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Abstract. We analyze the dynamics of problem-solving in a framework
which captures two key features of that activity. The first feature is that
problem-solving is a social game where a number of problem-solvers in-
teract, rely on other agents to tackle parts of a problem, and regularly
communicate the outcomes of their investigations. The second feature is
that problem-solving requires a careful control over the set of hypothe-
ses that might be needed at various stages of the investigation for the
problem to be solved; more particularly, that any incorrect hypothesis
be eventually refuted in the face of some evidence: all agents can expect
such evidence to be brought to their knowledge whenever it holds. Our
presentation uses a very general form of logic programs, viewed as sets of
rules that can be activated and fire, depending on what a problem-solver
is willing to explore, what a problem-solver is willing to hypothesize, and
what a problem-solver knows about the problem to be solved in the form
of data or background knowledge.

Our framework supports two fundamental aspects of problem-solving.
The first aspect is that no matter how the work is being distributed
amongst agents, exactly the same knowledge is guaranteed to be discov-
ered eventually. The second aspect is that any group of agents (with at
one end, one agent being in charge of all rules and at another end, one
agent being in charge of one and only one rule) might need to sometimes
put forward some hypotheses to allow for the discovery of a particular
piece of knowledge in finite time.

1 Introduction

The last century has seen the advent of a number of frameworks that place ra-
tionality at the heart of the process of scientific discovery; still none of those
frameworks has endowed epistemology with a definitive mathematical founda-
tion. The seminal research of Herbert Simon on the logical theorist and Mc-
Carthy’s research on commonsense reasoning are two prominent examples of
general attempts at interfacing the thinking of rational agents and the dynam-
ics of scientific discovery, before more specific approaches, tackling more specific
problems, have appeared. Departing more or less from Boole’s framework, a
plethora of logics, mainly developed in the Al community, have grounded vari-
ous rational approaches to problem solving; some of them have been validated



by the implementation of tools, successfully applied to the resolution of a broad
class of problems. Formal Learning Theory, PAC learning and Query learning,
developed around the prominent work of Gold [4], Valiant [8] and Angluin [2],
offer theoretical concepts, rooted in recursion theory, statistics and complexity
theory, to describe the process of data generalization. Induction has been studied
from different angles, in particular by Pierce and Suppes, before the Inductive
Logic Programming community suggested a more practical approach. Numerous
investigations on automatic or semi-automatic scientific discovery have taken
place [5,7,3,1]. Finally, let us mention the more recent work on the relation-
ships between scientific discovery and game theory; but these pointers do not by
far exhaust the whole body of work on the relationship between rationality and
scientific discovery.

Our approach is based on an extension of Parametric logic [6], a new frame-
work that unifies logic and formal learning theory, developed along three dimen-
sions, two of which are illustrated in this paper.

— The first dimension is formal. It equates logical discovery with theorem prov-
ing, in a logical setting where the work of scientists boils down to inferring
a set of theorems. We consider two binary categories of agents. The first
category opposes independent agents, who work alone, to social agents, who
share the work. The second category opposes theoretical agents, who have
no time nor space restrictions on the inferences they can perform, including
the ability to perform transfinite inferences, to empirical agents, whose in-
ferences must be performed in finite (but unbounded) time with finite (but
unbounded) memory.

— The second dimension is cognitive, and applies to the way theorems can

be derived, based on two key notions: postulates and hypotheses. Postulates
are what agents use when they organize their work; they represent state-
ments whose validity will be assessed “later.” Postulates allow for particular
scheduling or “outsourcing” of the work. Hypotheses are what agents assume
in order to seed or activate a proof. Hypotheses can turn out to be confirmed
or refuted, they can end up being plausible or paradoxical.
The categorization of agents is based on how they deal with postulates and
hypotheses. Theoretical agents do not need hypotheses whereas empirical
agents might. Independent agents might not need postulates whereas social
agents do.

2 The logical framework

2.1 An illustrative example

Imagine the following game. Countably many copies of every card in a deck of
52 cards are available to a game master. The game master chooses a particular
w-sequence of cards. For instance, she might choose the sequence consisting of
nothing but the ace of spades. Or she might choose the sequence where the queen
of hearts alternates with the four of spades, starting with the latter. A number of



players, who do not know which sequence has been chosen by the game master,
can make requests and ask her to reveal the nth card in the sequence, for some
natural number n. The players aim at eventually discovering which sequence of
cards has been chosen by the game master, or to discover some of its properties.

The game illustrates the process of scientific discovery, with the game master
playing the role of Nature, and the players the role of the scientists. A feature of
the game is that unless the game master has explicitly ruled out a large number
of possible sequences, the players usually cannot, at any point in time, know
whether their guesses are correct: they might at best be able to converge in
the limit to correct guesses. We have not precisely defined what a “guess” is.
There has to be a language where some properties of a sequence of cards can be
described, and the expressive power of the language is crucial in circumscribing
what the players can or cannot achieve. Let us refer to such a description as a
theory, in analogy to the work of scientists whose aim is to discover theories that
correctly describe or predict some aspects of the field of study. In this paper, we
will let logic programs play the role of theories.

2.2 Logical background

N denotes the set of natural numbers and Ord the class of ordinals. We consider
a finite vocabulary V consisting of a constant 0, a unary function symbol s, the
observational predicate symbols, namely, the unary predicate symbols

hearts spades diamonds clubs ace two ... ten jack queen king

and a number of other predicate symbols. For all nonzero n € N, we denote by 7
the term obtained from 0 by n successive applications of s; 7 will refer to the nth
card. We denote by Prd(V) the set of predicate symbols in V. Given n € N, we
denote by Prd(V, n) the set of members of Prd(V) of arity n. We fix a countably
infinite set of (first-order) variables and a repetition-free enumeration (v;);en of
this set. We need a notation for the set of all possible sequences of cards.

Definition 1. We call possible game any set T of closed atoms such that:

— for all n € N, T contains one and only one member of hearts(n), spades(m),
diamonds(n), clubs(m);

— for all n € N, T contains one and only one member of ace(w), two(R), ...,
ten(m), jack(m), queen(m), king(m);

— T contains no other atom.

We consider a notion of logical consequence that is best expressed on the
basis of a forcing relation IF, based on both principles that follow.

— The intended interpretations are Herbrand structures: every individual has
a unique name (a numeral); this is because intended interpretations are w-
sequences of cards— being the name of the nth card in the sequence.



— Disjunction and existential quantification are constructive: an agent will de-
rive a disjunction iff she has previously derived one of the disjuncts, and she
will derive an existential sentence iff she has previously derived one of the
closed instances of the sentence’s matrix.

We denote by L., (V) the set set sentences, that is, closed first-order formulas
over V. Given two sets S and T of sentences, we write S IF T iff S forces all
members of 7.

2.3 Logic programs and occurrence markers

A formal logic program provides, for every n € N and p € Prd(V, n), two rules:
one whose head is p(v1,...,v,), and one whose head is —~p(v1, ..., v, ). This is at
no loss of generality since the left hand side of the rules can contain equality and
the intended interpretations are Herbrand. So to define a formal logic program,
we only need the left hand side of both rules associated with a predicate symbol
and its negation. It is convenient, and fully general as well, to assume that all
variables that occur free on the left hand side of a rule also occur on the right
hand side of the rule.

Definition 2. A logic program (over V) is defined as a family of pairs of formu-
las over V indexed by Prd(V), say (¢, ¢, ))peprav), such that for all n € N
and o € Prd(V,n), fv(pf) Utv(py) is included in {v1,... v, }.

An important particular kind of logic program is the folllowing.

Definition 3. Let a logic program P = ((¢], v, ))pepra(v) be given. We say
that P is symmetric iff for all p € Prd(V), ¢, = ~pf.

To distinguish between agents, we need the key notion of occurrence marker,
which intuitively is a function that selects some occurrences of literals in some
formulas. Let ¥ be a nullary predicate symbol or the negation of a nullary pred-
icate symbol. An agent could select an occurrence o of ¥ in a formula ¢ because
she wants to (provisionally) assume that v is either true or false, at least in the
particular context of ¢ occurring in ¢ at occurrence o. We will see that social
agents will make use of the opportunity of assuming that 1 is false, whereas
empirical agents will make use of the opportunity of assuming that 1 is true.
Actually, ¥ does not have to be nullary for these ideas to be developed (we will
need more generality anyway), so the definitions that follow deal with arbitrary
literals, not only literals built from a nullary predicate symbol. The underlying
idea is the same, though it was more easily explained under the assumption that
1 is nullary.

We want to be able to select occurrences of literals in the left hand sides of
the rules of a logic program. This justifies the definition that follows.

Definition 4. Let a logic program P = ((gog, ©o))peprd(v) be given. An occur-
rence marker for P is a sequence of the form ((Og, O,))pepra(v) where for all
members p of Prd(V), Og and O are sets of occurrences of literals in (pjg and
¢, respectively.



What we need is to be able to replace some occurrences of literals in some
formulas by some other formulas. Given a formula ¢ and a partial function p
from the set of occurrences of literals in ¢ to L.,(V), we denote by ¢[p] the
result of applying p to ¢. For instance, if p is the function that maps the first
occurrence of pin ¢y =p A (¢ V p) tor A s, then p[p] = (r A s) A (¢ V p).

3 Independent and social agents

Let a logic program P and an occurrence marker {2 for P be given. Suppose that
V contains n predicate symbols for some nonzero n € N, so there are 2n rules
in P, n positive rules and n negative rules, say Ry, ... R2,—1. Imagine that for
all m < 2n, R, is ‘under the responsability’ of some agent A,, (a single agent
might be responsible for many rules in P, possibly all of them). Let m < 2n be
given. Some occurrences of literals in R, might be marked by (2. Intuitively,
these are the occurrences of literals that A,, ‘does not bother to’ or ‘is not
able to’ directly deal with: a marked occurrence of literal in R, is assumed by
A, to be false unless A,, is told otherwise (expectedly by another agent, but
possibly by himself...), for instance because those literals are not under A4,,’s
responsibility—they are instances of rules whose right hand side are under the
responsibility of other agents. The definitions that follow formalize these ideas.

Definition 5. Let a formula ¢, a set O of occurrences of literals in @, and a
set E of literals be given. Let p be the function from O into L, (V) such that
forall o€ O, n €N, p € Prd(V,n) and terms ty, ..., t,,>

p(0) = VIiAicicnti=t | oth,... . t,) € E} if p(t1,...,tn) € o,
V{/\lgignti:tﬂﬁp( Le-otn) €EEY if —p(ti,... ts) €0.

We let ©%¢ denote p[p].

Definition 6. Let a logic program P = ((gag, ®o))pePrd(v), @ possible game
T, and an occurrence marker 2 = ((O;OL, O, ))pepra(v) for P be given. We
inductively define a family ([P, T, 2]a)acora 0f sets of closed literals as follows.
For all ordinals o, [P, T, 2], is the C-minimal set of literals that contains T
and such that for all n € N, p € Prd(V,n) and closed terms ty, ..., t,,

) ot
- p(t157t”7«) € [P7 T7 Q}a Zﬁ[P7 T? Q}U‘ I ®U:<Q[P7T“{2]ﬁs&;[t1/v1?"'7t”7«/v”7«];

. O _
= oty itn) € [P, T, QL iff [Py T R1alb O (5.7, 01,95 [E1/01 st /va].

al
We set [P, T, 2] =Upcoml P> T, 2]a-

The independent agent does everything by herself; she does not rely on any-
one. If we assume that she works ‘nonstop’ then her behavior is captured by the
empty occurrence marker.

3 In case n = 0, the replacing expression is \/{ /\@} if pe E,and \/@ if p ¢ E.
Note that \/{ A @ } is logically equivalent to A @.



Definition 7. Let a logic program P = ((¢];, ¥, ))pepra(v) and a possible game
T be given. Let 2 = ((Of, O;))pepra(v) be the occurrence marker for P such
that for all o € Prd(V), O} and O, are empty. We write [P, T] for [P, T, 2].

The next result shows that social agents, irrespective of how their responsi-
bility has been defined, discover the same information, no less, not more, as the
independent agent.

Proposition 1. For all logic programs P, possible games T and occurrence
markers 2 for P, [P, T, 2] =[P, T].

4 Theoretical and empirical agents

In the previous section, we have allowed agents to interact transfinitely many
times: in [P, T, 2], we allow « to be an infinite ordinal. In this section, we
tackle the following issue: is it possible to derive all derivable information in
finite time, irrespective of how social agents share their work, or of how single
agents organize their work? Obviously, this requires a way of ‘working’ different
to what the concepts that have been defined so far accept. In this section, we
will allow agents to make hypotheses. If an agent can assume that some literals in
the bodies of some rules are true, she might be able to speed up the derivations
she can perform. Such hypotheses should abide stringent conditions. We suggest
that a hypothesis should eventually either be confirmed, that is, proved correct,
or refuted, that is, proved wrong. Let us first precisely define what ‘making a
hypothesis’ means. A pleasant feature of this notion is that it is again based on
the notion of occurrence marker. This time, we use occurrence markers to select
some occurrences of literals on the left hand side of some rules to make them
the targets of some hypotheses.

Definition 8. Let a formula ¢, a set O of occurrences of literals in @, and a
set E of literals be given. Let p be the function from O into the set of formulas
such that for all 0 € O, n € N, p € Prd(V,n) and terms t1, ..., t,, p(o) is equal
to V{p(t1,....tn), Niey ti =5 | p(t1,....th) € E} if p(t1,...,t,) € 0, and to
V{=pt1,....tn), Ni  ti =t | —p(th,...,th) € E} if =p(t1,...,tn) € 0. We
let ©9¢p denote o[p).

An agent willing to assume that the literals in E are true provided that they
occur on the left hand side of the rules of a logic program P, as selected by the
occurrence marker (2 for P, essentially decides to work on the basis of the logic
program P 4+, E introduced in the definition that follows.

Definition 9. Let a logic program P and an occurrence marker {2 for P be
gwen. Write P = ((gpg, ©o))pecprd(v) and 2 = ((Og7 Og))pepra(v)- Given a

b N
set E of literals, the sequence ((@g“ oF, @%“ ©5))peprd(v) s denoted P +q E.

Our aim is to show that making hypotheses can pay off.



Definition 10. A logic program P = ((¢{, ¢, ))pepra(v) is acceptable iff the
following holds. Let V* be 'V without the observational predicate symbols.

— For all possible games T, [P, T'| is a complete set of literals.
— The restriction of P to V* is symmetric.
— For all p € Prd(V),
o if © is observational then both <p; and ¢ are equal to Vo,
e cither g is nullary or no quantifier occurs in <p;§, and
o all quantified formulas that occur in (p; have one quantifier only.

Here is an example of part of an acceptable logic program.

V1 ((hearts(vi) V diamonds(vi)) — red(vi))
V1 ((spades(vi) V clubs(vi)) — black(vi))
Vo (red(vg) < black(s(vo))) — alternatedColors
(Vvored(vo) V Fug (queen(vp) A clubs(vg))) — allRedsOrAQofC

The proposition that follows shows that it is possible to enrich V into a vocabu-

lary V', transform P into a logic program P’ over V', and make some assumptions
such that all possible games T, all members of [P, T'] can be derived after a
finite number of steps. Moreover, P’ is such that it is safe to make any set of
assumptions; indeed, any set of assumptions that is inconsistent with P’ and a
possible game will proved inconsistent after finitely many inferences.

Proposition 2. Let V* be V without the observational predicate symbols. For
all acceptable logic programs P, there exists a finite set E of nullary predicate
symbols that do not belong to V and there exists a logic program P’ over VU E
whose restriction to V* U E is symmetric such that for all possible games T,
there exists an occurrence marker 2 for P’ with the following properties.

— [P, T'] and the restrictions of [P, T]| and [P’ +q E, T] to V are equal;

— for all occurrence markers ' for P', [P'+a E, T]=U,en|P' +2 E, T, 2']n;

— for all possible games T and for all occurrence markers 2’ and 2" for P/,
if [P+ E,T]#[P,T]then J,cn| P +or E, T, 2'], is inconsistent.

The transformation of P to P’ amounts to replacing some complex formulas
in the bodies of some rules of P by some new nullary predicate symbols, them-
selves defined thanks to a new pair of rules—a form of predicate invention—that
can play the role of hypotheses and enjoy a refutation property. With the previ-
ous example of acceptable logic program, F could consist of two nullary predicate
symbols, say p and ¢, and P’ could be defined as

Voi ((hearts(v1) V diamonds(vi)) — red(vi))
Vv ((spades(vi) V clubs(vi)) — black(v:))
Vo (red(vo) < black(s(vo))) — p
p — alternatedColors
Vugred(vo) — g
(¢ V Jvo (queen(vo) A clubs(vg))) — allRedsOrAQofC



An agent would then have four options, depending on whether she would assume

p or q in the bodies of the 4th and 6th rules, respectively. For any possible game
T, one of these options would be appropriate and allow the agent to discover
whether T is a sequence of cards where black and red alternate, or whether T
is a sequence consisting of nothing but red cards, unless it contains a queen of
clubs. Any wrong set of hypotheses would be guaranteed to be eventually refuted
in the limit on the basis of a finite subset of T'.

5 Conclusion

We have presented a framework where fundamental questions about the nature
of scientific discovery can be formulated and studied. The basic working hypoth-
esis is that a purely logical approach to scientific discovery and problem solving
is possible, in a way that can shed light on the nature of those activities. We
believe that our approach can address a whole range of questions related to the
nature of scientific discovery or problem solving, always within the boundaries
of a pure logical setting. For instance, Angluin proposes a binary categoriza-
tion of agents, with learners and teachers, and she proves robustness results
about their interaction; how does this categorization translate into our setting?
Starting from a fixed language, we have to a certain extent accounted for pred-
icate invention in the last proposition, allowing agents to make a rational use
of hypotheses expressed in an extension of the original language, but how does
predicate invention relate to postulates? Surely, logic is not an iron collar, but
it can potentially strive far beyond the territories where it has been confined to.
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