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Abstract

The diamond is the graph obtained from K, by deleting an edge. Circle graphs
are the intersection graphs of chords in a circle. Such a circle model has the Helly
property if every three pairwise intersecting chords intersect in a single point, and a
graph is Helly circle if it has a circle model with the Helly property. We show that
the Helly circle graphs are the diamond-free circle graphs, as conjectured by Durén.
This characterization gives an efficient recognition algorithm for Helly circle graphs.

1 Introduction

A circle graph is a graph which vertices can be associated to chords of a circle
such that two vertices are adjacent if and only if the corresponding chords
intersect.

Recently, circle graphs have received renewed attention in relation to the
vertex-minor and pivot-minor relations, and rankwidth (see for instance [4]
and [11]). Circle graphs indeed play a similar role with respect to vertex mi-
nor and rankwidth as planar graphs with respect to minor and treewidth.
Circle graphs have been characterized by Bouchet with three excluded graphs
as vertex-minor [3], and by Oum and Geelen with a finite list of excluded
graphs as pivot-minor in [9]. Another characterization of circle graphs has
been given by de Fraysseix [7].

In the following, we prove that a subclass of the circle graphs, namely the Helly
circle graphs, are characterized with respect to circle graphs by one excluded
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induced subgraph (the diamond).

A circle model of a circle graph G is a function which associates to every
v € V(G) a couple of endpoints of a chord in the unit circle C. For convenience
we only consider models where endpoints are pairwise disjoint.

A sequence model og of a circle graph G is a circular sequence in which every
element of V(G) appears exactly twice according to the order in which we
meet the chord endpoints on a clockwise walk around C. Note that many
circle models correspond to a given sequence model and that a circle graph G
may have several sequence models, for example if G is disconnected.

A subsequence o of o, that we will denote 0 C o, is a circular sequence
obtained by deleting from o the two occurrences of every v € X, for some
subset X C V(G).

A family of geometrical objects is said to have the Helly property if every
pairwise intersecting subfamily shares a common point. Thus a circle model
is Helly if every three pairwise intersecting chords intersect in a single point.
A circle graph G is Helly if it has a Helly circle model. Let the diamond be
the graph obtained from K, by deleting an edge. It is clear that every Helly
circle graph is diamond-free. Our main result is that the converse holds, as
conjectured by Duran [5] (see also [1,6]).

Theorem 1 FEvery diamond-free circle graph G is a Helly circle graph.

This characterization ensures that the complexity of Helly circle graphs recog-
nition is at most that of circle graphs recognition. Using the O(n?) recognition
algorithm of circle graphs by Spinrad [12] yields a O(n?) recognition algorithm
for Helly circle graphs.

2 Proof of Theorem 1

Consider a diamond-free circle graph G and one of its sequence models og.
In the following, we make a slight abuse of notation in denoting (G, o¢) by
G. We prove the theorem by showing that G admits a Helly circle model. An
induced subgraph H of G is convez if for every subsequence (a, b, c,c,b,a) of
o, {a,c} C V(H) implies that b € V(H). A clique K; is non-trivial if and
only if ¢ > 2. An induced subgraph H of G is clique mazimal if every non-
trivial maximal clique of H is a maximal clique of G. An induced subgraph
H of G is almost component mazrimal if at most one connected component of
H is not a maximal connected component of G. An induced subgraph H of G
is convenient if it is convex, clique maximal and almost component maximal.



Given an induced subgraph H of GG, we denote by oy the sequence model of
H induced by o¢. Given an induced subgraph H of G, a mized Helly model of
(G, H) is a circle model of G where the induced sequence model oy is a Helly
circle model of H.

Lemma 1 Consider a convenient subgraph H of G, and a vertex u € V(G) \
V(H). It is possible to replace the two occurrences of u in og by u™ and u™ in
such a way to avoid (u™,x,x,u”) C og or (u™,x,y,u”,xz,y) C og for x and
yeV(H).

PROOF. By the clique maximality of H, we do not have (u,x,y,u,z,y) C
og for v and y € V(H). Now, since by convexity of H, we do not have
(u,z,z,u,y,y) C og for z and y € V(H), it is easy to assign u™ and v~ in
(oFeR O

Consider a convenient subgraph H of GG, such that there exists a mixed Helly
model of (G, H). Such subgraph clearly exists, H could be the empty graph
for example. The theorem would follow from the fact that H = G. We thus
prove that if H # G then there exists a convenient subgraph H' of G verifying
H C H’ and such that (G, H') admits a mixed Helly model. To construct such
H' we need the following lemma.

Lemma 2 Given any proper convenient subgraph H of G, there exists a vertex
u € V(G)\ V(H) such that G|V (H) U {u}] remains convez. Furthermore, if
H has a component that is a proper subgraph of a component C' of G, there
exists such a u in C.

PROOF. Let < be the relation on V(G)\V (H) such that v’ < wif (z, u, ', v/,
u, x) is a subsequence of o for some x € V(H). It is easy to see that < is anti-
symmetric and transitive. Clearly, for any maximal u for <, G[V(H) U {u}]
is convex. Moreover, if v’ < u and v is adjacent to some y € V(H), then u
is adjacent to y. Thus if H has a component that is a proper subgraph of a
component C' of G, < has a maximal element in C. O

We now distinguish the case where there exists a vertex u € V(G) \ V(H)
adjacent to some vertex v € V(H) and the case where no such vertex u exists.

2.1 None of the vertices in V(G) \ V(H) is adjacent to some vertez of H.

By Lemma 2, let u € V(G) \ V(H) be such that G[V(H) U{u}] is convex.



Fig. 1. Drawing the clique {u,...,ux}.

Lemma 3 If |Ng(u)| # 0, there is a verter v € Ng(u) such that G|V (H) U
{v}] is conver.

PROOF. Let v € N(u) andlet v’ € V(G)\V(H), if any, such that v < v’. Let
x € V(H)such that (z,v",v,v,v",x) C og. Ifv' ¢ N(u) then (z,v', u,u,v’,z) C
o, contradicting the convexity of G|V (H)U{u}]. Thus a maximal element v in
N (u) is a maximal element in V(G)\ V(H), and G|V (H)U{v}] is convex. O

If [Ng(u)| # 0, choose a vertex v € Ng(u) such that G[V(H) U {v}] is con-
vex. Note that since G is diamond free, G’ contains a unique maximal clique
containing the edge uv, and let us denote it K. If |Ng(u)| = 0, let K be the
single vertex u.

Lemma 4 The graph H' = G|V (H) U K] is a convenient subgraph of G, and
(G, H'") admits a mized Helly model.

PROOF. Clearly H' is almost component maximal and clique maximal. We
show that H' is convex. Suppose that there is a w € K is such that G[V (H)U
{w}] is not convex. Let w' € V(G)\ V(H) and = € V(H) be such that
(w, W', z,z, 0w w) C og. By convexity of G[V (H)U{u}|, w’ should be adjacent
to w. This implies that |Ng(u)| # 0, and so K contain a vertex v # wu such
that G[V(H) U {v}] is convex. This implies that w’ should be adjacent to v,
and thus u,v,w,w’ would induce a diamond, contradicting the definition of

G.

Now we extend the mixed Helly model of (G, H) to a mixed Helly model of
(G, H'). Let u; ... uy be the vertices in K such that (uf,...uf,uy,...,u;) C
o¢a- Since none of the vertices u; is adjacent to a vertex of H, there exists an
open arc A of C in the circle model of H such that:

- there are no extremities of chords in A, and such that
- we can draw the chords u; in A in order to obtain a circle model of H' that
corresponds to opr.

Finally it is clear (see Figure 1) that these chords u; can be drawn in such a
way that this circle model of H' fulfills the Helly property. O



Fig. 2. Left: A vertex u € V(G) \ V(H) and its neighborhood in H. Right: z and y
are respectively a predecessor and a successor of u.

2.2 There exists a vertex u € V(G) \ V(H) adjacent to some vertex of H.

By Lemma 2, let uy € V(G) \ V(H) be such that G[V(H) U {ug}] is convex.
Note that by clique maximality of H, for every vertex u € V(G) \ V(H) (like
ug) its neighborhood in H, Ny (u), induces a stable graph.

Lemma 5 Consider any vertex u € V(G) \ V(H) adjacent to H such that
G[V(H) U{u}] is convez. Let us denote vy, ..., vy, with k > 1, the neighbors
of u in H in such a way that (u™,vy,..., 0, u", Vg, ...,01) C o (see Figure
2). Every common neighbor x of uw and v;, with 1 < i < k, is adjacent to
exactly one vertex in Ny(u), v;, and verifies either:

(P) i=1 and (u™,vy,x,u”,v1,2) C og, or
(S) i =k and (u*, x,vp, u", z,v) C 0g.

In the first case, we call x a predecessor of u, while in the second case it is a
successor of u.

PROOF. If there was a vertex x adjacent to u, v; and v;, these four ver-
tices would induce a diamond. We now prove that = could not be such that
(ut,z,v;,u,z,v;) C og, for 1 < i < k. The subgraph H being almost com-
ponent maximal and u being in the same component of G as v; and v;;1, the
vertices v; and v; are in the same component of H. Thus v; has at least one
neighbor z # v;,; in H. Since z is not adjacent to = (by clique maximality
of H) we have that (z,z,v41,v;11,2,2) C 0g, contradicting H’s convexity.
We could similarly prove that x is not such that (u,v;, z,u,v;,x) C og, for
1 < i < k. This concludes the proof of the lemma. O

Lemma 6 Consider any vertez u € V(G) \ V(H) adjacent to H such that
G[V(H) U {u}] is convex. For every predecessor (resp. successor) x of u,
GV (H)U{x}] is conver and u is a successor (resp. a predecessor) of x.

PROOF. Assume G[V(H) U {x}] is not convex. There exist y € V(G) \
V(H) and z € V(H) such that (z,27,y,2,2,y) C o0g. By convexity of
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Fig. 3. A sequence S = (u_1, ug, u1, uz) allowing to extend H

G[V(H) U {u}], the vertex u is adjacent to y (otherwise we would have
(ut,u™,y,2,2,9y) C og). Let us denote vy,...,v;, with & > 1, the neigh-
bors of v in H in such a way that (u*, vy, ..., v, 4", v, ...,v1) C 0g. Recall
that by definition of z, u and = have a common neighbor, say v; € V(H)
(resp. vx € V(H)). Since u, x, y and v; (resp. vx) cannot induce a diamond
y and v; (resp. vy) are not adjacent; but this contradicts the convexity of H
(we would have (vy,v1,y, 2, 2,y) or (vg, vk, ¥y, 2, 2,y) C 0¢). Finally it is clear
by Lemma 5 that u is a successor (resp. a predecessor) of z. O

We now define the vertices u; € V(G)\V(H) with —p < i < ¢, in such way that
(wi)_p<i<q is the longest sequence containing the previously defined element
uo and such that w; is a successor of u;_, for every i € {—p+1,...,¢}. Given

the definition of uy, Lemma 6 implies that all the vertices u; have a neighbor
in H and are such that G[V(H) U {u;}] is convex.

Then Lemma 5 allows us to define an increasing sequence (n;)_,—1<i<, and
the vertices v;, for n_, 1 < j <n,, in such way that for every i € {—p,....,q},
the neighbors of u; in H are exactly the vertices v; with n,_; < j < mn;. The
lemma also implies that (u;, v, .,...,Vn,,U; ,VUn,s- .. 00, ) C 0g, and thus
the vertices v; form a stable of H such that (v,_,_,,Vi4n_y 15+ Ung Ungs - - - 5
Vign_p_1sUn_,_,) € 0 (see Figure 3). Finally let H' = G[V(H) U {u;| —p <
i < q}] and let us prove that H' is convenient and admits a Helly circle model.

Lemma 7 For every i € {—p,...,q}, the successors (resp. predecessors) of
u; are the vertices uy such that k > i and ng_y = n; (resp. such that k < i
and ng =n;_1).

PROOF. Lemma 5 implies that the relation “successor” on the set of vertices
intersecting both u; and n,, is a total order. Thus, if a successor of u; was
missing in the sequence (u;)_p<i<,, one could easily insert it. O

Lemma 8 H' is convenient.



PROOF. The graph H' has as many connected components as H, thus it is
almost component maximal. Let us show that H’ is clique maximal. Assume
by contradiction that there exists a vertex x € V(G) \ V(H') adjacent to both
ends of an edge ab € F(H'). If ab € E(H), this would contradict the clique
maximality of H. If a = u; and b = v;, with —p < i < ¢ and n;_; < j < n,,
the vertex x is a successor or a predecessor of u; (by Lemma 5) and it thus
should belong to H' (by Lemma 7). If a = u; and b = u;, with —p <1i < j <Jg,
then x is either adjacent to v,, or not. In the first case = should be a vertex
uy, and thus belong to H' (by Lemma 7). In the second case x, a, b and v,
would induce a diamond.

Finally let us show that H’ is convex. By contradiction, assume there exist = €
V(G)\V(H') and a,b € V(H') such that (a, a,x,b,b,z) C og. By convexity of
H and HU{w;} for every i € {—p,...,q}, both a and b belong to V(H")\V (H),
say a = u; and b = u;, with —p < ¢ < j < ¢. By definition of u; and u;, we
have that (vp,, Ui, Vn,, Ui, Uj, Un;, Uj, Un;) € 0. Thus we have either

L4 ('Unpxauia,Uniaubxaujavnjaujavnj) g 0g Or
L4 ('Uni;uia’Unpuiax>uj>vnj>uj>vnj>x) g oG Or
o (/Uni;uiaUniauiuxaujavn]’7uj7'ravnj) g oa

which respectively contradicts the convexity of HU{v;}, H and HU{u;}. O

Lemma 9 There is a mized Helly model of (G, H').

PROOF. We consider the Helly circle model of H and we extend it to H'.
Lemma 5 allows us to distinguish one extremity of v;, for every j; the dis-
tinguished extremity being such that (u;",v},u;,v;) C o¢ for every vertex
u; crossing v;. We extend the Helly circle model of H by processing the
chords u_,, ..., u, successively in this order. For any i € {—p — 1,...,¢}
let H; = G[V(H)U{ui| —p < k <i}]. At each step we extend an Helly circle
model of H;_; to an Helly circle model of H;. Actually we construct them in
such a way that for every i,

(*) the intersection point between wu; and v, lies strictly between the point
vy and the intersection of the chord v,,, and the abstract chord [v}; _,, v} ]
(see Figure 4).

Assume we have already processed the chords up to u;_; (see Figure 4 Step
1). Since oy, , C op, it is easy to draw a chord u; which intersect the desired
chords. Now we are going to slightly move this chord in order to fulfill (*)
and the Helly property. If u; = u_,, since the neighborhood of u_, in H_,
induces a stable, the Helly property follows immediately. So, we just have to
move u_, close enough to v; in order to fulfill (*). This is possible since

. oo . 2.
there is no chord extremity in between v, ~and uZ, in oy . If u; # u_y,
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Fig. 4. Processing the chord w;. Dashed lines are the abstract constraints.
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the Helly circle model of H; ; fulfills (*). This ensures that we can move the
chord u; in order to intersect u; ; and v,, , at their intersection point (see
Figure 4 Step 2). At this step, since the neighborhood of u; in H; induces a
graph with a unique non-trivial maximal clique (the clique with vertex set
{vn;_ y U{ur| k <i and ng = n;_1}), the circle model of H; fulfills the Helly
property. Finally if (*) is not satisfied, we just get u; close enough to v} by
rotating u; around the intersection point of the clique. (see Figure 4 Step 3).
This concludes the proof of the theorem. O

3 Concluding Remarks

The first polynomial-time algorithms for circle graphs recognition were inde-
pendently given by Bouchet 2], Naji [10] and Gabor et al. [8]. The latter was
improved by Spinrad who showed that the recognition of circle graphs can be
done in O(n?) time, and that a circle model can be computed in the same
time bound [12]. Given a circle model of a circle graph G, the graph induced
by the neighborhood of a vertex v in G is a permutation graph. Moreover a
permutation model of G[N(v)] can be computed in O(n) if a circle model is
known. One can easily check in O(n) time if a permutation graph is P;-free
(i.e. is a disjoint union of complete graphs) using its permutation model. Thus
one can check if a circle graph G given with a circle model is diamond-free in
O(n?) (check for every vertex v if the permutation graph G[N(v)] is Ps-free).
In consequence we have:

Proposition 1 Helly circle graphs can be recognized in time O(n?).

Actually, the test for an induced diamond can even be carried out in linear time
O(n 4+ m) with an adequate data structure. This means that the complexity
of Helly circle graphs recognition is at most the complexity of circle graphs
recognition.

As a byproduct of the proof, we can also treat the case of 1-string Helly circle
graphs. A graph is 1-string circle if it is the intersection graph of strings in
a disk with both endpoints on its border, such that two strings intersect at
most once, and no two strings touch. Note that a graph is 1-string circle if



and only if it is a circle graph.

A graph is 1-string Helly circle if it has a 1-string circle model where the
strings have the Helly property. The proof of Theorem 1 can be reformulated
in these terms: the 1-string Helly circle graphs are the Helly circle graphs.

Another aspect is the generalization in greater dimensions. A graph is a d-
dimensional sphere graph if it is an intersection graph of (d — 1)-dimensional
disks with border on a d-dimensional sphere. We wonder whether Theorem 1
could be generalized in the following way:

Question 1 Does every d-dimensional sphere graph that is (Kqyo \ €)-free
admit a Helly embedding ¢

The reverse is not true unless we forbid that d disks intersect in a segment.
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