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Abstract

Adapting the method introduced in Graph Minors X [6], we propose a new proof
of the duality between the bramble-number of a graph and its tree-width. This
proof is based on a new definition of submodularity on partition functions which
naturally extends the usual one on set functions. The technique simplifies the proof
of bramble/tree-width duality since it does not rely on Menger’s theorem. One
can also derive from it all known dual notions of other classical width-parameters.
Finally, it provides a dual for matroid tree-width.

1 Introduction.

In their seminal paper Graph Minors X [6], Robertson and Seymour intro-
duced the notion of branch-width of a graph and its dual notion of tangle.
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Their method is based on bias and tree-labellings. Later on, Seymour and
Thomas [7] found a dual notion to tree-width, the bramble number (named
after Reed [4]). The proof of the bramble-number/tree-width duality makes
use of Menger’s theorem to reconnect partial tree-decompositions, see for in-
stance the textbook of Diestel [1]. Our aim in this paper is to show how the
classical dual notions of width-parameters can be deduced from the original
method of Graph Minors X.

In this paper, E will always denote a set with at least two elements. A par-
titioning tree on E is a tree T in which the leaves are identified with the
elements of E in a one-to-one way. Therefore, every internal node v of T , if
any, corresponds to the partition Tv of E which parts are the leaves of the
subtrees obtained by deleting v.

An obvious way of forming a partitioning tree is simply to fix a central node
which is linked to every element of E - a partitioning star. But what if we are
not permitted to do so? Precisely, assume that a restricted set of partitions
of E, called admissible partitions, is given. Is it possible to form an admis-
sible partitioning tree? (i.e. such that every partition Tv is admissible). An
obstruction to the existence of such a tree is the dual notion of bramble.

An admissible bramble is a nonempty set of pairwise intersecting subsets of
E which contains a part of every admissible partition of E. It is routine to
form an admissible bramble: just pick an element e of E, and collect, for
every admissible partition, the part which contains e. Such a bramble is called
principal. The crucial fact is that if there is a non-principal admissible bramble
B, there is no admissible partitioning tree. To see this, assume for contradiction
that T is an admissible partitioning tree. For every internal node u of T , there
is an element X of Tu which belongs to B. Let v be the neighbour of u which
belongs to the component of T \ u having set of labels X. Orient the edge
uv of T from u to v. Note that every internal node becomes the origin of an
oriented edge. Observe also that an edge of T incident to a leaf never gets
an orientation since B is non-principal. The contradiction follows from the
fact that one edge of T carries two orientations, which is impossible since the
elements of B are pairwise intersecting. Note that this argument fails when
T has no internal vertex, i.e. E has two elements. In this case, the unique
partitioning tree is by definition admissible, and every admissible bramble is
principal.

Unfortunately, if no principal admissible bramble exists, there is not neces-
sarily an admissible partitioning tree. In the first part of this paper, we prove
that for some particular families of admissible partitions (e.g. generated by a
submodular partition function) we have the following:

• Either there exists an admissible partitioning tree.
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• Or there exists a non-principal admissible bramble.

The second part of the paper is devoted to the translation of this result into
the different notions of width-parameters.

2 Submodular partition functions.

The complement of a subset X of E is the set Xc := E \X. A partition of E
is a set X = {X1, . . . , Xn} of subsets of E satisfying X1 ∪ · · · ∪Xn = E and
Xi ∩ Xj = ∅ for all i 6= j. The order in which the Xi’s appear is irrelevant.
We authorise degenerate partitions (i.e. the sets Xi can be empty). Let F be
a subset of E. The partition

XXi→F := {X1 ∩ F, . . . , Xi−1 ∩ F, Xi ∪ F c, Xi+1 ∩ F, . . . , Xn ∩ F}

is the partition obtained from X by pushing Xi to F .

A partition function is a function Φ defined from the set of partitions of E
into the reals. Let X be a partition of E. We call Φ(X ) the Φ-width, or simply
width, of X . Let k be an integer. A k-partition is a partition of width at
most k. A partition function Φ is submodular if for every pair of partitions
X = {X1, . . . , Xn} and Y = {Y1, . . . , Yl}, we have:

Φ(X ) + Φ(Y) ≥ Φ(XX1→Y1) + Φ(YY1→X1)

To justify a posteriori our terminology, observe that for bipartitions, partition
submodularity gives

Φ(A, Ac) + Φ(B, Bc) = Φ(A, Ac) + Φ(Bc, B)

≥Φ(A ∪ (Bc)c, Ac ∩Bc) + Φ(Bc ∪ Ac, B ∩ A)

≥Φ(A ∪B, Ac ∩Bc) + Φ(A ∩B, Ac ∪Bc)

which corresponds to the usual notion of submodularity when setting Φ(F ) :=
Φ(F, F c), for every subset F of E.

Unfortunately, since some natural partition functions lack submodularity, we
have to define a relaxed version of it. A partition function Φ is weakly submod-
ular if for every pair of partitions X = {X1, . . . , Xn} and Y = {Y1, . . . , Yl}, at
least one of the following holds:

(1) There exists F such that X1 ⊆ F ⊆ (Y1 \X1)
c and Φ(X ) > Φ(XX1→F c)

(2) Φ(Y) ≥ Φ(YY1→X1)
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Submodular partition functions are weakly submodular, it suffices to consider
F = Y c

1 . Let us illustrate these notions. In what follows, X = {X1, . . . , Xn} is
a partition of E.

• The key-example of a submodular partition function is the function border
defined on the set of partitions of the edge set E of a graph G = (V, E) by
letting δ(X ) = |∆(X )| where

∆(X ) = {x ∈ V | ∃xy ∈ Xi and ∃xz ∈ Xj, i 6= j}.

We will often write, for a subset F of E, ∆(F ) and δ(F ) instead of
∆(F, F c) and δ(F, F c). The proof of submodularity is postponed to Sec-
tion 5.1. As we will see, the function δ gives the tree-width of G.

• Let f be a submodular function on 2E. We form a submodular partition
function by letting Σf (X ) =

∑
i∈I f(Xi). The proof of submodularity is

postponed to Section 5.2. This function gives the tree-width of matroids.
• Let f be a symmetric submodular function on 2E, i.e. satisfying moreover

f(A) = f(Ac) for all A ⊆ E. The function maxi∈{1,...,n} f(Xi), which can be
made weakly submodular, gives the notion of branch-width and its relatives
like rank-width. It is treated in Section 5.3.

• Let Φ be a weakly submodular partition function and p ≥ 2 be an integer.
We form a weakly submodular partition function by letting Φp(X ) = Φ(X )
when the number of parts of X is at most p, and +∞ otherwise (or any
large constant integer).

• Let Φ be a weakly submodular partition function and p ≥ 2 be an integer.
By letting Φ′

p(X ) = Φ(X ) when the number of Xi with at least two elements
is at most p, and +∞ otherwise (or any large constant integer), we obtain a
partition function which gives, in particular, the notion of path-width. This
is a weakly submodular partition function if we only push subsets which are
non-singletons.

Our choice of the partition submodularity condition is motivated by the analogy
with usual submodular functions, when restricted to bipartitions. However, we
never use the fact that X1 and Y1 may intersect, and could have defined the
notion for disjoint X1, Y1. This less constrained definition is perfectly valid for
the results presented here.

3 Search-trees.

A bidirected tree is a directed graph obtained from an undirected tree by
replacing every edge by an oriented circuit of length two. A search-tree T on E
is a bidirected tree on at least two nodes together with a label function l defined
from the arcs of T into the subsets of E with the additional requirements:
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• If u is an internal node of T , the sets l(uv), for all outneighbours v of u,
form a partition of E. We denote it by Tu.

• The labels of a 2-circuit do not intersect, i.e. l(uv) ∩ l(vu) = ∅.

A 2-circuit uv is exact if l(uv) ∪ l(vu) = E. By extension, a search-tree T
is exact if all its 2-circuits are exact. The label of an arc with origin a leaf
of T is called a leaf-label. Let F be a set of subsets of E. A search-tree T is
compatible with F if every leaf-label of T contains an element of F . Let uv
be a 2-circuit of T where u is an internal node. Let F be a subset such that
l(uv) ⊆ F ⊆ l(vu)c. The key-fact is that replacing the partition Tu in T by
(Tu)l(uv)→F c (in the obvious one-to-one way) gives a new search-tree which is
still compatible with F since the leaf-labels are unchanged.

If Φ is a weakly submodular partition function on E, the Φ-width of a search-
tree T with at least three nodes is the maximum of Φ(Tu), taken over the
internal nodes u. If no confusion can occur, we just speak of the width of T .
A k-search-tree is a search-tree with two nodes or having width at most k.

Theorem 1 If Φ is a weakly submodular partition function and T is a k-
search-tree compatible with F , there is a relabelling of T which is an exact
k-search-tree compatible with F .

PROOF. If T consists of a 2-circuit uv, we simply set l(vu) := l(uv)c. Now,
assume that amongst all relabellings of T which are k-search-trees compatible
with F , we minimise the sum of Φ(Tu), taken over all internal nodes u. Select
an internal node r as the root of T . If T is not exact, we select a non exact
2-circuit uv, with u chosen closer to r than v. If v is a leaf, we simply replace
l(vu) by l(uv)c. If v is an internal node, by the minimality of T , there is no
F with l(uv) ⊆ F ⊆ l(vu)c for which Φ(Tu) > Φ((Tu)l(uv)→F c). Since Φ is
weakly submodular, we have Φ(Tv) ≥ Φ((Tv)l(vu)→l(uv)). We then replace Tv

by (Tv)l(vu)→l(uv). Observe that both replacements strictly increase the sum of
the sizes of the labels of backward arcs of T (those pointing toward the root).
Thus this process stops on an exact k-search-tree which is still compatible
with F since the leaf-labels can only increase. 2

In an exact search-tree T , the set of labels of the arcs entering the leaves
forms a partition of E. Therefore the union of two leaf-labels is equal to E.
When this partition consists of singletons and empty sets, T is a partitioning
k-search-tree. In the full generality of partition functions, empty sets cannot
be avoided, however in all the examples given below, we can prune partitioning
trees to remove them.

5



4 Tree-bramble duality.

Let Φ be a weakly submodular partition function on E. A bias is a nonempty
family B of subsets of E such that

⋂B = ∅. A k-bramble B is a nonempty
family of subsets of E such that:

• For all X,Y ∈ B, we have X ∩ Y 6= ∅.
• For every k-partition X = {X1, . . . , Xn}, there exists i such that Xi ∈ B.

A k-bramble is principal if it is not a bias, i.e.
⋂B is nonempty.

Theorem 2 Let Φ be a weakly submodular partition function on a set E.

i. Either there exists a non-principal k-bramble.
ii. Or there exists a partitioning k-search-tree.

PROOF. If there is a partitioning k-search-tree, every k-bramble is principal.
The proof is given in the introduction in terms of admissible partitions. We
now assume that every k-bramble is principal, and prove the existence of
a partitioning k-search-tree. More generally, we show that every bias has a
compatible k-search-tree. This gives our conclusion when considering the bias
{E \ e | e ∈ E}. The proof goes by reverse induction on the inclusion order.
Let B be a bias. We assume that the result holds for every bias B′ 6= B such
that B ⊆ B′. Two cases can happen:

• For every k-partition X = {X1, . . . , Xn}, there exists Xi ∈ B. Since B is not
a k-bramble, it contains two disjoint subsets Bi and Bj. Thus the 2-circuit
labelled by Bi and Bj is a k-search-tree which is compatible with B.

• There exists a k-partition X = {X1, . . . , Xn} such that Xi /∈ B, for all
i = 1, . . . , n. For each Xi, we choose a subset X ′

i /∈ B which contains Xi and
which is maximal with respect to inclusion. We form the bias Bi := B∪{X ′

i}.
By the induction hypothesis and Theorem 1, there exists an exact k-search-
tree Ti compatible with Bi. If Ti is also compatible with B, we are done.
If not, Ti has a leaf-label containing X ′

i and no element of B. Hence, by
maximality of X ′

i, this leaf-label is exactly X ′
i. Observe that if Ti has two

leaf-labels X ′
i, since their union is E, we would have X ′

i = E and thus Ti

would also be compatible with B. Consequently, X ′
i appears only once as

a leaf-label. We form a new tree T by identifying, for every Ti, the leaf
carrying the leaf-label X ′

i. The tree T is not a search-tree since the labels
of the arcs with origin the identified vertex are {X ′

1, X
′
2, . . . , X

′
n}, which is

not a partition. We simply replace these labels by X1, X2, . . . , Xn. Now T
is a k-search-tree compatible with B. 2
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5 Examples of submodular partition functions.

5.1 The submodular partition function δ.

Let G = (V, E) be a graph. Let X = {X1, . . . , Xn} and Y = {Y1, . . . , Yl} be
some partitions of E. We want to prove that:

δ(X ) + δ(Y)≥ δ(XX1→Y1) + δ(YY1→X1)

≥ δ(X1 ∪ Y c
1 , X2 ∩ Y1, . . . , Xn ∩ Y1) +

δ(Y1 ∪Xc
1, Y2 ∩X1, . . . , Yn ∩X1)

Let x be a vertex of G. Two cases can happen:

• The contribution of x in the right-hand term of the previous inequality is
one, say x belongs to the border of XX1→Y1 . If x belongs to the border of
Y1, it contributes to δ(Y). If not, x belongs to the border of some Xi with
i > 1. In both cases, its contribution to the left-hand term is at least one.

• Assume now that x both belongs to the borders of XX1→Y1 and YY1→X1 .
Since x belongs to the border of XX1→Y1 there is an edge ex containing x in
some Xi ∩ Y1 with i > 1. Similarly there is an edge fx containing x in some
Yj ∩ X1 with j > 1. Since ex ∈ Xi and fx ∈ X1, x is in the border of X .
Similarly x is also in the border of Y , and thus contributes also for two to
the left-hand term.

5.2 The submodular partition function Σf .

Let f be a submodular function on 2E.

Lemma 3 (1) Let X and Y be two disjoint subsets of E. If X1 ⊂ X and
Y1 ⊂ Y , we have:

f(X) + f(Y )− f(X1)− f(Y1) ≥ f(X ∪ Y )− f(X1 ∪ Y1)

(2) More generally, if X1, . . . , Xr are pairwise disjoint subsets of E, and for
all i = 1, . . . , r, X ′

i ⊂ Xi, we have:

r∑
i=1

(
f(Xi)− f(X ′

i)
)
≥ f

( r⋃
i=1

Xi

)
− f

( r⋃
i=1

X ′
i

)

PROOF.
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(1) Apply first the submodularity of f to the subsets A = X∪Y1 and B = Y .
Since A ∩B = Y1 and A ∪B = X ∪ Y , we obtain:

f(X ∪ Y1) + f(Y ) ≥ f(X ∪ Y ) + f(Y1) (1)

Apply then the submodularity of f to the subsets A = X1 ∪ Y1 and
B = X. Since A ∩B = X1 and A ∪B = X ∪ Y1, we obtain:

f(X1 ∪ Y1) + f(X) ≥ f(X ∪ Y1) + f(X1) (2)

The conclusion follows from (1)+(2).
(2) Follows by induction on r. 2

Proposition 4 The function Σf is a submodular partition function.

PROOF. Let X = {X1, . . . , Xn} and Y = {Y1, . . . , Yl} be two partitions of
E. We want to prove that Σf (X ) + Σf (Y) ≥ Σf (XX1→Y1) + Σf (YY1→X1). We
must then prove:

n∑
i=1

f(Xi) +
l∑

j=1

f(Yj) ≥ f(X1 ∪ Y c
1 ) +

n∑
i=2

f(Y1 ∩Xi)

+ f(Y1 ∪Xc
1) +

l∑
j=2

f(X1 ∩ Yj).

(3)

By applying lemma 3 with X ′
i = Y1 ∩ Xi and since X2 ∪ · · · ∪ Xn = Xc

1, we
have:

n∑
i=2

f(Xi)−
n∑

i=2

f(Y1 ∩Xi) ≥ f(Xc
1)− f(Y1 ∩Xc

1) (4)

Similarly we obtain:

l∑
j=2

f(Yj)−
l∑

j=2

f(X1 ∩ Yj) ≥ f(Y c
1 )− f(X1 ∩ Y c

1 ) (5)

By adding (4) and (5), we obtain

l∑
j=2

f(Yj) +
n∑

i=2

f(Xi) + f(X1 ∩ Y c
1 ) + f(Y1 ∩Xc

1) ≥

f(Y c
1 ) + f(Xc

1) +
l∑

j=2

f(X1 ∩ Yj) +
n∑

i=2

f(Y1 ∩Xi)

(6)
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By applying submodularity to Xc
1 and Y1 and to X1 and Y c

1 , we obtain:

f(X1) + f(Y1)− f(X1 ∩ Y c
1 )− f(Y1 ∩Xc

1) ≥ f(X1 ∪ Y c
1 ) + f(Y1 ∪Xc

1)

− f(Y c
1 )− f(Xc

1)
(7)

Adding (6) and (7), we obtain (3). Thus Σf is submodular. 2

5.3 The weakly submodular partition function Maxf .

Let f be a symmetric submodular function on 2E. Let X = {X1, . . . , Xn} be a
partition of E. The function maxi∈{1,...,n} f(Xi) is unfortunately not a weakly
submodular partition function. We have to shift it a little to break ties. For
some arbitrarily small ε > 0, we consider instead the function:

Maxf (X ) = max
i∈{1,...,n}

f(Xi) + εΣf (X )

Lemma 5 The function Maxf is a weakly submodular partition function.

PROOF. Let X = {X1, . . . , Xn} and Y = {Y1, . . . , Yl} be two partitions of
E. Let F be a set such that

X1 ⊆ F ⊆ (Y1 \X1)
c (8)

and chosen minimum with respect to f . Note that since X1 satisfies (8), we
have f(F ) ≤ f(X1). Assume that f(F ) < f(X1). We claim that Maxf (X ) >
Maxf (XX1→F c). Indeed, for every i ≥ 2, we have by submodularity of f :

f(Xi) + f(F c) ≥ f(Xi ∩ F c) + f(Xi ∪ F c) (9)

Furthermore, we have f(F ) ≤ f(F \ Xi) by minimality of F , and thus by
symmetry of f we get:

f(Xi ∪ F c) ≥ f(F c) (10)

Adding (9) and (10), we obtain f(Xi) ≥ f(Xi ∩ F c). Thus the maximum
of f over X is at least the maximum of f over XX1→F c . We now apply the
submodularity of the function

∑
f to the partitions X and {F c, F}. We then

obtain
∑

f (X )+
∑

f (F
c, F ) ≥ ∑

f (XX1→F c)+
∑

f (X
c
1, X1). Since f(X1) > f(F ),

we have
∑

f (F
c, F ) <

∑
f (X

c
1, X1), hence

∑
f (X ) >

∑
f (XX1→F c). Therefore,

Maxf (X ) > Maxf (XX1→F c).

Assume now that F = X1 is a minimum for f . By the same calculation as
above, we obtain Maxf (Y) ≥ Maxf (YY1→X1). Thus Maxf is a weakly submod-
ular partition function. 2
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6 Width parameters.

We assume in this section that the reader is somehow familiar with the usual
definitions of tree-decompositions (such as tree-width, branch-width, path-
width, rank-width,...). Our aim is just to associate a weakly submodular par-
tition function to each of these parameters and show how to translate the exact
partitioning k-search-tree into a tree-decomposition, and the non-principal k-
bramble into the known dual notion (if any). To avoid technicalities, we assume
that k is at least two and that G = (V, E) is a graph with minimum degree
two.

6.1 Tree-width of graphs.

The tree-width of G corresponds to the border δ defined on partitions of E.

Assume first that E has an exact partitioning k-search-tree T . Associate to
every internal node u of T the bag ∆(Tu). The restriction of T to its internal
nodes is a tree-decomposition of G. Indeed, for every edge xy of G, there is a
leaf v of T for which l(uv) = {xy}, where uv is the arc of T with head v. Thus
x and y belong to ∆(Tu), since the minimum degree in G is two. Furthermore,
if a vertex of G both belongs to ∆(Tu) and ∆(Tv), it also belongs to ∆(Tw)
for every node w in the (u, v)-path of T . Since every bag has size at most k,
the tree-width of G is at most k − 1.

Now if E has a non-principal k-bramble B, we form a bramble B′ (in the usual
sense). Let S be a subset of V with |S| ≤ k. We associate to S the partition
{E1, . . . , En} of E where the sets Ei are the (nonempty) sets of edges minimal
with respect to inclusion for the property ∆(Ei) ⊆ S. Observe that this is
indeed a partition since ∆(Ei ∩ Ej) ⊆ ∆(Ei) ∪ ∆(Ej) ⊆ S. Since B is a
non-principal k-bramble, one of the Ei, with at least two edges, is in B. This
means that Xi = V (Ei) \ S is a nonempty set of vertices. In other words, Ei

is the set of edges incident to at least one vertex of Xi (such a set is denoted
by E(Xi)). We now collect, for all subsets S with |S| ≤ k, these sets Xi to
form our B′. Observe first that, by minimality of Ei, every element Xi of B′
induces a connected subgraph of G. We have now to prove that for every pair
Xi, Xj of elements of B′, Xi ∪ Xj also induces a connected subgraph of G.
Indeed, let Ei = E(Xi) and Ej = E(Xj). Since the elements of B are pairwise
intersecting, there is an edge xy of G in Ei∩Ej. Without loss of generality, we
can assume that x ∈ Xi. If we also have x ∈ Xj, the sets Xi and Xj intersect,
and thus their union is connected. If x /∈ Xj, we necessarily have y ∈ Xj,
hence there is an edge of G connecting Xi and Xj. Thus B′ is a bramble, and
the minimum size covering set of B′ has at least k + 1 elements. In this case
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the bramble-number of G is at least k + 1.

6.2 Branch-width of graphs.

The branch-width of G corresponds to the weakly submodular partition func-
tion (Maxδ)3, which counts the maximum border of a subset in a partition of E
into two or three subsets. An exact partitioning k-search tree of E is precisely
a branch-decomposition of G of width k. Let us make now the correspondence
between a non-principal k-bramble B and a tangle of G.

First of all, B is here a pairwise intersecting family of subsets of E such
that every k-partition {E1, E2} or {E1, E2, E3} contains an element of B. The
translation into a tangle of order k + 1 is straightforward: when (G1, G2) is a
separation of order at most k of G, we choose (G1, G2) in the tangle if E(G2) ∈
B, otherwise we choose (G2, G1). The second axiom of tangles asserts that if
(A1, B1), (A2, B2) and (A3, B3) are in the tangle, we have G 6= A1 ∪ A2 ∪ A3.
It follows from the next proposition:

Proposition 6 If E1, E2 and E3 are in B, we have E1 ∩ E2 ∩ E3 6= ∅.

PROOF. Assume for contradiction that E1 ∩ E2 ∩ E3 = ∅. Observe that

δ(E1 ∩ E2) + δ(E2 ∩ E3) + δ(E3 ∩ E1) ≤ δ(E1) + δ(E2) + δ(E3).

So we can assume without loss of generality that, for instance, δ(E1∩E2) ≤ k.
We also have that δ(E1 \E2) + δ(E2 \E1) ≤ δ(E1) + δ(E2). So we can assume
for instance that δ(E1 \ E2) ≤ k. Then the partition {Ec

1, E1 \ E2, E1 ∩ E2}
is a k-partition. But this is impossible since these three sets are respectively
disjoint from E1, E2 and E3, which all belong to B. 2

The third axiom of tangles asserts that if (G1, G2) is a separation of G, we
have V (G1) 6= V . To see that, assume for contradiction that V (G1) = V .
We have E(G2) ∈ B, hence the number of vertices of G2 is at most k. Thus
every subset F of edges of G2 is such that δ(F ) ≤ k. Pick now F minimum
with respect to inclusion such that F ⊆ E(G2) and F ∈ B. Since B is non
principal, we have |F | ≥ 2. Let {F1, F2} be a non trivial partition of F . The
contradiction appears when considering the k-partition {F c, F1, F2} of E since
these three sets are not in B.
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6.3 Rank-width.

The rank-width (see Oum and Seymour [3]) of G is based on the symmetric
submodular function cutrk defined on subsets of vertices X where cutrk(X) is
the rank (in F2) of the adjacency matrix of the bipartite graph (X, V \X). The
submodular partition function on base set V is then cutrk3. The partitioning
exact k-search tree is precisely a rank-decomposition of G. A non-principal
k-bramble B is here a pairwise intersecting family of subsets of V such that
every k-partition {V1, V2} or {V1, V2, V3} has an element in B.

6.4 Path-width of graphs.

The path-width of G = (V, E) corresponds to the partition function δ′2, which
is the border of partitions {X1, . . . , Xn} of E with at most two parts with more
than one element. The following analogue of Theorem 1 holds for partition
functions Φ′

p, where Φ is a weakly submodular partition function, and p ≥ 2
is some integer:

Theorem 7 If T is a k-search-tree (with respect to Φ′
p) compatible with F ,

there is a relabelling of a subtree of T which is an exact k-search-tree compatible
with F .

PROOF. The proof is exactly the same as the one of Theorem 1 except in
one case: One cannot always push, for u and v internal nodes of T , the part
l(uv) to l(vu) in the partition Tu. Indeed, when |l(uv)| ≤ 1, this could increase
the number of parts of Tu with more than one element. In this case, we simply
form a new tree T ′ by deleting the nodes of T which belong to the components
of T \ v not containing u. Now, v is a leaf of T ′, and we set l(vu) = l(uv)c.
Observe that T ′ is still compatible with F . The reason for this is that

⋂F = ∅,
hence one of its element is included in l(uv)c. 2

It follows that Theorem 2 also holds for Φ′
p, and consequently for δ′2. Now

assume that T is a partitioning k-search-tree. Observe that we can assume
that its internal labels have size at least 2, otherwise we just cut the branches
as previously. This means that T is a caterpillar, i.e. a path with some attached
leaves. We associate to every internal node x the bag ∆(Tx). This gives a path-
decomposition of G in the usual sense.

The dual of path-width is the notion of blockage, introduced in [5]. Let us
assume that B is a non-principal k-bramble in our sense, that is a set of
pairwise intersecting subsets of edges, with overall empty intersection, and
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containing a part of every partition X = {X1, . . . , Xn} with δ′2(X ) ≤ k. We
form a blockage as follows: A k-cut (V1, V2) is a pair of subsets of vertices
with |V1 ∩ V2| ≤ k, V1 ∪ V2 = V and such that no edge of G joins V1 \ V2 to
V2\V1. In a blockage B′, either V1 or V2 must be chosen for every k-cut (V1, V2),
with the additional inclusion property that if (V1, V2) and (W1, W2) are some
k-cuts with V1 ⊆ W1, then W1 ∈ B′ implies V1 ∈ B′. The construction of B′
is straightforward: if (V1, V2) is a k-cut, we let X1 := E(V1) \ E(V2), X2 :=
E(V2) \E(V1), and we then list all the single edges X3, . . . , Xn which belongs
to E(V1 ∩ V2). This partition X = {X1, . . . , Xn} of E satisfies δ′2(X ) ≤ k. So
X1 or X2 belongs to B. If X1 ∈ B, we choose V2 in B′, otherwise we choose V1

in B′. The inclusion property follows from the fact that the elements of B are
pairwise intersecting.

6.5 Tree-width of matroids.

Let M be a matroid on ground set E with rank function r. We denote by rc the
submodular function such that rc(F ) := r(F c) for all subsets F of E and Φ the
submodular partition function such that for any partition X = {X1, . . . , Xl},

Φ(X ) = Σrc(X )− (l − 1)r(E)

This function is submodular (Σrc is submodular by Proposition 4) and gives
the tree-width of matroids.

A tree-decomposition of M (see Hlilĕný and G. Whittle [2]) is given by a tree
T whose nodes are labelled by the elements of a partition of E. A node u
of T labelled F0 thus corresponds to a partition (F0, . . . , Fd) of E. Its weight
is Σd

i=1r
c(Fi) − (l − 1)r(E). Partitioning search-tree on E with the weight

function Φ thus correspond to tree-decompositions but the converse is not true.
However, a tree-decomposition can be turned into a partitioning search-tree
without increasing its width. Indeed, we can safely prune the empty labelled
leaves and suppose u is either an internal node with a non-empty label or
a leaf whose label is not a singleton. Let F0 be its label. Attach |F0| new
leaves to u and move the elements of F0 to these leaves. The contribution of
a new leaf labelled e to the weight of u is rc(e) − r(E) ≤ 0 and its weight is
r(e) = 1. Since the width of a leaf labelled F is r(F ) ≥ 1, the width of this
new tree-decomposition is at most the width of the previous one.

Non-principal brambles provide a dual notion to matroid tree-width.
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