A Novel Approach For Privacy Mining Of Generic Basic Association Rules

Waddey Moez 1 Pascal Poncelet 2 Sadok Ben Yahia 1
2 TATOO - Fouille de données environnementales
LIRMM - Laboratoire d'Informatique de Robotique et de Microélectronique de Montpellier
Abstract : Data mining can extract important knowledge from large data collections - but sometimes these collections are split among various parties. Privacy concerns may prevent the parties from directly sharing the data. The irony is that data mining results rarely violate privacy. The ob jective of data mining is to generalize across populations rather than reveal information about individuals [10]. Thus, the true problem is not data mining, but how data mining is done. This paper presents a new scalable algorithm for discover- ing closed frequent itemsets in distributed environment, us- ing commutative encryption to ensure privacy concerns. We address secure mining of association rules over horizontally partitioned data.
Type de document :
Communication dans un congrès
ACM First International Workshop on Privacy and Anonymity for Very Large Datasets, join with CIKM'09, France. pp.45-52, 2009
Liste complète des métadonnées

Littérature citée [25 références]  Voir  Masquer  Télécharger

https://hal-lirmm.ccsd.cnrs.fr/lirmm-00434320
Contributeur : Pascal Poncelet <>
Soumis le : dimanche 22 novembre 2009 - 17:40:55
Dernière modification le : jeudi 24 mai 2018 - 15:59:22
Document(s) archivé(s) le : jeudi 17 juin 2010 - 21:23:01

Fichier

PavladClosedPrivacy.pdf
Fichiers éditeurs autorisés sur une archive ouverte

Identifiants

  • HAL Id : lirmm-00434320, version 1

Collections

Citation

Waddey Moez, Pascal Poncelet, Sadok Ben Yahia. A Novel Approach For Privacy Mining Of Generic Basic Association Rules. ACM First International Workshop on Privacy and Anonymity for Very Large Datasets, join with CIKM'09, France. pp.45-52, 2009. 〈lirmm-00434320〉

Partager

Métriques

Consultations de la notice

197

Téléchargements de fichiers

396