
HAL Id: lirmm-00432901
https://hal-lirmm.ccsd.cnrs.fr/lirmm-00432901v1

Submitted on 17 Nov 2009

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

FPT Algorithms and Kernels for the Directed k-Leaf
Problem

Jean Daligault, Gregory Gutin, Anders Yeo, Eunjung Kim

To cite this version:
Jean Daligault, Gregory Gutin, Anders Yeo, Eunjung Kim. FPT Algorithms and Kernels for the
Directed k-Leaf Problem. Journal of Computer and System Sciences, 2010, 76 (2), pp.144-152.
�10.1016/j.jcss.2009.06.005�. �lirmm-00432901�

https://hal-lirmm.ccsd.cnrs.fr/lirmm-00432901v1
https://hal.archives-ouvertes.fr

FPT Algorithms and Kernels for the Directed
k-Leaf Problem

Jean Daligault∗, Gregory Gutin†, Eun Jung Kim‡, and Anders Yeo§

July 14, 2009

Abstract

A subgraph T of a digraph D is an out-branching if T is an oriented spanning
tree with only one vertex of in-degree zero (called the root). The vertices of T
of out-degree zero are leaves. In the Directed Max Leaf Problem, we wish to
find the maximum number of leaves in an out-branching of a given digraph D (or,
to report that D has no out-branching). In the Directed k-Leaf Problem, we are
given a digraph D and an integral parameter k, and we are to decide whether D
has an out-branching with at least k leaves. Recently, Kneis et al. (2008) obtained
an algorithm for Directed k-Leaf of running time 4k · nO(1). We describe a new
algorithm for Directed k-Leaf of running time 3.72k ·nO(1). This algorithms leads to
an O(1.9973n)-time algorithm for solving Directed Max Leaf on a digraph of order
n. The latter algorithm is the first algorithm of running time O(γn) for Directed

Max Leaf, where γ < 2. In the Rooted Directed k-Leaf Problem, apart from D
and k, we are given a vertex r of D and we are to decide whether D has an out-
branching rooted at r with at least k leaves. Very recently, Fernau et al. (2008)
found an O(k3)-size kernel for Rooted Directed k-Leaf. In this paper, we obtain
an O(k) kernel for Rooted Directed k-Leaf restricted to acyclic digraphs.

1 Introduction
The Maximum Leaf problem is to find a spanning tree with the maximum number of
leaves in a given undirected graph G. The problem is well studied from both algorithmic
[17, 18, 23, 25] and graph-theoretical [10, 19, 20, 22] points of view. The problem has
been studied from the parameterized complexity perspective as well and several authors
[7, 13, 14] have designed fixed parameter tractable (FPT) algorithms for solving the
∗Université Montpellier II, LIRMM, 161 rue Ada, 34392 Montpellier Cedex 5 - France,

daligault@lirmm.fr
†Department of Computer Science, Royal Holloway, University of London, Egham, Surrey TW20 0EX,

UK, gutin@cs.rhul.ac.uk
‡Department of Computer Science, Royal Holloway, University of London, Egham, Surrey TW20 0EX,

UK, eunjung@cs.rhul.ac.uk
§Department of Computer Science, Royal Holloway, University of London, Egham, Surrey TW20 0EX,

UK, anders@cs.rhul.ac.uk

1

parameterized version of Maximum Leaf (the k-Leaf problem): given a graph G and an
integral parameter k, decide whether G has a spanning tree with at least k leaves.

Maximum Leaf can be extended to digraphs. A subgraph T of a digraph D is an
out-tree if T is an oriented tree with only one vertex of in-degree zero (called the root).
The vertices of T of out-degree zero are leaves. If V(T) = V(D), then T is an out-
branching of D. The Directed Maximum Leaf problem is to find an out-branching
with the maximum number of leaves in an input digraph. The parameterized version
of the Directed Maximum Leaf problem is Directed k-Leaf: given a digraph D and an
integral parameter k, decide whether D has an out-branching with at least k leaves. If
we add a condition that every out-branching in Directed k-Leaf must be rooted at a
given vertex r, we obtain a variation of Directed k-Leaf called the Rooted Directed

k-Leaf problem.
The study of Directed k-Leaf has only begun recently. Alon et al. [1, 2] proved

that the problem is FPT for a wide family of digraphs including classes of strongly
connected and acyclic digraphs. Bonsma and Dorn extended this result to all digraphs
in [8], and improved the running time of the algorithm in [2] to 2k log knO(1) in [9]. Re-
cently, Kneis et al. [21] obtained an algorithm for solving the problem in time 4knO(1).
Notice that the algorithm of Kneis et al. [21] applied to undirected graphs is of smaller
running time (as a function of k) than all previously known algorithms for k-Leaf. Yet,
the algorithm of Kneis et al. [21] is not fast enough to answer in affirmative the ques-
tion of Fellows et al. [14] of whether there exists a parameterized algorithm for Max

Leaf of running time f (k)nO(1), where f (50) < 1020. Very recently, Fernau et al. [15]
proved that no polynomial kernel for Directed k-Leaf is possible unless the polyno-
mial hierarchy collapses to the third level (they applied a recent breakthrough result of
Bodlaender et al. [6]). Interestingly, Rooted Directed k-Leaf admits a polynomial size
kernel and Fernau et al. [15] obtained one of size O(k3).

The only known approximation algorithm for Directed Max Leaf is due to Drescher
and Vetta [12] and its approximation ratio is O(

√
`max(D)), where `max(D) is the maxi-

mum number of leaves in an out-branching of a digraph D.
In this paper, we obtain an algorithm faster than the one of Kneis et al. [21] for

Directed k-Leaf. Our algorithm runs in time 3.72knO(1). Unfortunately, our algorithm
cannot solve the above-mentioned question of Fellows et al. [14], but it shows that the
remaining gap is not wide anymore. We also obtain a linear size kernel for Directed

k-Leaf restricted to acyclic digraphs. Notice that (i) Directed Max Leaf restricted to
acyclic digraphs is still NP-hard [3], and (ii) for acyclic digraphs Directed k-Leaf and
Rooted Directed k-Leaf are equivalent since all out-branchings must be rooted at the
unique vertex of in-degree zero.

We recall some basic notions of parameterized complexity here, for a more in-depth
treatment of the topic we refer the reader to [11, 16, 24].

A parameterized problem Π can be considered as a set of pairs (I, k) where I is
the problem instance and k (usually an integer) is the parameter. Π is called fixed-
parameter tractable (FPT) if membership of (I, k) in Π can be decided in time O(f (k)|I|c),
where |I| is the size of I, f (k) is a computable function, and c is a constant independent
from k and I. Let Π be a parameterized problem. A reduction R to a problem kernel
(or kernelization) is a many-to-one transformation from (I, k) ∈ Π to (I′, k′) ∈ Π′, such
that (i) (I, k) ∈ Π if and only if (I′, k′) ∈ Π, (ii) k′ ≤ k and |I′| ≤ g(k) for some function

2

g and (iii) R is computable in time polynomial in |I| and k. In kernelization, an instance
(I, k) is reduced to another instance (I′, k′), which is called the problem kernel; |I′| is
the size of the kernel.

The set of vertices (arcs) of a digraph D will be denoted by V(D) (A(D)). The
number of vertices (arcs) of the digraph under consideration will be denoted n (m).
For a vertex x of a subgraph H of a digraph D, N+

H(x) and N−H(x) denote the sets of
out-neighbors and in-neighbors of x, respectively. Also, let A+

H(x) = {xy : y ∈ N+
H(x)},

d+
H(x) = |N+

H(x)|, and d−H(x) = |N−H(x)|. When H = D we will omit the subscripts in the
notation above.

Let D be a digraph, T an out-tree and L ⊆ V(D). A (T, L)-out-tree of D is an
out-tree T ′ of D such that (1) A(T) ⊆ A(T ′), (2) L are leaves in T ′, (3) T and T ′

have the same root. A (T, L)-out-branching is a (T, L)-out-tree which is spanning. Let
`max(D,T, L) be the maximum number of leaves over all (T, L)-out-branchings of D.
We set this number to 0 if there is no (T, L)-out-branching. For an out-tree T in a
digraph D, Leaf(T) denotes the set of leaves in T and Int(T) = V(T) − Leaf(T), the set
of internal vertices of T . For any vertex x in a tree T let Tx denote the maximal subtree
of T which has x as its root.

Throughout this paper we use a triple (D,T, L) to denote a given digraph D, an out-
tree T of D and a set of vertices L ⊆ V(D)− Int(T). We denote by D̂(T, L) the subgraph
of D obtained after deleting all arcs out of vertices in L and all arcs not in A(T) which
go into a vertex in V(T). When T and L are clear from the context we will omit them
and denote D̂(T, L) by D̂. For further terminology and notation on directed graphs, one
may consult [5]. The following simple lemma will be used in the rest of the paper.

Lemma 1.1. [5] A digraph D has an out-branching if and only if D has a single
strong component without incoming arcs. One can decide whether a digraph has an
out-branching in time O(n + m).

2 Another 4knO(1) Time Algorithm
The algorithm of this section is similar to the algorithm in [21], but it differs from the
algorithm in [21] as follows. We decide in an earlier stage which one of the current
leaves of T cannot be a leaf in a final (T, L)-out-branching and make them to be internal
vertices based on Lemma 2.3, see step 2 in AlgorithmA(D,T, L). This decision works
as a preprocessing of the given instance and gives us a better chance to come up with
a (T, L)-out-tree with at least k leaves more quickly. A more important reason for this
step is the fact that our algorithm is easier than the main algorithm in [21] to transform
into a faster algorithm.

The following simple result was used in [1, 2] and its proof can be found in [21].

Lemma 2.1. If there is an out-branching rooted at vertex r, whenever we have an out-
tree rooted at r with at least k leaves we can extend it to an out-branching rooted at r
with at least k leaves in time O(m + n).

Lemma 2.2. Given a triple (D,T, L), we have `max(D,T, L) = `max(D̂,T, L).

3

Proof. If there is no (T, L)-out-branching in D, the subgraph D̂ does not have a (T, L)-
out-branching either and the equality holds trivially. Hence suppose that T ∗ is a (T, L)-
out-branching in D with `max(D,T, L) leaves. Obviously we have `max(D,T, L) ≥
`max(D̂,T, L). Since the vertices of L are leaves in T ∗, all arcs out of vertices in L
do not appear in T ∗, i.e. A(T ∗) ⊆ A(D) \ {A+

D(x) : x ∈ L}. Moreover A(T) ⊆ A(T ∗)
and thus all arcs not in A(T) which go into a vertex in V(T) do not appear in T ∗ since
otherwise we have a vertex in V(T) with more than one arc of T ∗ going into it (or, the
root has an arc going into it). Hence we have A(T ∗) ⊆ A(D̂) and the above equality
holds. �

Lemma 2.3. Given a triple (D,T, L), the following equality holds for each leaf x of T .

`max(D,T, L) = max{`max(D,T, L ∪ {x}), `max(D,T ∪ A+

D̂
(x), L)}

Proof. If `max(D,T, L) = 0 then the equality trivially holds, so we assume that `max(D,T, L) ≥
1. Since any (T, L ∪ {x})-out-branching or (T ∪ A+

D̂
(x), L)-out-branching is a (T, L)-

out-branching as well, the inequality ≥ obviously holds. To show the opposite direc-
tion, suppose T ′ is an optimal (T, L)-out-branching. If x is a leaf in T ′, then T ′ is a
(T, L ∪ {x})-out-branching and `max(D,T, L) ≤ `max(D,T, L ∪ {x}).

Suppose x is not a leaf in T ′. Delete all arcs entering N+

D̂
(x) in T ′, add A+

D̂
(x) and let

T ′′ denote the resulting subgraph. Note that d−T ′′ (y) = 1 for each vertex y in T ′′ which is
not the root and A(T ′′) ⊆ A(D̂). In order to show that T ′′ is an out-branching it suffices
to see that there is no cycle in T ′′ containing x. If there is a cycle C containing x in
T ′′ and xy ∈ A(C), then C − {xy} forms a directed (y, x)-path in D̂. However this is a
contradiction as x ∈ V(T) and y < V(T) and there is no path from V(D)−V(T) to V(T)
in D̂. Hence T ′′ is an out-branching.

As no vertex in L has any arcs out of it in D̂ we note that L ⊆ Leaf(T ′′). Furthermore
we note that A(T) ⊆ A(T ′′) as A(T) ⊆ A(T ′) and all arcs we deleted from A(T ′) go to
a vertex not in V(T). Therefore T ′′ is a (T, L)-out-branching which has as many leaves
as T ′. This shows `max(D,T, L) ≤ `max(D,T ∪ A+

D′ (x), L). �

Definition 2.4. Given a triple (D,T, L) and a vertex x ∈ Leaf(T)− L, define T root
D,L (x) as

follows.

(1) x′ B x.

(2) While d+

D̂
(x′) = 1 add A+

D̂
(x′) = {x′y} to T and let x′ B y.

(3) Add A+

D̂
(x′) to T .

Now let T root
D,L (x) = Tx. That is, T root

D,L (x) contains exactly the arcs added by the
above process.

The idea behind this definition is the following: during the algorithm, we will
decide that a given leaf x of the partial out-tree T built thus far is not a leaf of the
out-branching we are looking for. Then adding the out-arcs of x to T is correct. To
make sure that the number of leaves of T has increased even when d+

V−V(T)(x) = 1,
we add T root(x) to T instead of just adding the single out-arc of x, as described in the
following.

4

Lemma 2.5. Suppose we are given a triple (D,T, L) and a leaf x ∈ Leaf(T) − L. If
`max(D,T, L ∪ {x}) ≥ 1 then the following holds.

(i) If |Leaf(T root
D,L (x))| ≥ 2 then `max(D,T, L) = max{`max(D,T, L ∪ {x}), `max(D,T ∪

T root
D,L (x), L).

(ii) If |Leaf(T root
D,L (x))| = 1 then `max(D,T, L) = `max(D,T, L ∪ {x}).

Proof. Assume that T ′ is an optimal (T, L)-out-branching and that |Leaf(T ′x)| = 1. We
will now show that `max(D,T, L ∪ {x}) = |Leaf(T ′)| = `max(D,T, L). If x is a leaf
of T ′ then this is clearly the case, so assume that x is not a leaf of T ′. Let y be the
unique out-neighbor of x in T ′. As `max(D,T, L ∪ {x}) ≥ 1 we note that there exists
a path P = p0 p1 p2 . . . pr(= y) from the root of T to y in D̂(T, L ∪ {x}). Assume that
q is chosen such that pq < T ′x and {pq+1, pq+2, . . . , pr} ⊆ V(T ′x). Consider the digraph
D∗ = D[V(T ′x) ∪ {pq} − {x}] and note that pq can reach all vertices in D∗. Therefore
there exists an out-branching in D∗, say T ∗, with pq as the root. Let T ′′ be the out-
branching obtained from T ′ by deleting all arcs in T ′x and adding all arcs in T ∗. Note
that |Leaf(T ′′)| ≥ |Leaf(T ′)| as Leaf(T ∗)∪{x} are leaves in T ′′ and Leaf(T ′x)∪{pq} are the
only leaves in T ′ which may not be leaves in T ′′ (and |Leaf(T ′x)∪ {pq}| = 2). Therefore
`max(D,T, L ∪ {x}) ≥ |Leaf(T ′)| = `max(D,T, L). As we always have `max(D,T, L) ≥
`max(D,T, L ∪ {x}) we get the desired equality.

This proves part (ii) of the lemma, as if |Leaf(T root
D,L (x))| = 1 then any optimal (T, L)-

out-branching T ′, must have |Leaf(T ′x)| = 1.
We therefore consider part (i), where |Leaf(T root

D,L (x))| ≥ 2. Let Q denote the set
of leaves of T root

D,L (x) and let R = V(T root
D,L (x)) − Q. Note that by the construction of

T root
D,L (x) the vertices of R can be ordered (x =)r1, r2, . . . , ri such that r1r2 . . . , ri is a path

in T root
D,L (x). As before let T ′ be an optimal (T, L)-out-branching and note that if any r j

(1 ≤ j ≤ i) is a leaf of T ′ then |Leaf(T ′x)| = 1 and the above gives us `max(D,T, L∪{x}) =

`max(D,T, L). This proves part (i) in this case, as we always have `max(D,T, L) ≥
`max(D,T ∪T root

D,L (x), L). Therefore no vertex in {r1, r2, . . . , ri} is a leaf of T ′ and all arcs
(x =)r1r2, r2r3, . . . , ri−1ri belong to T ′. By Lemma 2.3 we may furthermore assume that
T ′ contains all the arcs from ri to vertices in Q. Therefore T root

D,L (x) is a subtree of T ′

and `max(D,T, L) = `max(D,T ∪ T root
D,L (x), L). This completes the proof of part (i). �

The following is an O(4knO(1)) algorithm. Its complexity can be obtained similarly to
[21]. We restrict ourselves only to proving its correctness.

For every vertex x ∈ V(D), doA(D, {x}, ∅).
If one of the returns ofA(D, {x}, ∅) is “YES” then output “YES”.

Otherwise, output “NO”.

A(D,T, L):

(1) If `max(D,T, L) = 0, return “NO”. Stop.

(2) While there is a vertex x ∈ Leaf(T)−L such that `max(D,T, L∪{x}) = 0,
add the arcs A+

D̂
(x) to T .

5

(3) If |L| ≥ k, return “YES”. Stop.
If the number of leaves in T is at least k, return “YES”. Stop.
If all leaves in T belong to L, return “NO”. Stop.

(4) Choose a vertex x ∈ Leaf(T) − L.
B1 := A(D,T, L ∪ {x}) and B2 :=“NO”.
If |Leaf(T root

D,L (x))| ≥ 2 then let B2 := A(D,T ∪ T root
D,L (x), L).

Return “YES” if either B1 or B2 is “YES”. Otherwise return “NO”.

Remark 2.6. While the first line in step 3 is unnecessary, we keep it since it is needed
in the next algorithm where L ⊆ Leaf(T) is not necessarily true, see (4.2) in the next
algorithm, where p0 < V(T).

Theorem 2.7. Algorithm A(D,T, L) works correctly. In other words, D has a (T, L)-
out-branching with at least k leaves if and only if AlgorithmA(D,T, L) returns “YES”.

Proof. We begin by showing that a call to A(D,T, L) is always made with a proper
argument (D,T, L), that is, T is an out-tree of D and L ∩ Int(T) = ∅. Obviously the
initial argument (D, {x}, ∅) is proper. Suppose (D,T, L) is a proper argument. It is easy
to see that (D,T, L∪ {x}) is a proper argument. Let us consider (D,T ∪ T root

D,L (x), L). By
Definition 2.4 we note that T ∪ T root

D,L (x) is an out-tree in D and since we consider the
digraph D̂ at each step in Definition 2.4 we note that no vertex in L is an internal vertex
of T ∪ T root

D,L (x). Hence (D,T ∪ T root
D,L (x), L) is a proper argument.

Consider the search tree S T that we obtain by running the algorithm A(D,T, L).
First consider the case when S T consists of a single node. IfA(D,T, L) returns ”NO”
in step 1, then clearly we do not have a (T, L)-out-branching. Step 2 is valid by Lemma
2.3, i.e. it does not change the return of A(D,T, L). So now consider Step 3. As
`max(D,T, L) ≥ 1 after step 1, and by Lemma 2.3 the value of `max(D,T, L) does not
change by step 2 we note that `max(D,T, L) ≥ 1 before we perform step 3. Therefore
there exists a (T, L)-out-branching in D. If |L| ≥ k or |Leaf(T)| ≥ k then, by Lemma 2.1,
any (T, L)-out-branching in D has at least k leaves and the algorithm returns “YES”. If
Leaf(T) ⊆ L then the only (T, L)-out-branching in D is T itself and as |Leaf(T)| < k the
algorithm returns “NO” as it must do. Thus, the theorem holds when S T is just a node.

Now suppose that S T has at least two nodes and the theorem holds for all succes-
sors of the root R of S T . By the assumption that R makes further recursive calls, we
have `max(D,T, L) ≥ 1 and there exists a vertex x ∈ Leaf(T)−L. If there is a (T, L)-out-
branching with at least k leaves, then by Lemma 2.5 there is a (T, L∪{x})-out-branching
with at least k leaves or (T ∪T root

D,L (x), L)-out-branching with at least k leaves. By induc-
tion hypothesis, one of B1 or B2 is “YES” and thusA(D,T, L) correctly returns ”YES”.
Else if `max(D,T, L) < k, then again by Lemma 2.5 and induction hypothesis both B1
and B2 are ”NO”. Therefore the theorem holds for the root R of S T , which completes
the proof. �

3 Faster Algorithm
We now show how the algorithm from the previous section can be made faster by
adding an extra vertex to the set L in certain circumstances. Recall that Step 2 in the

6

above algorithm A(D,T, L) and in our new algorithm B(D,T, L) is new compared to
the algorithm in [21]. We will also allow L to contain vertices which are not leaves of
the current out-tree T . The improved algorithm is now described.

For every vertex x ∈ V(D), do B(D, {x}, ∅).
If one of the returns of B(D, {x}, ∅) is “YES” then output “YES”.

Otherwise, output “NO”.

B(D,T, L) :

(1) If `max(D,T, L) = 0, return “NO”. Stop.

(2) While there is a vertex x ∈ Leaf(T)−L such that `max(D,T, L∪{x}) = 0,
then add the arcs A+

D̂
(x) to T .

(3) If |L| ≥ k, return “YES”. Stop.
If the number of leaves in T is at least k, return “YES”. Stop.
If all leaves in T belong to L, return “NO”. Stop.

(4) Choose a vertex x ∈ Leaf(T) − L, color x red and let Hx := D̂.

(4.1) Let z be the nearest ancestor of x in T colored red, if it exists.
(4.2) Let L′ := L ∪ {x}.

If z exists and Tz has exactly two leaves x and x′ and x′ ∈ L
then:
Let P = p0 p1 . . . pr be a path in Hz − A+

D̂
(z) such that V(P) −

V(Tz) = {p0} and pr ∈ N+

D̂
(z), and let L′ := L ∪ {p0, x}.

(4.3) B1 := B(D,T, L′) and B2 :=“NO”.
(4.4) If |Leaf(T root

D,L (x))| ≥ 2 then let B2 := B(D,T ∪ T root
D,L (x), L).

(4.5) Return “YES” if either B1 or B2 is “YES”. Otherwise return
“NO”.

The existence of P in step (4.2) follows from the fact that z was colored red, hence
adding z to L would not have destroyed all out-branchings. Note that p0 does not
necessarily belong to T .

For the sake of simplifying the proof of Theorem 3.2 below we furthermore assume
that the above algorithm picks the vertex x in Step 4 in a depth-first manner. That is,
the vertex x is chosen to be the last vertex added to T such that x ∈ Leaf(T) − L.

Theorem 3.1. Algorithm B(D,T, L) works correctly. In other words, D has a (T, L)-
out-branching with at least k leaves if and only if Algorithm B(D,T, L) returns “YES”.

Proof. The only difference between B(D,T, L) and A(D,T, L) is that in step (4.2) we
may add an extra vertex p0 to L which was not done inA(D,T, L). We will now prove
that this addition does not change the correctness of the algorithm.

So assume that there is an optimal (T, L)-out-branching T ′ with x ∈ Leaf(T ′) but
p0 < Leaf(T ′). We will show that this implies that an optimal solution is found in the
branch of the search tree where we put z into L. This will complete the proof as if an

7

p
0

p
0

w
a

z

x x’ x’x

z

u

Figure 1: Real lines represents T ′z arcs; dashed lines represent the reachability of p0;
dotted lines represent the reachability of w0.

optimal (T, L)-out-branching T ′ does not contain x as a leaf, by Lemma 2.5 it is found
in B(D,T ∪ T root

D,L (x), L) and if it includes both x and p0 as leaves then it is found in
B(D,T, L′) (in step (4.3)).

Note that Tz = T ′z as Tz had exactly two leaves x and x′ and x′ ∈ L and we have
just assumed that x is a leaf of T ′. Let D∗ = D[V(T ′z) ∪ {p0} − {z}] and consider the
following two cases.

If p0 can reach all vertices of D∗ in D∗ then proceed as follows. Let T ∗ be an out-
branching in D∗ with p0 as the root. Let T ′′ be the out-branching obtained from T ′ by
deleting all arcs in T ′z and adding all arcs in T ∗. Note that |Leaf(T ′′)| ≥ |Leaf(T ′)| as
Leaf(T ∗) ∪ {z} are leaves in T ′′ and Leaf(T ′z) are the only two leaves in T ′ which may
not be leaves in T ′′. Therefore an optimal solution is found when we add z to L.

So now consider the case when p0 cannot reach all vertices of D∗ in D∗. This
means that there is a vertex u ∈ N+

T (z) which cannot be reached by p0 in D∗. All such
unreachable vertices lie on the same branch of Tz (the branch not containing pr). Let
W = w0w1w2 . . .wlu be a path from the root of T to u, which does not use any arcs
out of z (which exists as z was colored red in step (4.1), so adding z to L at this stage
would not destroy all out-branchings). Assume that a is chosen such that wa < T ′z and
{wa+1,wa+2, . . . ,wl, u} ⊆ V(T ′z) (see Figure 1).

Consider the digraph D′′ = D[V(T ′z) ∪ {p0,wa} − {z}] and note that every vertex in
D′′ can be reached by either p0 or wa in D′′. Therefore, there exists two vertex disjoint
out-trees Tp0 and Twa rooted at p0 and wa, respectively, such that V(Tp0) ∪ V(Twa) =

V(D′′) (to see that this claim holds add a new vertex y and two arcs yp0 and ywa).
Furthermore since p0 cannot reach u in D∗ we note that both Tp0 and Twa must contain
at least two vertices. Let T ′′′ be the out-branching obtained from T ′ by deleting all
arcs in T ′z and adding all arcs in Tp0 and in Twa . Note that |Leaf(T ′′′)| ≥ |Leaf(T ′)| as
Leaf(Tp0) ∪ Leaf(Twa) ∪ {z} are leaves in T ′′′ and Leaf(T ′z) ∪ {wa} are the only three
vertices which may be leaves in T ′ but not in T ′′′. Therefore again an optimal solution
is found when we add z to L. �

8

Theorem 3.2. Algorithm B(D,T, L) runs in time O(3.72knO(1)).

Proof. For an out-tree Q, let `(Q) = |Lea f (Q)|. Recall that we have assumed that
B(D,T, L) picks the vertex x in Step 4 in a depth-first manner.

Consider the search tree S T that we obtain by running the algorithm B(D, {x}, ∅).
That is, the root of S T is the triple (D, {x}, ∅). The children of this root is (D, {x}, L′)
when we make a recursive call in step (4.3) and (D,T root

D,L (x), ∅) if we make a recursive
call in step (4.4). The children of these nodes are again triples corresponding to the
recursive calls.

Let g(T, L) be the number of leaves in a subtree R of S T with triple (D,T, L).
Clearly, g(T, L) = 1 when (D,T, L) is a leaf of S T . For a non-trivial subtree R of S T ,
we will prove, by induction, that g(T, L) ≤ cαk−`(T)βk−|L|, where α = 1.96, β = 1.896
and c ≥ α2β2. Assume that this holds for all smaller non-trivial subtrees. (Note that the
value of c is chosen in such a way that in the inequalities in the rest of the proof, we
have upper bounds for g(T ∗, L∗) being at least 1 when (D,T ∗, L∗) is a leaf of S T .)

Recall that x ∈ Leaf(T) − L was picked in step (4). Now consider the following
possibilities.

If |L′| = |L| + 2, then the number of leaves of R is at most the following as if a call
is made to B(D,T ∪ T root

D,L (x), L) in (4.4) then the number of leaves of T increases by at
least one:

g(T, L′) + g(T ∪ T root
D,L (x), L) ≤ cαk−`(T)βk−|L|−2 + cαk−`(T)−1βk−|L|

= cαk−`(T)βk−|L| (1
β2 + 1

α

)

≤ cαk−`(T)βk−|L|.

So we may assume that |L′| = |L|+ 1 in (4.3). Now assume that |Leaf(T root
D,L (x))| , 2

in (4.4). In this case either no recursive call is made in (4.4) or we increase the number
of leaves in T by at least two. Therefore the number of leaves of R is at most

cαk−`(T)βk−|L|−1 + cαk−`(T)−2βk−|L| = cαk−`(T)βk−|L| (1
β

+ 1
α2

)

≤ cαk−`(T)βk−|L|.

So we may assume that |L′| = |L| + 1 in (4.3) and |Leaf(T root
D,L (x))| = 2 in (4.4). Let

T ′ = T ∪ T root
D,L (x) and consider the recursive call to B(D,T ′, L). If we increase the

number of leaves in T ′ in step (2) of this recursive call, then the number of leaves of
the subtree of S T rooted at (D,T ′, L) is at most

cαk−`(T ′)−1βk−|L|−1 + cαk−`(T ′)−2βk−|L| = cαk−`(T ′)βk−|L| (1
αβ

+ 1
α2

)
.

Therefore, as `(T ′) = `(T) + 1, the number of leaves in R is at most

g(T, L′) + g(T ′, L) ≤ cαk−`(T)βk−|L|−1 + cαk−`(T)−1βk−|L| (1
αβ

+ 1
α2

)

= cαk−`(T)βk−|L| (1
β

+ 1
α2β

+ 1
α3

)

≤ cαk−`(T)βk−|L|.

So we may assume that we do not increase the number of leaves in step (2) when
we consider (D,T ′, L). Let y and y′ denote the two leaves of T ′x (after possibly adding
some arcs in step (2)). Consider the recursive call to B(D,T ′, L ∪ {y}). If we increase
the number of leaves of T ′ in step (2) in this call then the number of leaves in R is at
most

9

g(T, L ∪ {x}) + g(T ′, L ∪ {y}) + g(T ′ ∪ (T ′)root
D,L (y), L)

≤ cαk−`(T)βk−|L| (1
β

+ (1
α2β2 + 1

α3β
) + 1

α2

)

≤ cαk−`(T)βk−|L|.

So we may assume that we do not increase the number of leaves in step (2) when we
consider (D,T ′, L∪{y}). However in this case we note that |L′| = |L|+2 in this recursive
call as when we consider y′ the conditions of (4.2) are satisfied as, in particular, Tx has
exactly two leaves). So in this last case the number of leaves in R is at most

g(T, L ∪ {x}) + g(T ′, L ∪ {y}) + g(T ′ ∪ (T ′)root
D,L (y), L)

≤ cαk−`(T)βk−|L| (1
β

+ (1
αβ3 + 1

α2β
) + 1

α2

)

≤ cαk−`(T)βk−|L|.

We increase either |L| or `(T) whenever we consider a child in the search tree and
no non-leaf in S T has |L| ≥ k or `(T) ≥ k. Therefore, the number of nodes in S T is
at most O(kαkβk) = O(3.72k). As the amount of work we do in each recursive call is
polynomial we get the desired time bound. �

4 Exponential Algorithm for Directed Maximum Leaf

Note that Directed Maximum Leaf can be solved in time O(2nnO(1)) by an exhaustive
search using Lemma 1.1. Our 3.72knO(1) algorithm for Directed k-Leaf yields an im-
provement for Directed Maximum Leaf, as follows.

Let a = 0.526. We can solve Directed Maximum Leaf for a digraph D on n vertices
using the following algorithm ADML:

Stage 1. Set k := dane. For each x ∈ V(D) apply B(D, {x}, ∅) to decide whether D
contains an out-branching with at least k leaves. If D contains such an out-
branching, go to Stage 2. Otherwise, using binary search and B(D, {x}, ∅), return
the maximum integer ` for which D contains an out-branching with ` leaves.

Stage 2. Set ` := dane. For k = ` + 1, ` + 2, . . . , n, using Lemma 1.1, decide whether
D̂(∅, S) has an out-branching for any vertex set S of D of cardinality k and if the
answer is “NO”, return k − 1.

The correctness of ADML is obvious and we now evaluate its time complexity. Let
r = dane. Since 3.72a < 1.996, Stage 1 takes time at most 3.72rnO(1) = O(1.996n).
Since 1

aa(1−a)1−a < 1.9973, Stage 2 takes time at most

(
n
r

)
· nO(1) =

(
1

aa(1 − a)1−a

)n

nO(1) = O(1.9973n).

Thus, we obtain the following:

Theorem 4.1. There is an algorithm to solve Directed Maximum Leaf in time O(1.9973n).

10

5 Linear Kernel for Directed k-Leaf restricted to Acyclic
Digraphs

Lemma 1.1 implies that an acyclic digraph D has an out-branching if and only if D
has a single vertex of in-degree zero. Since it is easy to check that D has a single
vertex of in-degree zero, in what follows, we assume that the acyclic digraph D under
consideration has a single vertex s of in-degree zero.

We start from the following simple lemma.

Lemma 5.1. In an acyclic digraph H with a single source s, every spanning subgraph
of H, in which each vertex apart from s has in-degree 1, is an out-branching.

Let B be an undirected bipartite graph with vertex bipartition (V ′,V ′′). A subset
S of V ′ is called a bidomination set if for each y ∈ V ′′ there is an x ∈ S such that
xy ∈ E(B). The so-called greedy covering algorithm [4] proceeds as follows: Start
from the empty bidominating set C. While V ′′ , ∅ do the following: choose a vertex
v of V ′ of maximum degree, add v to C, and delete v from V ′ and the neighbors of v
from V ′′.

The following lemma have been obtained independently by several authors, see
Proposition 10.1.1 in [4].

Lemma 5.2. If the minimum degree of a vertex in V ′′ is d, then the greedy covering
algorithm finds a bidominating set of size at most 1 +

|V1 |
d

(
1 + ln d|V2 |

|V1 |
)
.

Let D be an acyclic digraph with a single source. We use the following reduction
rules to get rid of some vertices of in-degree 1.

(A) If D has an arc a = xy with d+(x) = d−(y) = 1, then contract a.

(B) If D has an arc a = xy with d+(x) ≥ 2, d−(y) = 1 and x , s, then delete x and
add arc uv for each u ∈ N−(x) and v ∈ N+(x).

The reduction rules are of interest due to the following:

Lemma 5.3. Let D∗ be the digraph obtained from an acyclic digraph D with a single
source using Reduction Rules A and B as long as possible. Then D∗ has a k-out-
branching if and only if D has one.

Proof. Let D have an arc a = xy with d+(x) = d−(y) = 1 and let D′ be the digraph
obtained from D by contracting a. Let T be a k-out-branching of D. Clearly, T contains
a and let T ′ be an out-branching obtained from T by contracting a. Observe that T ′

is also a k-out-branching whether y is a leaf of D or not. Similarly, if D′ has a k-out-
branching, then D has one, too.

Let D have an arc a = xy with d+(x) ≥ 2, d−(y) = 1 and x , s and let D′ be
obtained from D by applying Rule B. We will prove that D′ has a k-out-branching if
and only if D has one. Let T be a k-out-branching in D. Clearly, T contains arc xy and
x is not a leaf of T . Let U be the subset of N+(x) such that xu ∈ A(T) for each u ∈ U
and let v be the vertex such that vx ∈ A(T). Then the out-branching T ′ of D′ obtained

11

from T by deleting x and adding arcs vu for every u ∈ U has at least k leaves (T ′ is an
out-branching of D′ by Lemma 5.1). Similarly, if D′ has a k-out-branching, then D has
one, too. �

Now consider D∗. Let B be an undirected bipartite graph, with vertex bipartition
(V ′,V ′′), where V ′ is a copy of V(D∗) and V ′′ is a copy of V(D∗) − {s}. We have
E(B) = {u′v′′ : u′ ∈ V ′, v′′ ∈ V ′′, uv ∈ A(D∗)}.
Lemma 5.4. Let R be a bidominating set of B. Then D∗ has an out-branching T such
that the copies of the leaves of T in V ′ form a superset of V ′ − R.

Proof. Consider a subgraph Q of B obtained from B by deleting all edges apart from
one edge between every vertex in V ′′ and its neighbor in R. By Lemma 5.1, Q corre-
sponds to an out-branching T of D∗ such that the copies of the leaves of T in V ′ form
a superset of V ′ − R. �

Theorem 5.5. If D∗ has no k-out-branching, then the number n∗ of vertices in D∗ is
less than 6.6(k + 2).

Proof. Suppose that n∗ ≥ 6.6(k + 2); we will prove that D∗ has a k-out-branching.
Observe that by Rules A and B, all vertices of D∗ are of in-degree at least 2 apart from
s and some of its out-neighbors. Let X denote the set of out-neighbors of s of in-degree
1 and let X′′ be the set of copies of X in V ′′. Observe that the vertices of V ′′ − X′′ of
B − X′′ are all of degree at least 2. Thus, by Lemma 5.2, B − X′′ has a bidominating
set S of size at most n∗

2 (1 + ln 2) + 1. Hence, S ∪ {s} is a bidominating set of B and, by
Lemma 5.4, D∗ has a b-out-branching with b ≥ n∗ − n∗

2 (1 + ln 2) − 2. It is not difficult
to see that b ≥ n∗

2 (1 − ln 2) − 2 ≥ 0.153n∗ − 2 ≥ k. �

6 Open Problems
It would be interesting to see whether Directed k-Leaf admits an algorithm of signif-
icantly smaller running time, say O(3knO(1)). Another interesting and natural question
is to check whether a linear-size kernel exists for Rooted Directed k-Leaf (for all di-
graphs).

Acknowledgements Research of Gutin, Kim and Yeo was supported in part by an
EPSRC grant. Research of Daligault was supported in part by Alliance Project ”De-
composition de graphes orientés” and ANR project GRAAL. We are thankful to Serge
Gaspers for his ideas leading to Section 4.

References
[1] N. Alon, F.V. Fomin, G. Gutin, M. Krivelevich, and S. Saurabh. Parameterized Algorithms

for Directed Maximum Leaf Problems. Proc. 34th ICALP, Lect. Notes Comput. Sci. 4596
(2007), 352–362.

12

[2] N. Alon, F.V. Fomin, G. Gutin, M. Krivelevich, and S. Saurabh. Better Algorithms and
Bounds for Directed Maximum Leaf Problems. Proc. 27th Conf. Foundations Software
Technology and Theoretical Computer Science, Lect. Notes Comput. Sci. 4855 (2007),
316–327.

[3] N. Alon, F.V. Fomin, G. Gutin, M. Krivelevich and S. Saurabh, Spanning directed trees
with many leaves. SIAM J. Discrete Math. 23 (2009), 466–476.

[4] A.S. Asratian, T.M.J. Denley, and R. Häggkvist, Bipartite Graphs and Their Applications,
Univ. Press, Cambridge, 1998.

[5] J. Bang-Jensen and G. Gutin, Digraphs: Theory, Algorithms and Apllications, Springer-
Verlag, London, 2000.

[6] H.L. Bodlaender, R.G. Downey, M.R. Fellows and D. Hermelin. On Problems without
Polynomial Kernels. Lect. Notes Comput. Sci. 5125 (2008), 563–574.

[7] P.S. Bonsma, T. Brueggermann and G.J. Woeginger. A faster FPT algorithm for finding
spanning trees with many leaves. Lect. Notes Comput. Sci. 2747 (2003), 259–268.

[8] P.S. Bonsma and F. Dorn. An FPT algorithm for directed spanning k-leaf. Tech. Report
(2007) http://arxiv.org/abs/0711.4052

[9] P.S. Bonsma and F. Dorn. Tight bounds and faster algorithms for Directed Max-Leaf. Proc.
16th ESA, Lect. Notes Comput. Sci. 5193 (2008), 222–233.

[10] G. Ding, Th. Johnson, and P. Seymour. Spanning trees with many leaves. J. Graph Theory
37 (2001), 189–197.

[11] R.G. Downey and M.R. Fellows, Parameterized Complexity, Springer, 1999.

[12] M. Drescher and A. Vetta. An approximation algorithm for the maximum leaf spanning
arborescence problem. To appear in ACM Transactions on Algorithms.

[13] V. Estivill-Castro, M.R. Fellows, M.A. Langston, and F.A. Rosamond, FPT is P-Time Ex-
tremal Structure I. Proc. ACiD’05, College Publications, London (2005), 1–41.

[14] M.R. Fellows, C. McCartin, F.A. Rosamond, and U. Stege. Coordinated kernels and cat-
alytic reductions: An improved FPT algorithm for max leaf spanning tree and other prob-
lems. Lect. Notes Comput. Sci. 1974 (2000), 240–251.

[15] H. Fernau, F.V. Fomin, D. Lokshtanov, D. Raible, S. Saurabh, and Y. Villanger, Kernel(s)
for problems with no kernel: on out-trees with many leaves. Tech. Report (2008) http:
//arxiv.org/abs/0810.4796v2

[16] J. Flum and M. Grohe, Parameterized Complexity Theory, Springer, 2006.

[17] F.V. Fomin, F. Grandoni and D. Kratsch. Solving Connected Dominating Set Faster Than
2n. Algorithmica 52 (2008), 153–166.

[18] G. Galbiati, A. Morzenti, and F. Maffioli. On the approximability of some maximum span-
ning tree problems. Theor. Computer Sci. 181 (1997), 107–118.

[19] J. R. Griggs and M. Wu. Spanning trees in graphs of minimum degree four or five. Discrete
Math. 104 (1992), 167–183.

[20] D.J. Kleitman and D.B. West. Spanning trees with many leaves. SIAM J. Discrete Math. 4
(1991), 99–106.

[21] J. Kneis, A. Langer and P. Rossmanith. A new algorithm for finding trees with many leaves.
Proc. ISAAC 2008, Lect. Notes Comput. Sci. 5369 (2008), 270–281.

[22] N. Linial and D. Sturtevant. Unpublished result (1987).

13

[23] H.I. Lu and R. Ravi. Approximating maximum leaf spanning trees in almost linear time. J.
Algorithms 29 (1998), 132–141.

[24] R. Niedermeier. Invitation to Fixed-Parameter Algorithms, Oxford University Press, 2006.

[25] R. Solis-Oba. 2-approximation algorithm for finding a spanning tree with the maximum
number of leaves. Lect. Notes Comput. Sci. 1461 (1998), 441–452.

14

