption taking into account the parameters of the
motors (friction, ...) [3] or a biological inspired cost function:
the torque change [17].

In this paper we investigate two different cost functions:
• the motion duration F(X) =

∫ T
0 1dt (Cf. Sections III-F

and IV-D)
• the mechanical energy consumption which is the integral

of the Euclidean norm of joint torques F(X) =
∫ T

0 ΓT Γdt
(Cf. Section V)

C. Equality constraint functions

The set of the equality constraint functions h j(X) allows
to define the motion. These functions usually correspond
to constraints on some system state variables at given time
instants such as the beginning or the end of a motion. In
our case, we consider six equality constraints which are the
position of the flying foot at the beginning and at the end of
the motion.

D. Inequality constraint functions

The set of the inequality constraints gi(X) is build from
the physical limits of the system. These inequalities must be
satisfied over the whole motion duration. In these experiments
we consider limitations on the joint position, velocity and
torque values and also on the ZMP location in order to ensure



the robot balance. The set of inequality constraint functions is
as follows: 




q≤ q(t)≤ q
q̇≤ q̇(t)≤ q̇
Γ≤ Γ(t)≤ Γ
ZMP≤ ZMP(t)≤ ZMP

(12)

E. Classical constraint discretization

Classical optimization algorithms use a finite number of
discrete constraints. Hence constraints must be discretized.
We present the classical way of discretizing them and we
emphasize the fact that some constraints can be violated.

In the context of motion planning, discretization usually
consists in picking up several time points in a grid for
computing the constraint functions [18], [15]. Therefore, the
inequality constraints in (10) are replaced by:

∀i,∀tk ∈ T gi(X, tk)≤ 0 (13)

where T = {t0 = 0, t1, ..., tN−1, tN = T}.
Consequently, the continuous problem (10) where appears

∀t ∈ [0,T ] becomes a discrete one: ∀tk ∈ {0, t1, ..., tN−1,T}
where the constraints are only satisfied for discrete values
over the time-grid. Therefore, the optimization algorithm deals
with a set of discrete values corresponding to the continuous
constraint values over a time-grid. There are several methods
to adapt the grid T in order to get better results [15].

F. The constraints are violated

Using the classical discretization method makes the opti-
mization produces a solution which satisfies the constraints
only for the discrete instants {t0, t1..., tN−1, tN}, but does not
ensure them elsewhere. In order to highlight how such an
approach may be hazardous for the robot integrity and balance,
we used this method to plan a one-step motion for the HOAP-
3 humanoid robot. We considered the constraint (12) and used
the motion duration as the objective function and solve this
optimization problem thanks to the algorithm C-FSQP [10].

Fig. 2. Representation of the ZMP, for a motion optimized with a 10-time-
points discretization

Figure 2 shows the ZMP time-history for an optimal mo-
tion obtained with a 10-time-point grid discretization. Here,
in order to keep the balance of the robot, the ZMP must
stay within the interval [−0,04;0,068] which corresponds to
the robot foot size. This constraint is indeed satisfied for

the discrete time instants, actually given to the optimization
algorithm. However the continuous function is violated, for
instance between t = 0.05s and t = 0.1s. To exhibit how this
violation may impact the planned motion, we experimented
this motion on the HOAP-3 humanoid robot and found that
the robot lost its balance (Cf. Fig.3).

(a) t = 0s (b)
t = 0.12s

(c)
t = 0.24s

(d)
t = 0.36s

Fig. 3. A 10-time-points discretization time-minimum motion optimization
using C-FSQP [10]

One intuitive way to solve this issue could be to increase the
number k of discrete time instants. But this will not ensure the
avoidance of any constraint violation [9]. In the next section
we show how our safe method can solve this issue.

IV. SAFE MOTION PLANNING

A. Definition

Safe motion planning uses the same optimization softwares
as usual motion planning. However, the constraints are com-
puted using the guaranteed discretization introduced in our
previous work [9]. The main idea at the core of the guaranteed
discretization method is to return the extremum values of the
inequality constraint functions gi(X, t) during a time interval
[t] = [t, t] to the optimization algorithm instead of the values
taken over the time grid. Then, equation (10) is replaced by:

∀i,∀[t] ∈ IT max
∀τ∈[t]

gi(X,τ)≤ 0 (14)

With IT = {[t]1, [t]2], ..., [t]k−1, [t]k} where time intervals [t]n =
[tn−1, tn]. Interval analysis will allow to do the practical im-
plementation of this method.

B. Interval analysis

Interval analysis was initially developed to account for the
quantification errors introduced by the floating point represen-
tation of real numbers with computers and was extended to
validated numerics [19], [6], [20]. A real interval [a] = [a; ā]
is a connected and closed subset of R. With a = In f ([a]) and
ā = Sup([a]). The set of all real intervals of R is denoted
by IR. Real arithmetic operations are extended to intervals.
Consider an operator ◦ ∈ {+,−,∗,÷} and [a] and [b] two
intervals. Then:

[a]◦ [b] = [in fu∈[a],v∈[b] u◦ v, supu∈[a],v∈[b] u◦ v] (15)

Consider m : Rn 7−→ Rm ; the range of this function over
an interval vector [a] is given by:

m([a]) = {m(u) | u ∈ [a]} (16)



The interval function [m] : IRn 7−→ IRm is an inclusion
function for m if

∀[a] ∈ IRn, m([a])⊆ [m]([a]) (17)

An inclusion function of m can be obtained by replacing
each occurrence of a real variable by the corresponding
interval and each standard function by its interval counterpart.
The resulting function is called the natural inclusion function.
The performances of the inclusion function depend on the
formal expression of m.

Finally, interval analysis offers a practical but guaranteed
mean to compute minimum and maximum values for a func-
tion m(t) when t is defined over a given interval [t]. An
upper bound for the maximum value maxt∈[t](m(t)) is given
by Sup[m]([t]) and a lower bound for the minimum value
mint∈[t](m(t)) is given by In f [m]([t]).

In practice, the bounds thus derived may be too large
because of the wrapping and dependence effects. Still, there
are several techniques that can be used to obtain tighter ones
by using for instance Taylor series expansion or some global
optimization techniques [21].

Therefore the upper bounds for (14) max gi are obtained in
an easy and practical way by computing the upper bound of
the inclusion function [gi] for a time interval [t]:

∀i,∀[t] ∈ IT Sup[g]i(X, [t])≤ 0 (18)

C. Practical application

In this study, we have used a simple way to solve the
wrapping and dependence effects issue. In order to compute
tighter enclosures for the inclusion functions, and hence a
better evaluation of the extremum values of a given function
over the time-interval, we have chosen to split the time-
intervals.

Splitting is the process that decomposes an interval into
Nb subintervals, then the extremum of the interval may be
taken as the extremum of the Nb both sub-intervals. Figure 4
shows how the splitting makes the enclosure tighter. However,
splitting may increase computation time. These splitting steps
are carried out until the estimated maximum and minimum
values are obtained with an acceptable accuracy.

As an illustrative example, let us consider the inclusion
function [ZMP]([t]) (Equation 5). In the latter equation, the t
variable appears several times. Therefore the formal expression
of the function ZMP(t) will suffer from the dependence effect.
Thanks to the splitting, we can control the accuracy in the
computation of the extremum values.

Let us quantify the accuracy of the enclosures as the relative
measure of width of the computed enclosures with regard to
the actual one, as follows

eps(%) =
width(computed)−width(actual)

width(actual)
×100 (19)

Here, the actual enclosures are the ones obtained with Nb = 215

subintervals.
Table I shows that the bigger the of sub-intervals (Nb),

the better the accuracy and the larger the computation time

(a) no bisection (b) 9 bisections

Fig. 4. The bounded ZMP over 6 time-intervals

Tc. Therefore the user has to make a compromise between
accuracy and computation time. In our case we choose to
consider 128 sub-intervals.

Nb 1 2 4 8 16 32 64 128 256
eps(%) 73 49 19 8.2 3.7 1.7 0.8 0.34 0.17
Tc(ms) 0.7 1.4 2.5 5.4 11 20 42 80 160

TABLE I
SPLITTING ACCURACY / COMPUTATION TIME

D. The constraints are satisfied

We experimented a 7cm step motion generated with our
safe motion planning method considering 10 intervals, for the
humanoid robot HOAP-3. Figure 6 shows this motion, where
the robot keeps its balance contrary to figure 3 where it falls.
Figure 5 shows both the ZMP time-history ZMP(t) and the
guaranteed interval discretization [ZMP]([t]k) always remain
within the base of support.

∀t ∈ [0, τ] −0,04≤ ZMP(t)≤ 0,068 (20)

Fig. 5. Representation of the ZMP, for a motion optimized with 10 intervals

(a) t = 0s (b) t = 0.2s (c) t = 0.4s (d) t = 0.6s

Fig. 6. A safe discretization time-minimum motion optimization using C-
FSQP [10]



E. The gradient of constraint functions

Some optimization algorithms need the computation of
the gradient of the constraint functions with respect to the
parameter vector ∂g(X,t)

∂ X . With a grid discretization (Cf Section
III-E) this gradient is computed at the grid instant.

Now, the method used in subsection IV-C for solving
equation (18) subdivides a given time interval [t]k into Nb
subintervals [t]k = ∪l=1,...,Nb [t]k,l Then there exists a subinter-
val [t]k,lmax which contains the maximum of gi(X, t) for t ∈ [t]k.
Since we do not keep track on when the maximum occurs
within [t]k,lmax , we choose to approximate the gradient of the
maximum of gi(X, t) by the value of the gradient obtained at
the middle of the subinterval [t]k,lmax . This is summarized in
the following equation:

∂
∂X

Sup[g]i(X, [t]k)≈ ∂
∂X

gi(X,Mid[t]k,lmax) (21)

We can infer from this that the number of sub-intervals
Nb will influence the accuracy of the computed gradient and
hence the efficiency of the (C-FSQP or IPOPT) optimization
algorithm used. Note also that the partial derivatives can be
computed either via formal methods or automatic differentia-
tion [22]. In our work, we used the latter.

V. RESULTS

A. Procedure

In this section we compare the usual motion planning
method with our safe motion planning method. We want to
plan a walking motion with steps of 5 cm. Then we consider
a cyclic motion where the initial posture is symmetrical to
the final one. We consider the 6 dof model of the HOAP-3
humanoid robot (Subsection. II-A). The joint trajectories are
computed with 4 B-splines functions. The vector X contains
(4−1)×6+1 = 19 parameters (Here −1 is due to the cyclic
nature of the retained motion, i.e. final position is symmetric
to the initial one) . We opt for the algorithm IPOPT [11] and
perform two optimizations, the first one for minimizing the
motion duration and the second one for minimizing the energy
consumption. On one hand we asses the classical motion
planning method considering a grid of 15 points. On the other
hand we use our safe motion planning method considering 5
intervals splitted into 128 sub-intervals.

We repeated 500 times the numerical procedure with ran-
dom initial conditions to evaluate the impact of our method
regarding the repeatability and the time computation of the
algorithm.

B. Repeatability

We define the repeatability of a cost function value the
percentage of optimization procedure which produce a solution
with this value. A high percentage of repeatability means that
the optimization algorithm has good convergence properties.
Tables II and III show that there are some differences of
the cost function values between the classical and the safe
motion planning method (1.055 6= 1.075). These differences
are mainly due to the fact that the classical motion planning

method produces a solution which may violate some con-
straints, whereas a slower motion will not.

Moreover, one can see that the percentage of a failure of
the optimization algorithm is higher with the classical motion
planning method (4%) than with the safe motion planning
method (0.4%). In the same time the percentage to have one
of the two best cost function values is higher considering a
safe motion planning (98.6 %) than the classical one (76.8
%). We can see the same phenomena on Tables IV and V,
even if the difference is smaller (97.6% against 95.4%). This
is due to the fact that an energy-minimum motion is slower
than a time-minimum motion and consequently violates less
the dynamic constraint functions. Therefore it appears that a
guaranteed discretization ensures a better convergence for the
optimization algorithm.

Cost function value Repeatability (%)
1.055 52.4
1.125 24
1.135 17.2
1.215 0.2
1.225 0.2
1.64 2

failure 4

TABLE II
REPEATABILITY FOR A TIME-MINIMUM CLASSICAL MOTION PLANNING

Cost function value Repeatability(%)
1.075 51,2
1.145 47.4
1.655 0.6
1.835 0.2
1.905 0.2
failure 0.4

TABLE III
REPEATABILITY FOR A TIME-MINIMUM SAFE MOTION PLANNING

Cost function value Repeatability(%)
5.95 90.8
6.55 4.6
6.85 3.6
8.05 0.8

failure 0.2

TABLE IV
REPEATABILITY FOR AN ENERGY-MINIMUM CLASSICAL MOTION

PLANNING

Cost function value Repeatability(%)
5.95 89.2
6.55 8.4
6.85 1.6
8.15 0.06

failure 0.2

TABLE V
REPEATABILITY FOR AN ENERGY-MINIMUM SAFE MOTION PLANNING



C. Computation time

A study about the computation time of these two methods
for a simple 2-dof system was done in [9]. Table VI shows the
difference of the computation time between the classical and
the safe motion planning method considering two different cost
functions: the motion duration and the energy consumption.
The computation time of the safe motion planning method
is slower than the classical one, and the choice of the cost
function has an effect on the computation time. Indeed a
time-minimum motion has fast dynamics that cause constraint
violation, thus the optimization algorithm will call more often
the constraint functions than for a slower motion such as
energy minimum motion. That is why safe motion planning
method is 10 times slower than classical one for a time-
minimum motion and only 4 times slower for energy-minimum
motion.

motion planning method classical safe
time-minimum 8 s 90 s

energy-minimum 39 s 168 s

TABLE VI
COMPARISON OF THE COMPUTATION TIME

D. Experiments

Figure 7 shows an energy-minimum motion computed with
the safe motion planning method. One can see that the safe
motion planning method generates a motion which avoids any
constraint violation since the robot keeps its balance.

(a) t = 0s (b)
t = 0.8s

(c)
t = 1.6s

(d)
t = 2.4s

Fig. 7. Energy-minimum 5cm step motion

VI. CONCLUSION

Motion planning consist on finding the best joint trajec-
tory which minimizes a cost function and validate a set of
equality and inequality constraints. Usually the joint trajectory
is computed from a set of parameters. This parameterization
allow to see the motion planning problem as a Semi-Infinite
Programming (SIP) problem which is solved by transforming
it into a finite one thanks to a time-grid discretization. Unfortu-
nately the time-grid discretization can lead to some constraint
violations which may impact the integrity and on the balance
of the robot.

To the contrary our new safe motion planning method uses
Interval Analysis to compute the maximum of the constraint
functions over time-intervals, which avoids any constraint vio-
lation. We showed that our method increases the repeatability
of the algorithm but the computation time is larger.

Here we addressed the one-dimension time discretization
issue but the same approach can be used for N-dimensions
space discretization. We illustrated our safe motion planning
method with a 2-D model of humanoid robots. We plan to use
it with a 3-D model.

REFERENCES

[1] J. Denk and G. Schmidt, “Synthesis of a Walking Primitive Database for
a Humanoid Robot using Optimal Control Techniques,” in Proceedings
of IEEE-RAS International Conference on Humanoid Robots, Tokyo,
Japan, November 2001, pp. 319–326.

[2] E. Yoshida, I. Belousov, C. Esteves, and J.-P. Laumond, “Humanoid
motion planning for dynamic tasks,” in Humanoid Robots, 2005 5th
IEEE-RAS International Conference on, Dec. 2005, pp. 1–6.

[3] S. Miossec, K. Yokoi, and A. Kheddar, “Development of a software for
motion optimization of robots - application to the kick motion of the
hrp-2 robot,” in Proceedings of the 2006 IEEE International Conference
on Robotics and Biomimetics, 2006, pp. 299–304.

[4] A. Piazzi and A. Visioli, “Global minimum-jerk trajectory planning of
robot manipulators,” in IEEE Transactions on Industrial Electronics,
vol. 47, febru 2000, pp. 140–149.

[5] W. Suleiman, E. Yoshida, J.-P. Laumond, and A. Monin, “On humanoid
motion optimization,” in IEEE-RAS 7th International Conference on
Humanoid Robots, 2007.

[6] R. E. Moore and F. Bierbaum, Methods and Applications of Interval
Analysis (Siam Studies in Applied Mathematics, 2.). Soc for Industrial
& Applied Math, 1979.

[7] H. Fang and J. P. Merlet, “Dynamic interference avoidance of 2-DOF
robot arms using interval analysis,” in IEEE/RSJ Int. Conf. on Intelligent
Robots and Systems, Aug. 2005, pp. 3809–3814.

[8] L. Jaulin, “path planning using intervals and graphs,” Reliable Comput-
ing, vol. 7, no. 1, pp. 1–15, fevrier 2001.

[9] S. Lengagne, N. Ramdani, and P. Fraisse, “Guaranteed computation
of constraints for safe path planning,” in IEEE-RAS 7th International
Conference on Humanoid Robots, 2007.

[10] C. Lawrence, J. L. Zhou, and A. L. Tits, User’s Guide for CFSQP
Version 2.5: A C Code for Solving (Large Scale) Constrained Nonlinear
(Minimax) Optimization Problems, Generating Iterates Satisfying All
Inequality Constraints, Electrical Engineering Department, Institute for
Systems Research University of Maryland, College Park, MD 20742.

[11] Introduction to IPOPT : a tutorial for downloading, installing and using
IPOPT, april 7th 2006.

[12] P. Fraisse, S. Cotton, A. Murray, and F. Pierrot, “Towards dynamic
balance control of humanoid robots by using com and zmp,” in IEEE-
RAS 7th International Conference on Humanoid Robots, 2007.

[13] W. Khalil and E. Dombre, Modeling, Identification & Control of Robots,
3rd ed., E. B. Heinemann, Ed. Hermes Sciences Europe, march 2002.

[14] M. Vukobratovic and D. Juricic, “Contribution to the synthesis of biped
gait,” IEEE trans. Bio-Med Eng., vol. BME-16, pp. 1–6, 1969.

[15] R. Hettich and K. O. Kortanek, “Semi-infinite programming: theory,
methods, and applications,” SIAM Rev., vol. 35, no. 3, pp. 380–429,
1993.

[16] A. Piazzi and A. Visioli, “Global minimum-time trajectory planning of
mechanical manipulators using interval analysis,” International Journal
of Control, vol. 71, pp. 631–652(22), 10 November 1998.

[17] Y. Uno, M. Kawato, and R. Suzuki, “Formation and control of optimal
trajectory in human multijoint arm movement,” Biological Cybernetics,
vol. 6, no. 2, pp. 89–101, juin 1989.

[18] O. von Stryk, “Numerical solution of optimal control problems by direct
collocation,” 1993.

[19] T. Sunaga, “Theory of interval algebra and its application to numerical
analysis,” RAAG Memoirs, Ggujutsu Bunken Fukuy-kai, vol. 2, pp. 547–
564, 1958.

[20] A. Neumaier, Interval methods for systems of equations. Cambridge:
Cambridge university press, 1990.

[21] E. Hansen and G. Walster, Global optimization using interval analysis,
2nd ed. Marcel Dekker, 2004.

[22] C. Bendtsen and O. Stauning, FADBAD, a flexible c++ package for
automatic differentation.


