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. In this paper we assume p ≥ 2. It is easy to show that λ p (G) ≥ ∆ + p -1, where ∆ is the maximum degree of G. Moreover, when G is bipartite, ∆ + p is an upper bound for λ p (G), leaving only two possible values. In this paper, we completely settle the computational complexity of deciding whether λ p (G) is equal to ∆ + p -1 or to ∆ + p when G is bipartite. This is trivial when ∆ ≤ p, polynomial when ∆ = 3 and p = 2, and NP-complete in the remaining cases.

Introduction

The Frequency Assignment Problem asks for assigning frequencies to transmitters in a broadcasting network with the aim of avoiding undesired interference. One of the graph theoretical models of this problem which is well elaborated is the notion of distance constrained labelling of graphs. An L(p, q)-labelling of a graph G is a mapping from the vertex set of G into nonnegative integers such that the labels assigned to adjacent vertices differ by at least p, and labels assigned to vertices of distance 2 differ by at least q. The span of such a labelling is the maximum label used. This model was introduced by Roberts [START_REF] Roberts | Private communication to J. Griggs[END_REF] and since then the concept has been intensively studied (See the survey of Yeh [START_REF] Yeh | A survey on labeling graphs with a condition at distance two[END_REF]).

In [START_REF] Havet | 1)-total labelling of graphs[END_REF], Havet and Yu introduced the notion of (p, 1)-total labelling of a graph which corresponds to an L(p, 1)-labelling of its first subdivision of a graph G. The first subdivision (also called incidence graph) of a graph G is the graph s 1 (G) obtained from G by inserting one vertex along each edge of G. Let G = (V, E) be a graph and p be a positive integer. A (p, 1)-total labelling of G is a mapping L from V ∪ E into {0, . . . , l}, for some integer l, such that:

• if x and y are adjacent vertices then L(x) = L(y);

• if e and f are adjacent edges then L(e) = L(f );

• if an edge e is incident to a vertex x then |L(x) -L(e)| ≥ p.

A (1, 1)-total labelling coincides with the usual notion of total colouring. Clearly, every graph admits a (p, 1)-total labelling, if l is chosen large enough. The minimum l for which G has a (p, 1)-total labelling into {0, . . . , l} is denoted by λ p (G) and referred as (p, 1)-total labelling number. In [START_REF] Havet | 1)-total labelling of graphs[END_REF] Havet and Yu established the following easy bounds (here χ stands for the chromatic number, χ ′ the chromatic index and ∆ for the maximum degree):

Proposition 1 (Havet and Yu, [START_REF] Havet | 1)-total labelling of graphs[END_REF]) Let G = (V, E) be a graph with at least one edge. Proposition 2 (Havet and Yu, [START_REF] Havet | 1)-total labelling of graphs[END_REF]) Let G = (V, E) be a graph with at least one edge.

(i) λ p (G) ≤ χ(G) + χ ′ (G) + p -2. (ii) λ p (G) ≤ 2∆(G) + p -1.
In this paper, we are interested in the complexity of computing λ p (G). In the more general case of L(p, 1)-labellings, Griggs and Yeh [START_REF] Griggs | Labelling graphs with a condition at distance 2[END_REF] proved that determining the minimum span of an L(2, 1)-labelling of a graph G is an NPhard problem. Later Fiala et al. [START_REF] Fiala | Fixed-parameter complexity of λlabelings[END_REF] proved that deciding if this span is at most k is NP-complete for every fixed k ≥ 4.

In the case of total colouring (or (1, 1)-total labelling), Sánchez-Arroyo [START_REF] Sánchez-Arroyo | Determining the total colouring number is NP-hard[END_REF] first proved that it is NP-hard to determine the total chromatic number of graphs. Furthermore, McDiarmid and Sánchez-Arroyo [START_REF] Mcdiarmid | Total colouring regular bipartite graphs is NP-hard[END_REF] showed that it is still NP-hard when restricted to k-regular bipartite graphs (if k ≥ 3). Here we study the problem when p ≥ 2. Contrary to total colouring, determining the (p, 1)-total labelling number of a regular bipartite graph is easy since it is always ∆(G) + p by Propositions 1 and 2 (since χ(G) = 2 and χ ′ (G) = ∆(G) by König's theorem). Hence, we will study the problem restricted to the class of bipartite graphs. If G is bipartite, Propositions 1 and 2 yield λ p (G) ∈ {∆(G) + p -1, ∆(G) + p}. Hence we investigate the complexity of the following problem: ∆-Bipartite (p, 1)-Total Labelling Problem: INSTANCE: Bipartite graph G with maximum degree ∆. QUESTION: Does λ p (G) = ∆ + p -1?

Note that Proposition 1 (iii) implies that this problem is trivial when ∆ ≤ p since it is always answered in the negative.

The aim of this paper is to prove the NP-completeness of the ∆-Bipartite (p, 1)-Total Labelling Problem for any ∆ ≥ p+1 except for ∆ = 3 and p = 2 in which case we give a polynomial-time algorithm to solve it. In Section 3 we first give a polynomial-time algorithm that decides if λ 2 (G) = 4 or λ 2 (G) = 5 for a bipartite graph with maximum degree 3. This algorithm is based on induced matching in bipartite graphs. We also show that the same decision problem for graphs (not necessarily bipartite) with maximum degree 3 is NP-complete. In Section 4, we prove the NP-completeness of the ∆-Bipartite (p, 1)-Total Labelling Problem in all other cases. To achieve it, we need to distinguish three cases: ∆ ≥ 2p (Section 4.1), 2p -1 ≥ ∆ ≥ p + 2 (Section 4.2) and ∆ = p + 1 (Section 4.3). Note that these results imply that determining the minimum span of an L(p, 1)-labelling of a bipartite graph is NP -hard. For trees determining the minimum span of an L(2, 1)-labelling is nontrivial but a polynomial time algorithm based on bipartite matching was presented in [START_REF] Chang | The L(2, 1)-labeling problem on graphs[END_REF].

Preliminaries

Let G = (V, E) be a graph. The degree of a vertex v is denoted by d G (v) or simply d(v), when G is clear from the context. A path is a non-empty graph P of the form

V (P ) = {v 0 , v 1 , . . . , v k } E = {v 0 v 1 , v 1 v 2 , . . . , v k-1 v k },
where the v i are all distinct. The vertices v 0 and v k are called the ends of P . We often refer to a path by the natural sequence of its vertices, writing

P = v 0 v 1 . . . v k .
For any pair of vertices x and y, an xy-path is a path with ends x and y.

Given two sets of vertices X and Y of G, the distance from X to Y denoted dist(X, Y ) is the length of a shortest xy-path with x ∈ X and y ∈ Y . The distance between two edges uv and xy is defined by dist(uv, xy) = dist({u, v}, {x, y}).

We will often make use of the following (simple) facts: 

(v) = k -1, then L(v) ∈ {0, 1, k + p -2, k + p -1}.
Proof: 

(i) Suppose that L(v) / ∈ {0, k + p -1}. Then |{L(v) -p + 1, . . . , L(v) + p - 1} ∩ {0, . . . , k + p -1}| ≥ p + 1. Hence at most k -1 labels are available to colour the edges adjacent to v. So d(v) ≤ k -1. (ii) It follows directly from (i). (iii) Suppose that L(v) / ∈ {0,
(x) = L(y) = L(z). (vi) If p ≥ 3 the graph I in Fig. 1 is a subgraph of G with d G (a) = d G (b) = d G (c) = d G (d) = p + 1 and d G (f 1 ) = d G (f 2 ) = p, then L(a) = L(c) and L(b) = L(d).
Proof:

(i) Trivial.

(ii) Assume for contradiction that there are two edges xy and uv, both labelled p, at distance one (distance zero is impossible by definition of (p, 1)-total labelling).Without loss of generality, we may assume that yu is an edge. Then y is labelled 0 and u is labelled 2p or y is labelled 2p and u is labelled 0. Thus the unique label allowed by its ends for the edge yu is p, which is a contradiction. (iii) By Proposition 3 (i), L(x) = 0 and L(y) = 2p. Moreover the edge xu is labelled in {p, . . . , 2p}, so L(u) ≤ p and the edge uy is labelled in {0, . . . , p}, thus L(u) ≥ p. Hence L(u) = p, so L(xu) = 2p and L(uy) = 0. (iv) It follows directly from (iii). (v) It follows also easily from (iii). (vi) Suppose for a contradiction that it is not true. By Proposition 3 (ii), the edges ab and cd are both labelled p and L(a) = L(d) and L(b) = L(c).

Without loss of generality, we may assume that L(b) = 0 and L(d) = 2p. The vertex f 1 of I has degree p so by Proposition 3 (iii), L(f

1 ) ∈ {0, 1, 2p-1, 2p}. Moreover L(d) = 2p and L(f 1 d) ≤ p -1, so L(f 1 ) = 2p -1.
Hence L(e 1 f 1 ) ≤ p -1 so L(e 1 ) ≥ p. Now L(be 1 ) ≥ p, so L(e 1 ) ≤ p. Thus L(e 1 ) = p and L(be 1 ) = 2p. Analogously L(be 2 ) = 2p which is a contradiction. Let G be a bipartite graph with maximum degree three. Our aim is to show a polynomial-time algorithm which decides if λ 2 (G) is equal to 4 or 5.

An induced matching is a matching M of G such that any two distinct edges of M are at distance at least two. A good matching is an induced matching M such that every vertex of maximum degree is incident to an edge of M. Observe that from the definition of a good matching, an edge which is incident to two vertices of maximum degree is necessarily in every good matching. Conversely, an edge which is at distance one from a maximum degree vertex is never in a good matching. Because every vertex of degree 3 is incident to an edge of M, the graph G \ M has maximum degree 2. So it is the union of disjoint (even) cycles and paths. Let D be an orientation of G \ M such that every cycle is a directed cycle and every path is a directed path (i.e. an orientation such that |d + (x)d -(x)| ≤ 1 for every vertex x). If a cycle or a path of G \ M is not incident to any edge of M (and thus forms a connected component of G), we simply label its vertices by an alternating 0,1 sequence and its edges by an alternating 3,4 sequence. So we assume now that every component of G \ M contains a vertex of V (M). Let P be the set of maximal oriented paths of D whose internal vertices are not incident to an edge of M (such a path can have the same endvertices when it comes from a cycle of D which is incident to exactly one edge of M).

Observe that every arc of D belongs to a unique path of P.

We label the vertices and the arcs of each path P = (x 0 , x 1 , . . . , x l ) of P as follows:

• Suppose that x 0 and x l are both incident to an edge of M. Then since M is a good matching, we have l ≥ 2.

• If l is even, then L(x 0 ) = L(x l ).

If L(x 0 ) = 0 then for 0 ≤ i ≤ l -1, if i is even, set L(x i ) = 0 and L(x i x i+1 ) = 3, and, if i is odd, set L(x i ) = 1 and L(x i x i+1 ) = 4.

If L(x 0 ) = 4 then for 0 ≤ i ≤ l -1, if i is even, set L(x i ) = 4 and L(x i x i+1 ) = 1, and, if i is odd, set L(x i ) = 3 and L(x i x i+1 ) = 0.

• If l is odd, then L(x 0 ) = L(x l ). If L(x 0 ) = 0 then set L(x 0 x 1 ) = 3, L(x 1 ) = 1, L(x 1 x 2 ) = 4, L(x 2 ) = 2 and L(x 2 x 3 ) = 0. Furthermore, for 3 ≤ i ≤ l -1, if i is odd, set L(x i ) = 4 and L(x i x i+1 ) = 1, and if i is even, set L(x i ) = 3 and L(x i x i+1 ) = 0. If L(x 0 ) = 4 then set L(x 0 x 1 ) = 1, L(x 1 ) = 3, L(x 1 x 2 ) = 0, L(x 2 ) = 2 and L(x 2 x 3 ) = 4. Moreover, for 3 ≤ i ≤ l -1, if i is odd, set L(x i ) = 0 and L(x i x i+1 ) = 3, and, if i is even, set L(x i ) = 1 and L(x i x i+1 ) = 4.
• If x 0 is incident to an edge of M, and x l is not, we suppose without loss of generality that L(x 0 ) = 0. We colour L(x i ) = 0 and L(x

i x i+1 ) = 3, if i is even, and L(x i ) = 1 and L(x i x i+1 ) = 4 if i is odd.
The case x l incident to an edge of M is treated similarly.

To see that L is a (2, 1)-total labelling of G, observe that a vertex x ∈ V (M) is the origin of at most one directed path P of P and the end of at most one directed path Q of P. Now the first edge of P is coloured 3 (resp. 1) and the last edge of Q is coloured 4 (resp. 0) if L(x) = 0 (resp. 4). Thus the edges incident to x get different integers at distance at least two from L(x). 2

A restricted good matching is a good matching such that each edge is incident to a vertex of maximal degree. Clearly, a graph has a good matching if and only if it has a restricted good matching. From now on, by good matching, we understand restricted good matching.

Theorem 2

The following problem is solvable in polynomial time: INSTANCE: Graph G with maximum degree 3.

QUESTION: Does G have a good matching?

Proof: Given a graph G with maximum degree 3, the following algorithm finds a good matching of G if one exists or answers "G has no good matching" otherwise.

For any edge e, we denote by B 2 (e) the union of the set of edges and vertices at distance strictly less than two from e. If F is a set of edges, then

B 2 (F ) = e∈F B 2 (e). Note that if e is an edge of a good matching M then B 2 (e) ∩ M = {e}.
During the execution of the algorithm, M is the set of edges that are selected to be in the desired good matching and S denotes the set of vertices that must be incident to an edge of a good matching and that are not yet incident to an edge of M. Finally, H is the subgraph of G where the remaining edges of the good matching can be.

Good Matching(G)

Step 0: Initially, let H be G, S be the set of vertices of degree 3 and M be the set of edges with both endvertices in S.

Step 1: If M is an induced matching (in particular if M = ∅), then remove B 2 (M) from H and the endvertices of each edge of M from S. Otherwise return "G has no good matching".

Step 2: Remove the edges of every path of length 2 joining two vertices of S.

Step 3: Repeat until no vertex u of S satisfies one of the following cases:

Case 1: If u has degree 0 in H then return "G has no good matching". Case 2: If u has a unique neighbour v or a neighbour v that has degree one in H, then add uv to M, remove B 2 (uv) from H and u from S.

Case 3: If there is a path uvw in H such that w is not adjacent to any vertex of S then add uv to M, remove B 2 (uv) from H and u from S.

Step 4: Repeat until S = ∅:

Pick a vertex u of S with minimum degree in H. Take a path uvwx starting at u (observe that x ∈ S). Add uv to M, remove uvw from H and remove u from S.

Step 5: Return M.

At

Step 0, S is initialized to the set of vertices of degree 3.

By Proposition 3 (ii), any good matching must contain the edges joining two vertices of degree 3. So M is initialized to this set. At Step 1, we check that M is an induced matching which is a necessary condition for G to have a good matching.

From

Step 2, M is an induced matching. Indeed each time, we will add an edge e to M, we remove B 2 (e) from the graph G. Hence, all the edges of the remaining graph are at distance at least 2 from e in particular those edges that will be added to M after e. Therefore once S will be reduced to the emptyset, M will be a good matching.

At

Step 2, we remove all the paths of length 2 between vertices of S since their edges are in no good matching.

Let us prove that at each iteration of the loop of Step 3, the following "correctness statement" holds : if there is a good matching M 1 then there is a good matching M 2 containing M. Case 1: There is no more edges to be incident to u. Thus G has no good matching containing M, so by the correctness statement G has no good matching.

Case 2: Suppose that there is a good matching M 1 containing M. Let e u be the edge incident of M 1 to u. Let us prove that M 2 = (M 1e u ) ∪ {uv} is also a good matching. Let e be an edge of M 2 \ {uv} that is the closest to uv and let P be a smallest path connecting e to uv in (the initial) G. If v is an endvertex of P , then the two first edges of P are not in H and thus not in M.

If not dist(e u , e) ≤ dist(uv, e). In both cases, dist(uv, e) ≥ 2. Thus M 2 is an induced matching and then a good matching. Analogously one can prove the correctness statement if we are in Case 3.

At the end of Step 3, H has a nice structure: a path joining to vertices of S with no internal vertices in S has length exactly 3, and each vertex of S is adjacent to at least one such path. In particular this implies that G has a good matching. Then Step 4 extends the matching M in a good matching. 2 Theorems 1 and 2 immediatly imply:

Corollary 1 The 3-Bipartite (2, 1)-Total Labelling Problem is solvable in polynomila time. Let C = {C 1 , . . . , C n } be a collection of clauses over a set U of variables. We will construct a graph G(C, U). For every variable u ∈ U, create a variable subgraph P u defined as follows:

NP-completeness for general graphs

V (P u ) = n i=1 {a i (u), b i (u), s i (u)} E(P u ) = n i=1 {a i (u)b i (u), a i (u)s i (u), a i s i-1 (u)} with s 0 (u) = s n (u).
For every clause C i = x ∨ y ∨ z, create a subgraph D i defined as follows:

V (D i ) = {a i (x), b i (x), a i (y), b i (y), a i (z), b i (z), c i , d i , t i (x), t i (y), t 1 i (z), t 2 i (z)} . . . a1(u) s1(u) an(u) b1(u) bn(u) b2(u) a2(u) s2(u) bn-1(u) an-1(u) sn-1(u) s0(u) Fig. 2. The variable subgraph P u E(D i ) = {a i (x)b i (x), b i (x)t i (x), a i (y)b i (y), b i (y)t i (y), a i (z)b i (z), b i (z)t 1 i (z), b i (z)t 2 i (z), c i d i , c i t i (x), c i t i (y), d i t 1 i (z), d i t 2 i (z)} a i (z) b i (z) t 1 i (z) t 2 i (z) c i d i b i (x) a i (y) b i (y) t i (y) t i (x) a i (x) Fig. 3. The clause subgraph D i
If x is a non-negated literal u identify the vertices a i (u) and b i (u) of P u with the vertices a i (x) and b i (x) of D i . We also add a new vertex b ′ i (u) of degree one adjacent to b i (u) so that this vertex has degree 3 in G(C, U).

If x is a negated literal ū create two new vertices q i (u) and r i (u) and join them both to the vertices b i (u) of P u and a i (x) of D i .

Let us prove now that G(C, U) has a (2, 1)-total labelling in {0, . . . , 4} if and only if there is a truth assignment such that each clause in C has at least one true literal and at least one false literal. Suppose first that there exists a (2, 1)-total labelling L of G(C, U) in {0, . . . , 4}.

A = {a i (u), b i (u) | 1 ≤ i ≤ n, u ∈ U}∪{a i (x), b i (x), a i (y), b i (y), a i (z), b i (z), c i , d i | C i = x ∨ y ∨ z clause} is the set of vertices of degree 3 in G(C, U)
. By construction, every vertex of A has exactly one neighbour in A. Hence by Proposition 3 (i), every vertex of A is labelled 0 or 4 and an edge with its two ends in A is labelled 2.

Let us show that for every u ∈ U, all the a i (u) are labelled the same (0 or 4). By Proposition 3 (i), for all 1 ≤ i ≤ n, the a i (u) are labelled 0 or 4 and L(a i (u)b i (u)) = 2. Suppose they are not all labelled the same. Then there exists i 0 < i 1 such that L(a i 0 (u)) = 0 = L(a i 1 +1 (u)) and L(a i (u)) = 4 if i 0 < i ≤ i 1 . Then by Proposition 4 (i), L(a i 0 (u)s i 0 (u)) = 4, L(s i 0 (u)) = 2 and L(s i 0 (u)a i 0 +1 (u)) = 0, then L(a i 0 +1 (u)s i 0 +1 (u)) is necessary 1. So L(s i 0 +1 (u)) = 3 and L(s i 0 +1 (u)a i 0 +2 (u)) = 0. And so on by induction, if i 0

< i ≤ i 1 , L(s i-1 (u)a i (u)) = 0, L(a i (u)s i (u)) = 1. But by Proposition 3 (i), L(a i 1 (u)s i 1 (u)) = 0 which is a contradiction.
Hence we may define the truth assignment φ by φ(u) = true if L(a i (u)) = 2p and φ(u) = f alse if L(a i (u)) = 0. Let us prove that each clause in C has at least one true literal and at least one false literal under φ.

Let C i = x ∨ y ∨ z be a clause. Let t be one of its literals. If t is a non-negated literal u, then L(a i (t)) = L(a i (u)) since a i (t) = a i (u). If t is a negated literal ū then, according to Proposition 4 (iv), L(a i (t)) = L(b i (u)) = L(a i (u)
) since a i (x) and b i (u) have two common neighbours q i (u) and r i (u). Hence to prove the result it suffices to prove that L(a i (x)), L(a i (y)) and L(a i (z)) are not all equal.

Suppose (reductio ad absurdum) that they are all equal. Without loss of generality, we may suppose they are 0. Then since a i (x)b i (x), a i (y)b i (y) and a i (z)b i (z) are edges labelled 2, then b i (x), b i (y) and b i (z) are labelled 4. Now c i d i is also labelled 2 and, because b i (z) and d i have two common neighbours, they are labelled the same by Proposition 4 (iv). Thus d i is labelled 4 and so c i is labelled 0. Now c i and b i (x) have a common neighbour t i (x) so L(t i (x)c i ) = 4 according to Proposition 4 (iii). Analogously, L(t i (y)c i ) = 4 which is a contradiction.

Let us now suppose that there is a truth assignment φ such that each clause in C has at least one true literal and at least one false literal. For every variable u ∈ U, we do the following

-if φ(u) = true then, for 1 ≤ i ≤ n, set L(a i (u)) = 4, L(b i (u)) = 0, L(a i (u)b i (u)) = 2
, and label the neighbours of a i (u) different from b i (u) with 3. We then label a i (u)s i (u) with 0 and a i (u

)s i-1 (u) with 1. -if φ(u) = f alse then, for 1 ≤ i ≤ n, set L(a i (u)) = 0, L(b i (u)) = 4, L(a i (u)b i (u)) = 2,L(s i (u)) = 1, L(a i (u)s i (u)) = 3 and L(a i (u)s i-1 (u)) = 4.
For every literal

x of clause C i , set L(a i (x)) = 4, L(b i (x)) = 0, L(a i (x)b i (x)) = 2 if φ(x) = true and set L(a i (x)) = 0, L(b i (x)) = 4, L(a i (x)b i (x)) = 2 if φ(x) = f alse. Note that if x is a non-negated literal u then the vertices a i (x) = a i (u), b i (x) = b i (u)
and the edge a i (x)b i (x) = a i (u)b i (u) get the same label with the labelling of the clause and the labelling of the variable.

If x is the negated literal ū, then a i (x) and b i (u) are labelled the same. Hence set

L(q i (u)) = L(r i (u)) = 1, L(b i (u)q i (u)) = L(r i (u)a i (x)) = 3 and L(b i (u)r i (u)) = L(q i (u)a i (x)) = 4 if they are labelled 0 and L(q i (u)) = L(r i (u)) = 3, L(b i (u)q i (u)) = L(r i (u)a i (x)) = 1 and L(b i (u)r i (u)) = L(q i (u)a i (x)) = 0 if they are labelled 4.
Let us now extend the labelling to each clause graph D i . Since C i has one true literal and one false literal, then {b i (x), b i (y), b i (z)} has one vertex labelled 0 and one is labelled 4.

-If L(b i (x)) = L(b i (y)) = 0 and L(b i (z)) = 4, set L(c i ) = 0, L(d i ) = 4, L(c i d i ) = 2, L(t i (x)) = L(t i (y)) = 1 and L(t 1 i (z)) = L(t 2 i (z)) = 3. -If L(b i (x)) = L(b i (z)) = 0 and L(b i (y)) = 4, set L(c i ) = 4, L(d i ) = 0, L(c i d i ) = 2, L(t i (x)) = 2 and (t i (y)) = 3, L(t 1 i (z)) = L(t 2 i (z)) = 1, L(ct i (x) = 0, L(t i (x)b i (x)) = 4.
In other cases, we proceed analogously, since x and y are equivalent and by symmetry of the labelling l → 2pl. . . .

∆-p 2

B n (u)

B 1 (u) B 2 (u) p p p ∆-p 2 B 0 (u) A n (u) A 1 (u) A 2 (u) ∆-p 2
Fig. 4. The variable subgraph P (u)

Let C i be a clause and u ∈ U a variable. Let s i (u) be a vertex in A i (u). This vertex will correspond to the non-negated literal u in the clause C i . Let us create a negation subgraph N i (u) containing a vertex s i (ū) corresponding to the negated literal ū in the clause For each clause C i create a vertex v i . Connect v i to s i (l) for every literal l in C i .

C i . The vertex set V (N i (u)) is A i (u) ∪ {p i (u), q i (u), s i (ū)} ∪ R i (u), with R i (u) a set of ∆ -p new vertices and E(N i (u)) = {ap i (u) | a ∈ A i (u)} ∪ {rq i (u) | r ∈ R i (u)} ∪ {rs i (ū) | r ∈ R i (u)} ∪ {p i (u)q i (u)} (see Fig. 5). p ∆ -p p i (u) s i (ū) R i (u) A i (u) q i (u)
Finally, add as many as necessary extra vertices of degree 1 adjacent to the vertices of S = u∈U V (P (u)) ∪ u∈U,1≤i≤n [V (N i (u) \ {p i (u)}] in such a way that all these vertices get degree ∆.

By construction, G(C, U) is bipartite with maximum degree ∆. Let us prove that λ p (G(C, U)) = ∆ + p -1 if and only if there is a truth assignment such that each clause in C has at least one true literal and at least one false literal.

If there is a truth assignment φ, we do the following for each variable u:

-Label the edges of P (u) with labels of {p, . . . , ∆ -1}. This is possible by König's theorem since P (u) is bipartite of maximal degree ∆p.

-If φ(u) = true then label each a ∈ A i (u) with ∆ + p -1 and each b ∈ B i (u) with 0. Otherwise label each a ∈ A i (u) with 0 and each b ∈ B i (u) with ∆ + p -1. -Label the edges of {rq i (u) | r ∈ R i (u)} ∪ {rs i (ū) | r ∈ R i (u)} with labels of {p, . . . , ∆ -1}. -If φ(u) = true then label each r ∈ R i (u) with ∆ + p -1, and q i (u) and s i (ū) with 0. Otherwise label each r ∈ R i (u) with 0, and q i (u) and s i (ū) with ∆ + p -1. -If φ(u) = true then label the edges of {ap i (u) | a ∈ A i (u)} with {0, . . . , p -1}, p i (u)q i (u) with ∆ + p -1 and p i (u) with 2p -1. Otherwise label the edges of {ap i (u) | a ∈ A i (u)} with {∆, . . . , ∆ + p -1}, p i (u)q i (u) with 0 and p i (u) with ∆p. This is valid since ∆ ≥ 2p.

Now each vertex v i is adjacent to the p + 1 vertices s i (l) for l literal of C i . These vertices are labelled in {0, ∆ + p -1} with at least one labelled 0 and at least one labelled ∆ + p -1. Let us denote by t 1 , t 2 , . . . , t j the neighbours of v i labelled 0 and t j+1 , . . . , t p+1 the neighbours of v i labelled ∆ + p -1. For 1 ≤ l ≤ j, label v i t j with ∆ + pl and for j + 1 ≤ l ≤ p + 1, label v i t j with lj + 1. Now label v i with 2pj. This is possible because ∆ ≥ 2p.

This labelling may trivially be extended to the extra vertices and their incident edges to get a (p, 1)-total labelling of G(C, U).

Suppose now that there is a (p, 1)-total labelling L of G(C, U) in {0, . . . , ∆ + p -1}. By Proposition 3 (i), for any u ∈ U, all the vertices in n i=1 A i (u) have the same label L u ∈ {0, ∆ + p -1} and all the vertices in n i=0 B i (u) are labelled with the integer Lu of {0, ∆ + p -1} \ L u . Moreover the edges of P (u) are labelled in {p, . . . , ∆ -1} by Proposition 3 (ii). Now, since every vertex a of a i (u) has degree ∆p in P (u), each label of {p, . . . , ∆ -1} is assigned to an edge incident to a in P (u).

Let us show that L(s i (ū)) = Lu . Without loss of generality, we may assume that L u = ∆ + p -1.

Suppose for a contradiction that L(s i (ū)) = 0. By Proposition 3 (i), L(s i (ū)) = ∆+ p -1. Furthermore by Proposition 3 (ii), each vertex in R i (u) is labelled 0, L(q i (u)) = ∆+ p -1, and the ∆-p edges of {q i (u)r i (u)} ∪{q i (u)r | r ∈ R i (u)} are labelled with the ∆p integers of {p, . . . , ∆ -1}. Hence the p + 1 edges adjacent to p i (u) are labelled in {0, . . . , p -1}. This is a contradiction.

Let φ be the truth assignment defined by φ

(u) = true if L u = ∆ + p -1 and φ(u) = f alse if L u = 0.
Let us prove that each clause in C has at least one true literal and at least one false literal. The vertex v i is adjacent to p + 1 vertices, namely the s i (l) for all the literal l of C i . If C i has all its literals true (resp. false) then all the neighbours of v i are labelled 0 (resp. ∆ + p -1). Moreover they are incident to edges labelled p, . . . , ∆-1 in P (u) or N i (u). Hence the p+1 edges incident to v i cannot be labelled since they are only p labels available, those of {0, . . . , p -1} (resp. {∆, . . . , ∆ + p -1}). if i is even. The vertex s i (u) will correspond to the non-negated literal u in C i .

. . .

∆-p 2 ∆-p 2 ∆-p 2 B 0 (u) B n (u) B 1 (u) B 2 (u) s 1 (u) s 2 (u) s n (u)
Fig. 6. The variable subgraph P (u)

Let us now create a negation subgraph N i (u) containing a vertex s i (ū) corresponding to the negated literal ū in the clause

C i . The vertex set V (N i (u)) is {s i (u), p 1 i (u), p 2 i (u), r i (u), s i (ū)} ∪ Q i (u) ∪ T i (u) ∪ V i (u)
where Q i (u) is a set of p-1 vertices and T i (u) and V i (u) are two sets of ∆-p-1 vertices. The edge set

E(N i (u)) is {s i (u)p 1 i (u), s i (u)p 2 i (u), r i (u)s i (ū)} ∪ {pq | p ∈ {p 1 i (u), p 2 i (u)}, q ∈ Q i (u)} ∪ {xr i (u), | x ∈ Q i (u) ∪ T i (u)} ∪ {vs i (ū) | v ∈ V i (u)}. Now for each clause C i = x ∨ y ∨ z create a clause subgraph C(i) that con- nects the three vertices s i (x), s i (y) and s i (z). The vertex set V (C(i)) is {s i (x), s i (y), s i (z), p 1 i , p 2 i , r i , w i } ∪D 1 i ∪D 2 i ∪Q i ∪T i with D 1 i , D 2 i , Q i and T i four sets of cardinality respectively ∆-p 2 , ∆-p 2 , p -1 and ∆ -p -1. The edge set E(C(i)) is {s i (z)p 1 i , s i (z)p 2 i , r i w i } ∪ {pq | p ∈ {p 1 i , p 2 i }, q ∈ Q i } ∪ {xr i , x ∈ Q i ∪ T i } ∪ {w i d | d ∈ D 1 i ∪ D 2 i } ∪ {s i (x)d | d ∈ D 1 i } ∪ {s i (y)d | d ∈ D 2 i }. ∆ -p -1 ∆ -p -1 r i (u) p 1 i (u) p 2 i (u) p -1 s i (ū) s i (u) Q i (u) V i (u) T i (u)
Fig. 7. The negation subgraph N i (u)

∆ -p -1 p -1 p 2 i p 1 i T i s i (z) Q i D 1 i w i r i ∆-p 2 ∆-p 2 s i (y) s i (x) D 2 i Fig. 8. The clause subgraph C(i)
Finally, add as many as necessary extra vertices of degree 1 adjacent to the vertices of

S = u∈U V (P (u))∪ 1≤i≤n [{r i , w i }∪T i ]∪ u∈U,1≤i≤n [{r i (u), s i (ū)}∪ T i (u) ∪ V i (u)] and S ′ = u∈U,1≤i≤n Q i (u) ∪ 1≤i≤n Q i ∪ D 1 i ∪ D 2
i in such a way that the vertices of S get degree ∆ and those of S ′ degree ∆ -1.

By construction, G(C, U) is bipartite with maximum degree ∆. Let us prove that λ T p (G(C, U)) = ∆ + p -1 if and only if there is a truth assignment such that each clause in C has at least one true literal and at least one false literal. Suppose first that there exists such a truth assignment φ. Let us exhibit a (p, 1)-total labelling L of G(C, U) in {0, . . . , ∆ + p -1}. Let u be a variable.

Suppose that φ(u) = true. Then label the vertices and edges of P (u) as follows:

-Label the edges of P (u) with labels of {p, . . . , ∆ -1}. This is possible by König's theorem since P (u) is bipartite of maximal degree ∆p.

-For 1 ≤ i ≤ n, L(s i (u)) = ∆ + p -1 and L(b) = 0 for any b ∈ 0≤i≤n B i (u).
Furthermore, for every 1 ≤ i ≤ n, label the vertices and edges of N i (u) as follows:

-L(s i (ū)) = 0; L(r i (u)) = ∆ + p -1; L(v) = ∆ + p -1 for v ∈ V i (u); L(t) = 0 for t ∈ T i (u) ; L(p 1 i (u)) = L(p 2 i (u)) = ∆ + p -3; L(q) = ∆ + p -2 for q ∈ Q i (u). -L(r i (u)s i (ū)) = p; label the edges of {r i (u)t | t ∈ T i (u)}∪{s i (ū)v | v ∈ V i (u)} with {p + 1, . . . , ∆ -1}; L(s i (u)p 1 i (u)) = 0; L(s i (u)p 2 i (u)) = 1; let q i (u) be a vertex of Q i (u); label p 1 i (u)q i (u) with 1, p 2 i (u)q i (u) with 0 and r i (u)q i (u) with p -1; label the edges of {pq | p ∈ {p 1 i (u), p 1 2 (u)}, q ∈ Q i (u) \ {q i (u)}} ∪ {r i (u)q | q ∈ Q i (u) \ {r i (u)}}
with {2, . . . , p -1}. This is possible by König's theorem. This is valid since ∆ ≥ p + 2 excpet that an edge r i (u)q with q ∈ Q i (u) \ {q i (u)} is labelled p -1 so conflicting with r i (u)q i (u). Hence we relabel the edge r i (u)q with 0.

If φ(u) is false, we label the vertices and the edges of P (u) and the N i (u) in the symmetric way, that is a label l when φ(u) is true is replaced by a label ∆ + p -1l when φ(u) is false.

Let us now label the edges and vertices of each clause subgraph for each clause C i . So far, the vertex s i (x) is label ∆ + p -1 if the literal x is true and 0 if x is false. Hence, since C i has one true and one false literal with φ, one vertex among s i (x i ), s i (y i ) and s i (z i ) is labelled ∆ + p -1 and another 0.

Suppose first that L(s i (x i )) = L(s i (y i )) = ∆ + p -1 and L(s i (z i )) = 0. Then label the vertices and edges of C(i) as follows:

-Label the vertices and edges of

C(i) \ (D 1 i ∪ D 2 i ∪ {s i (x)
, s i (y)} in the same way as N i (u) when φ(u) = f alse. In such a way L(w i ) = ∆ + p -1 and

L(r i w i ) = ∆ -1. -label the vertices of D 1 i ∪ D 2 i with ∆ + p -2. -Label the edges of {w i d | d ∈ D 1 i ∪D 2 i }∪{s(x i )d | d ∈ D 1 i }∪{s(y i )d | d ∈ D 2
i } with labels in {0, . . . , ∆p -1}. This is possible by König's theorem. Suppose now that L(s i (x i )) = ∆ + p -1 and L(s i (y i )) = L(s i (z i )) = 0. Then label the vertices and edges of C(i) as follows:

-Label the vertices and edges of

C(i) \ (D 1 i ∪ D 2 i ∪ {s i (x), s i (y)} in the same way as N i (u) when φ(u) = f alse. In such a way L(w i ) = ∆ + p -1 and L(r i w i ) = ∆ -1. -label the vertices of D 1 i ∪ D 2 i with ∆ + p -2. -Label the edges of {s(x i )d | d ∈ D 1 i } ∪ {w i d | d ∈ D 1 i } with labels in 0, . . . , ∆-p 2 -1 . This is possible by König's theorem. -Finally label the edges of {s(y i )d | d ∈ D 2 i } ∪ {w i d | d ∈ D 2 i } with labels in {p, . . . , ∆ -2}. This is possible by König's theorem because ∆-1-p ≥ ∆-p 2 for ∆ ≥ p + 2 and valid because p ≥ ∆-p 2 for ∆ ≤ 2p -1.
All the other cases are obtained from these two by symmetry of the graph and labels. This labelling may trivially be extended to the extra vertices and their incident edges to get a (p, 1)-total labelling of G(C, U).

Suppose now that there exists a (p, 1)-total labelling L of G(C, U) in {0, . . . , ∆+ p -1}. By Proposition 3 (i), for any u ∈ U, all the vertices s i (u), 1 ≤ i ≤ n, have the same label L u ∈ {0, ∆ + p -1} and all the vertices of n i=0 B i (u) are labelled with the integer Lu of {0, ∆ + p -1} \ L u . Moreover the edges of P (u) are labelled in {p, . . . , ∆ -1}. Since every vertex s i (u) has degree ∆p in P (u), each label of {p, . . . , ∆ -1} is assigned to an edge of P (u) incident to s i (u).

Let us now show that s i (ū) is assigned Lu . Without loss of generality, we may assume that L u = ∆ + p -1. Suppose for a contradiction that L(s i (ū)) = 0. By Proposition 3, L(s i (ū)) = ∆ + p -1 and so L(r i (u)) = 0 and L(t) = ∆ + p -1 for any t ∈ T i (u). Furthermore, the ∆p edges joining r i (u) to T i (u) ∪ s i (ū) are labelled in {p, . . . , ∆-1}. So each integer of this set label one of those edges. It follows that the edges of {r i (u)q | q ∈ Q i (u)} are labelled in {∆, . . . , ∆ + p -1}. Now each vertex q ∈ Q i (u) is labelled in {0, 1, ∆+p-1, ∆+p-2} by Proposition 3 (iii). So L(q) = 1 (0 is forbidden because of r i (u) and ∆+p-1 and ∆+p-2 by the edges qr i (u)). It follows that the edges of

{p 1 i (u)q | q ∈ Q i (u)} are labelled in Γ = {p+ 1, . . . , ∆ + p -1} \ {L(p 1 i (u)) -p + 1, . . . , L(p 1 i (u)) + p -1}. Hence L(p 1 i (u)) ≤ p otherwise |Γ| ≤ ∆-p-1 ≤ p-2 which is a contradiction. But L(s i (u)p 1 i (u)
) ∈ {0, . . . , p-1} because s i (u) is labelled ∆+p-1 and adjacent to an edge labelled l in P (u) for any l ∈ {p, . . . , ∆-1}. Thus L(s i (u)p 1 i (u)) = 0 and L(p 1 i (u)) = p. Analogously, we have L(s i (u)p 2 i (u)) = 0 which is a contradiction.

Hence s i (ū) is labelled Lu . Moreover, by Proposition 3, each label of {p, . . . , ∆-1} is assigned to an edge of

{vs i (u) | v ∈ {r i (u)} ∪ V i (u)}.
Let us define the truth assignment φ by φ(u) = true if L u = ∆ + p -1 and φ(u) = f alse if L u = 0. Let us show that each clause C i , 1 ≤ i ≤ n, has at least one true literal and at least one false literal. Suppose for a contradiction that the clause

C i = x i ∨ y i ∨ z i has all its literals true. Then s i (x i ) = s i (y i ) = s i (z i ) = ∆ + p -1.
In the same way as we proved that L(s i (ū)) is labelled Lu , we can prove that L(w i ) = 0. Now each edge of

{s i (x i )d | d ∈ D 1 i } is labelled in {∆, . . . , ∆+p-1} since s i (x i
) is adjacent to an edge labelled l for all l ∈ {p, . . . , ∆ -1}, either in P (x i ) if x i is a non-negated literal or in N i (u) if x i is the negated literal ū. Moreover, by Proposition 3 (iii), every vertex of D 1 i is labelled in {0, 1, ∆+p-2, ∆+p-1}. It follows that every vertex of D 1 i is labelled ∆+p-2. Analogously, we show that every vertex of

D 2 i is labelled ∆ + p -2. Hence the edges of F = {w i d | d ∈ D 1 i ∪ D 2 i } are assigned distinct labels in Γ ′ = {p, . . . , ∆ -2}. But |F | = 2p -2 > |Γ ′ | = ∆ -p -1
which is a contradiction. Proof: We reduce the problem to Not-All-Equal 3-SAT Problem. We need the following construction in order to emulate variables, clauses and negation.

Let C = {C 1 , . . . , C n } be a collection of clauses over a set U of variables. We will construct a graph G(C, U). For every variable u ∈ U, create a variable subgraph P u defined as follows:

V (P u ) = {a i (u) | 1 ≤ i ≤ n} ∪ {b i (u) | 1 ≤ i ≤ n} ∪ {s j (u) | 1 ≤ j ≤ n/2} E(P u ) = {a i (u)b i (u) | 1 ≤ i ≤ n} ∪ {a 2j-1 (u)s j (u) | 1 ≤ j ≤ n/2} ∪ {a 2j s j (u) | 1 ≤ j ≤ n/2} ∪ {a 2j+1 (u)s j (u) | 1 ≤ j ≤ n/2} . . . b 3 (u) b 4 (u) b n-2 (u) a n-2 (u) a 1 (u) a 3 (u) s 1 (u) s 2 (u) a 4 (u) an(u) a n-1 (u) b 2 (u) b n-1 (u) s (n-1)/2 (u) b 1 (u) a 2 (u) bn(u)
Fig. 9. The variable subgraph P u

For every clause C i = x ∨ y ∨ z, create a clause subgraph D i defined as follows:

V (D i ) = {a i (x), b i (x), a i (y), b i (y), a i (z), b i (z), c i , d i , t i (x), t i (y), v 1 i , v 2 i , w 1 i , w 2 i } E(D i ) = {a i (x)b i (x), b i (x)t i (x), a i (y)b i (y), b i (y)t i (y), a i (z)b i (z), b i (z)v 1 i , b i (z)v 2 i , c i d i , c i t i (x), c i t i (y), d i w 1 i , d i w 2 i , v 1 i w 1 i , v 2 i w 2 i }
If x is a non-negated literal u identify the vertices a i (u) and b i (u) of P u with the vertices a i (x) and b i (x) of D i .

c i d i b i (x) a i (y) b i (y) t i (y) t i (x) a i (x) a i (z) b i (z) v 1 i v 2 i w 2 i w 1 i Fig. 10. The clause subgraph D i
If x is a negated literal ū create four new vertices q 1 i (u), q 2 i (u), r 1 i (u), and r 2 i (u) and add the edges b

i (u)q 1 i (u), b i (u)q 2 i (u), q 1 i (u)r 1 i (u), q 2 i (u)r 2 i (u), r 1 i (u)a i (x) and r 2 i (u)a i (x).
Finally, add as many as necessary vertices of degree 1 adjacent to the vertices of

A = {a i (u), b i (u) | 1 ≤ i ≤ n, u ∈ U}∪{a i (x), b i (x), a i (y), b i (y), a i (z), b i (z), c i , d i , | C i =
x ∨ y ∨ z clause} so that they have degree p + 1 and to the vertices of

B = {w 1 i , w 2 i , | C i clause} ∪ {r 1 i (u), r 2 i (u)
| ū is a literal of C i } so that they have degree p. This is possible since p ≥ 3.

It is easy to check that G(C, U) is bipartite. One set of the partition contains the a i , d i , t i , v i , and q i , and the other contains the b i , s i , c i , w i and r i .

Let us prove now that G(C, U) has a (p, 1)-total labelling in {0, . . . , 2p} if and only if there is a truth assignment such that each clause in C has at least one true literal and at least one false literal. Suppose first that there exists a (p, 1)-total labelling L of G(C, U) in {0, . . . , 2p}.

By construction, every vertex of A has exactly one neighbour in A. Hence by Proposition 3, every vertex of A is labelled 0 or 2p and an edge with its two ends in A is labelled p. Furthermore, by Proposition 4 (v), for any variable u, the vertices a i (u), 1 ≤ i ≤ n, are labelled the same (either 0 or 2p) since the vertices a 2j-1 (u), a 2j (u) and a 2j+1 (u) have s j as a common neighbour. Hence we may define the truth assignment φ by φ(u) = true if L(a i (u)) = 2p and φ(u) = f alse if L(a i (u)) = 0. Let us prove that each clause in C has at least one true literal and at least one false literal under φ.

Let C i = x ∨ y ∨ z be a clause. Let t be one of its literals. If t is a non-negated literal u, then L(a i (t)) = L(a i (u)) since a i (t) = a i (u). If t is a negated literal ū then, according to Proposition 4 (vi), L(a i (t)) = L(b i (u)) = L(a i (u)). Hence to prove the result it suffices to prove that L(a i (x)), L(a i (y)) and L(a i (z)) are not all equal. Suppose (reductio ad absurdum) that they are all equal. Without loss of generality, we may suppose they are 0. Then since a i (x)b i (x), a i (y)b i (y) and a i (z)b i (z) are edges labelled p, then b i (x), b i (y) and b i (z) are labelled 2p. Now c i d i is also labelled p. By Proposition 4 (vi), d i and b i (z) are labelled the same. Thus d i is labelled 2p and so c i is labelled 0. Now c i and b i (x) have a common neighbour t i (x) so L(t i (x)c i ) = 2p according to Proposition 4 (iii). Analogously, L(t i (y)c i ) = 2p which is a contradiction.

Let us now suppose that there is a truth assignment φ such that each clause in C has at least one true literal and at least one false literal. For every variable u ∈ U, we do the following

-if φ(u) = true then, for 1 ≤ i ≤ n, set L(a i (u)) = 2p, L(b i (u)) = 0, L(a i (u)b i (u)) = p, and for 1 ≤ i ≤ n, L(s j (u)) = 2p -1, L(a 2j-1 s j (u)) = 0, L(a 2j s j (u)) = 1 and L(a 2j+1 s j (u)) = 2. -if φ(u) = f alse then, for 1 ≤ i ≤ n, set L(a i (u)) = 0, L(b i (u)) = 2p, L(a i (u)b i (u)) = p, andand for 1 ≤ i ≤ n, L(s j (u)) = 1, L(a 2j-1 s j (u)) = 2p, L(a 2j s j (u)) = 2p -1 and L(a 2j+1 s j (u)) = 2p -2.
For every literal

x of clause C i , set L(a i (x)) = 2p, L(b i (x)) = 0, L(a i (x)b i (x)) = p if φ(x) = true and set L(a i (x)) = 0, L(b i (x)) = 2p, L(a i (x)b i (x)) = p if φ(x) = f alse. Note that if x is a non-negated literal u then the vertices a i (x) = a i (u), b i (x) = b i (u) and the edge a i (x)b i (x) = a i (u)b i (u)
get the same label with the labelling of the clause and the labelling of the variable.

If x is a negated literal ū, then a i (x) and b i (u) are labelled the same. Hence if they are labelled 0, set L(q 1 i (u)) = L(q 2 i (u)) = 2, L(r 1 i (u)) = L(r 2 i (u)) = 1, L(b i (u)q 1 i (u)) = L(r 1 i (u)a i (x)) = L(q 2 i (u)r 2 i (u)) = 2p and L(b i (u)q 2 i (u)) = L(r 2 i (u)a i (x)) = L(q 1 i (u)r 1 i (u)) = 2p -1, and if they are labelled 2p, set L(q 1 i (u)) = L(q 2 i (u)) = 2p -2, L(r 1 i (u)) = L(r 2 i (u)) = 2p -1, L(b i (u)q 1 i (u)) = L(r 1 i (u)a i (x)) = L(q 2 i (u)r 2 i (u)) = 0 and L(b i (u)q 2 i (u)) = L(r 2 i (u)a i (x)) = L(q 1 i (u)r 1 i (u)) = 1.

Let us now extend the labelling to the clause graph D i . Since C i has one true literal and one false literal then {b i (x), b i (y), b i (z)} has one vertex labelled 0 and one is labelled 2p.

-If L(b i (x)) = L(b i (y)) = 0 and L(b i (z)) = 2p, set L(c i ) = 0, L( 

d i ) = 2p, L(c i d i ) = p, L(t i (x)) = L(t i (y)) = 1, L(v 1 i ) = L(v 2 i ) = 2p -2, L(w 1 i ) = L(w 2 i ) = 2p-1, L(b i (x)t i (x)) = L(t i (y)c i ) = 2p, L(b i (y)t i (y)) = L(t i (x)c i ) = 2p -1, L(b i (z)v 1 i ) = L(w 1 i d i ) = L(v 2 i w 2 i ) = 0 and L(b i (z)v 2 i ) = L(w 2 i d i ) = L(v 1 i w 1 i ) =
(z)v 1 i ) = L(w 1 i d i ) = L(v 2 i w 2 i ) = 2p and L(b i (z)v 2 i ) = L(w 2 i d i ) = L(v 1 i w 1 i ) = 2p -1.
In other cases, we proceed analogously, since x and y are equivalent and by symmetry of the labelling l → 2pl.

Trivially, this labelling may be extended to the degree 1 vertices (added to ensure that elements of A and B have degree p + 1 and p) and their incident edges. 2

Conclusion

In this paper, we completely characterize the complexity of computing the (p, 1)-total labelling number when the graph is bipartite with respect to p and ∆. It would be interesting to do the same for k-regular graphs k-Regular (p, 1)-Total Labelling Problem: INSTANCE: k-regular graph G. QUESTION: What is λ p (G)?

When p = 1 McDiarmid and Sanchez-Arroyo [START_REF] Mcdiarmid | Total colouring regular bipartite graphs is NP-hard[END_REF] showed it to be NP-hard if k ≥ 3 and polynomial-time solvable otherwise.

When p ≥ 2, it remains unclear even if we expect some dichotomy NPhard/polynomial-time.

Havet and Yu [START_REF] Havet | 1)-total labelling of graphs[END_REF] showed that every 2-regular graph has (2, 1)-total labelling number 4. Moreover, they showed that for p ≥ 3, the (p, 1)-total number of a 2-regular graph is p + 3 if and only one of its components is an odd cycle. Otherwise it is p + 2. So for any p, one can find the (p, 1)-total number of a 2-regular graph in polynomial time.

If G is a connected 3-regular graph, by Proposition 1 (ii), λ 2 (G) ≥ 5. Moreover, Havet and Yu [START_REF] Havet | 1)-total labelling of graphs[END_REF] conjecture that λ 2 (G) = 5 unless G = K 4 . This would trivially imply that the 3-Regular (2, 1)-Total Labelling Problem is solvable in polynmial time.

Moreover one can determine in polynomial time the (3, 1)-total number of a 3-regular graph. Indeed if G is 3-regular then λ 3 (G) ≥ 6, by Proposition 1 (ii), λ 3 (G) ≤ 7 as proved by Havet and Yu [START_REF] Havet | 1)-total labelling of graphs[END_REF], and λ 3 (G) = 6 if and only if G is bipartite below. 

  (i) λ p (G) ≥ ∆(G) + p -1. (ii) If G is regular and p ≥ 2 then λ p (G) ≥ ∆(G) + p. (iii) If p ≥ ∆(G), then λ p (G) ≥ ∆(G) + p.

Proposition 3

 3 Let p ≥ 2 and k ≥ p + 1 be an integer. Let G be a graph admitting a (p, 1)-total labelling L into {0, . . . , k + p -1}. (i) If d(v) = k, then either L(v) = 0 and its incident edges are labelled by {p, . . . , k + p -1} or L(v) = k + p -1 and its incident edges are labelled by {0, . . . , k -1}. (ii) If two vertices v and w of degree k are adjacent then L(vw) ∈ {p, . . . , k -1}. (iii) If p ≥ 3 and d

1 , 2

 12 k+p-2, k+p-1}. Then |{L(v)-p+1, . . . , L(v)+ p -1} ∩ {0, . . . , k + p -1}| ≥ p + 2. Hence at most k -2 labels are available to colour the edges adjacent to v. So d(v) ≤ k -2. (Note that this inequality does not hold if p = 2 since |{L(v) -1, L(v), L(v) + 1}| = 3.)Observe that none of the properties of Proposition 3 holds for p = 1; the graph I in Figure1provides a proof.

Fig. 1 .Proposition 4

 14 Fig. 1. The graph I Proposition 4 Let p ≥ 2 be an integer. Let G be a graph admitting a (p, 1)-
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 221 The case ∆ = 3 and p = polynomial-time algorithm for bipartite graphs

Theorem 3

 3 The following problem is NP-complete: INSTANCE: Graph G with maximum degree 3. QUESTION: Is λ 2 (G) = 4?Proof: We reduce the problem to Not-All-Equal 3-SAT Problem. We need the following construction in order to emulate variables, clauses and negation.

2 4Theorem 4

 24 NP-completeness of the bipartite (p, 1)-Total Labelling Problem 4.1 The case ∆ ≥ 2p If ∆ ≥ 2p ≥ 4, the ∆-Bipartite (p, 1)-Total Labelling Problem is NP-complete. Proof: We reduce the problem to the following NP-complete problem [9] (L03 in the book of Garey and Johnson [3]): Not-All-Equal (p + 1)-SAT Problem: INSTANCE: Set U of variables, collection C of clauses over U such that each clause C ∈ C has p + 1 literals. QUESTION: Is there a truth assignment such that each clause in C has at least one true literal and at least one false literal? Let C = {C 1 , C 2 , . . . , C n }, we construct a graph G(C, U) as follows: For each variable u, create the variable subgraph P (u) from the path b 0 (u)a 1 (u)b 1 (u)a 2 (u)b 2 (u) . . . a n (u)b n (u) by blowing up each a i (u), 1 ≤ i ≤ n, into a stable set A i (u) of cardinality p and each b i (u), 0 ≤ i ≤ n, into a stable set B i (u) of cardinality ∆-p odd and ∆-p 2 if i is even.

Fig. 5 .

 5 Fig. 5. The negation subgraph N i (u)

2 4. 2 1 Theorem 5

 2215 The case p + 2 ≤ ∆ ≤ 2p -If 2p -1 ≥ ∆ ≥ p + 2 ≥ 5, the ∆-Bipartite (p, 1)-Total Labelling Problem is NP-complete. Proof: We reduce the problem to Not-All-Equal 3-SAT Problem. Let C = {C 1 , C 2 , . . . , C n }, we construct a graph G(C, U) as follows: For each variable u, create the variable subgraph P (u) from the path b 0 (u)s 1 (u)b 1 (u)s 2 (u)b 2 (u) . . . s n (u)b n (u) by blowing up each b i (u) into a stable set B i (u) of cardinality ∆-p 2 if i is odd and ∆-p 2

2 4. 3 3 Theorem 6

 2336 The case ∆ = p + 1 and p ≥ Let p ≥ 3. The (p + 1)-Bipartite (p, 1)-Total Labelling Problem is NP-complete.

  1. -If L(b i (x)) = L(b i (z)) = 0 and L(b i (y)) = 2p, set L(c i ) = 2p, L(d i ) = 0, L(c i d i ) = p, L(t i (x)) = p, L(t i (y)) = 2p -1, L(v 1 i ) = L(v 2 i ) = 2, L(w 1 i ) = L(w 2 i ) = 1, L(c i t i (x)) = 0, L(t i (x)b i (x)) = 2p, L(c i t i (y)) = 1, L(t i (y)b i (y)) = 0, L(b i

  Theorem 7 Let p ≥ k ≥ 3 be integers. Let G be a k-regular graph. Thenλ p (G) = p + k if and only if G is bipartite. Proof: If G is bipartite, then by Proposition 2 (i), λ p (G) ≤ p + k.Suppose now that G has a (p, 1)-total labelling L of G in {0, . . . , p + k}. Then one can easily see that every vertex must receive colours in {0, 1, p+k-1, p+k}. Let A, (resp. B) be the set of vertices of H labelled with 0 or p + k -1, (resp. 1 or p + k). Then A and B are stable sets since the endvertices of an edge may not be labelled with 0 and p + k -1 or p + k and 1. So (A, B) is a bipartition of G.2

if i is
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