
HAL Id: lirmm-00435841
https://hal-lirmm.ccsd.cnrs.fr/lirmm-00435841

Submitted on 24 Nov 2009

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

SPAMS : A Novel Incremental Approach for Sequential
Pattern Mining in Data Streams

Lionel Venceslas, Jean-Émile Symphor, Alban Mancheron, Pascal Poncelet

To cite this version:
Lionel Venceslas, Jean-Émile Symphor, Alban Mancheron, Pascal Poncelet. SPAMS : A Novel In-
cremental Approach for Sequential Pattern Mining in Data Streams. Springer Verlag. Advances in
Knowledge Discovery and Management, pp.201-216, 2009. �lirmm-00435841�

https://hal-lirmm.ccsd.cnrs.fr/lirmm-00435841
https://hal.archives-ouvertes.fr

SPAMS : a novel Incremental Approach for
Sequential Pattern Mining in Data Streams

Lionel VINCESLAS, Jean-Emile SYMPHOR, Alban MANCHERON and
Pascal PONCELET

Abstract Mining sequential patterns in data streams is a new challenging
problem for the datamining community since data arrives sequentially in
the form of continuous rapid and infinite streams. In this paper, we propose
a new on-line algorithm, SPAMS, to deal with the sequential patterns mining
problem in data streams. This algorithm uses an automaton-based structure to
maintain the set of frequent sequential patterns, i.e. SPA (Sequential Pat-
tern Automaton). The sequential pattern automaton can be smaller than the
set of frequent sequential patterns by two or more orders of magnitude,
which allows us to overcome the problem of combinatorial explosion of se-
quential patterns. Current results can be output constantly on any user’s
specified thresholds. In addition, taking into account the characteristics of
data streams, we propose a well-suited method said to be approximate since
we can provide near optimal results with a high probability. Experimental
studies show the relevance of the SPA data structure and the efficiency of
the SPAMS algorithm on various datasets. Our contribution opens a promis-
ing gateway, by using an automaton as a data structure for mining frequent
sequential patterns in data streams.

Lionel VINCESLAS
Ceregmia, Université des Antilles et de la Guyane, Martinique - France
e-mail: lionel.vinceslas@martinique.univ-ag.fr

Jean-Emile SYMPHOR
Ceregmia, Université des Antilles et de la Guyane, Martinique - France
e-mail: je.symphor@martinique.univ-ag.fr

Alban MANCHERON
Lirmm, 161 rue Ada 34392 Montpellier CEDEX 5 - France
e-mail: alban.mancheron@lirmm.fr

Pascal PONCELET
Lirmm - UMR 5506 - 161 rue Ada 34392, Montpellier Cedex 5 - France
e-mail: pascal.poncelet@lirmm.fr

1

2 L. VINCESLAS & al.

1 Introduction

Concerned with many applications (e.g. medical data processing, marketing,
safety and financial analysis), mining sequential patterns is a challenging
problem within the datamining community. More recently these last years,
many emerging applications, such as traffic analysis in networks, web usage
mining or trend analysis, generate a new type of data, called data streams.
A data stream is an ordered sequence of transactions, potentially infinite,
that arrives in a timely order. The characteristics of a data stream can be
expressed as follows (cf. Lin 2005) :

• Continuity. Data continuously arrive at a high speed.
• Expiration. Data can be read only once.
• Infinity. The total amount of data is unbounded.

Therefore, mining in data streams should meet the following requirements
as well as possible. Firstly, owing to the fact that past data cannot be stored,
the methods can provide approximate results but accuracy guarantees are
required. Secondly, the unbounded amount of data supposes that the meth-
ods are adjustable according to the available ressources, especially for the
memory. Lastly, a model is needed which adapts itself to continuous data
stream over a time period.

Previous work.

Initially, the first work deal with the case of static databases and propose
exact methods for mining sequential patterns. We can quote as an example,
the algorithms GSP, PSP, FreeSpan, SPADE, PrefixSpan, SPAM and PRISM,
respectively proposed by [14, 11, 6, 15, 12, 2, 5]. Thus, the first algorithms
mentioned above for mining sequential patterns are not adapted any more
in the context of data streams. In [13], authors propose to use sampling tech-
niques for extracting sequential patterns in data streams. Nevertheless, the
context is quite different from our proposal since they mainly focus on a
summarization of the stream by using a reservoir sampling-based approach.
In that case, the sampling could be considered as a static database and then
any sequential pattern mining algorithm can be applied. It was shown in [4],
that methods, said to be approximate, are well adapted to the context of data
streams. However, the principal difficulty resides in the search of a trade-off
between time and memory performances, and the quality of the mining re-
sults as well as in recall as in precision. So far, the literature concerning the
mining of sequential patterns in data streams is relatively poor. In [3], the
authors proposed the algorithm eISeq, using a tree-based data structure. This
algorithm is a one pass algorithm, which processes the stream sequentially,
transaction per transaction. However, the longer the sequential patterns are,
the less this algorithm is performant. That is due to the generation of all

SPAMS, Sequential Patterns Automaton for Mining Streams 3

the sequential sub-patterns which increase exponentially. For example, if
< a1, · · · ,ai > is a sequential pattern, there are (2i−1) sequential sub-patterns
to be created. To alleviate this difficulty , the GraSeq algorithm have been pre-
sented in [9]. Their approach is based on an oriented graph data structure to
limit the sequential-sub-patterns generation phase. However, this approach
supposes a costly pre-processing step for regrouping the transactions.

Our contribution.

In this paper, we propose a new one-pass algorithm: SPAMS (Sequential
Pattern Automaton for Mining Streams). SPAMS is based on the on-line and
the incremental building and updating of an automaton structure : the SPA.
The SPA (Sequential Patterns Automaton) is a deterministic finite automa-
ton, which indexes the frequent sequential patterns in data streams. The
remainder of the paper is organized as follows. Section 2 states the problem
formally. In Section 3, we recall some prerequisite preliminary concepts and
we present our approach in section 4. Experimental studies are provided in
the section 5 and the conclusion is presented in the last section.

2 Problem Definition

In this section, we give the formal definition of the problem of mining se-
quential patterns in data streams. First, we give a brief overview of the
traditional sequence mining problem by summarizing the formal descrip-
tion introduced in [14]. Second, we examine the problem when considering
streaming data. Let I = {i1, i2, . . . , im} be a set of literals called items and let
DB a database of customer transactions where each transaction T consists of
customer-id, transaction time and a set of items involved in the transaction.
An itemset is a non-empty set of items. A sequential pattern s is a set of item-
sets ordered according to their timestamp and is denoted by < s1s2 · · ·sn >,
where sj, for j ⊆ [1..n], is an itemset. A k sequential pattern is a sequen-
tial pattern of k items or of length k. A sequential pattern S′ =< s′1s′2 · · ·s′n >
is a sub-pattern of another sequential pattern S =< s1 s2 · · · sn >, denoted
S′ ≺ S if there exists integers i1 < i2 < · · · i j · · · < in such that s′1 ⊆ si1 , s′2 ⊆ si2 ,
· · · , s′n ⊆ sin . All transactions from the same customer are grouped together
and sorted in an increasing order and are called a data sequence. A support
value (denoted supp(S)) for a sequential pattern gives its number of actual
occurrences in DB. Nevertheless, a sequential pattern in a data sequence is
taken into account only once to compute the support even if several occur-
rences are discovered. A data sequence contains a sequential pattern S if S is
a sub-pattern of the data sequence. In order to decide whether a sequential
pattern is frequent or not, a minimum support value (denoted σ) is specified

4 L. VINCESLAS & al.

by the user, and the sequential pattern is said to be θ-frequent if supp(S) ≥ σ,
where σ = !θ× |DB|"with θ ∈]0;1] and |DB| the size of the database. Given a
database of customer transactions, the problem of sequential pattern mining
is to find all the sequential patterns whose support is greater than a specified
threshold minimum support. Extended to the case of data streams, this prob-
lem can be expressed as follows. Formally, a data stream DS can be defined
as a sequence of transactions, DS = (T1,T2, · · · ,Ti, · · ·), where Ti is the i-th
arrived transaction. Each transaction, identified by a Tid, is associated with
an Cid identifier (cf. the example in the table 1). Mining frequent sequential
patterns remains to find all the sequential patterns, whose support value is
equal or greater than the fixed minimum support threshold for the known
part of the data stream at a given time.

Table 1 A data sequence built on I = {a,b,c,d}.

C1 < (b,d) (a,b,d) (a,c,d) >
C2 < (b,c,d) (b,d) >
C3 < (a,b) (c) >

3 Prerequisites on statistical covers

We briefly present in this section the required theoretical materials on sta-
tistical covers that we have presented in [8]. So, we recall the following
theorem.

Theorem 1. ∀θ,0 < θ ≤ 1,∀δ,0 < δ ≤ 1, we denote by m and m∗ respectively the
(θ-frequent and θ-infrequent) number of sequential patterns in the known part of
the stream and in the whole stream. If we choose ε such that:

ε ≥
√

1
2m

ln
m∗

δ
,

then Recall = 1 and respectively Precision = 1 with a probability of at least
1−δ, when discarding all the sequential patterns that are not θ′-frequent from the
observation, where θ′ = θ−ε and respectively θ′ = θ+ε.

The parameter δ is the statistical risk parameter potentially fixed by the user and
the values θ′ = θ±ε are the statistical supports.

The sup-(θ,ε)-cover is the near-optimal smallest set of sequential patterns
with a probability of at least 1− δ) containing all the sequential patterns
that are θ-frequent in the whole stream (eventually infinite). There are no

SPAMS, Sequential Patterns Automaton for Mining Streams 5

false negative results with high probability. The inf-(θ,ε)-cover is the near-
optimal biggest set of sequential patterns with a probability of at least 1−δ)
containing only sequential patterns that are θ-frequent in the whole stream
(eventually infinite). In this set, there are no false positive results with high
probability, but false negative ones. We provided the proof of this theorem in
[8]. By near-optimal, we express that any technique obtaining better bounds
is condemned to make mistakes (the criterion to be maximized is not equal
any more to 1). We precised also, that there is no assumption on the distri-
bution of the stream.

4 The SPAMS approach

Our approach is based on the incremental construction of an automaton
which indexes all frequent sequential patterns from a data stream. For the
mining process, we do not make the assumption of an ideal data stream
where transactions are sorted by customers. In fact, we make no assump-
tions either on the order of data, or on customers, or on the alphabet of
the data. It’s a real incremental approach for knowledge discovery in data
streams. Moreover, to obtain the best quality of approximation, in both recall
and precision, we also index the (θ− ε)-frequent sequential patterns of the
statistical cover, in addition to those θ-frequent. In this way, we retain the
minimum number of candidates, which limits the combinatorial explosion.

4.1 SPA : the Sequential Patterns Automaton

In a more formal way, we define in this section the automaton of sequential
patterns, SPA. For further information on the automata theory, we suggest
the presentation made by [7].

Definition 1 (Finite state automaton). A finite state automaton A is a 5-tuple
such that A= (Q,Σ,δ,I,F), where Q is a finite set of states,Σ an input alphabet,
δ ⊆ Q×Σ×Q is a set of transitions, I ⊆ Q and respectively F ⊆ Q are the set of
initials and finals states.

Definition 2 (Deterministic finite state automaton). A finite state automa-
ton A = (Q,Σ,δ,I,F) is deterministic if and only if it exists a unique initial
state (i.e. |I| = 1) and if ∀ p,q ∈ Q and α ∈ Σ, (p,α,q), (p,α,q′) ∈ δ⇒ q = q′.

The label of a transition t going from a state qi to a state qj, denoted t =
qi
α,−−→ qj is the symbol α. A path in A is a sequence c = t1, · · · , tn of consecutive

transitions. The label of a path c is denoted |c| = α1 · · ·αn , or c : q0
w,−−→ qn with

w = |c|. A label is also called a word. A path c : qi
w,−−→ qj is said to be successful

6 L. VINCESLAS & al.

if and only if qi ∈ I and qj ∈ F. A word w is said to be accepted or recognised by
the automaton A if it is the label of a successful path.

Definition 3 (Language accepted by a DFA). Let A=
(
Q, q0, F, Σ, δ

)
be a de-

terministic finite state automaton (DFA). The language accepted or recognised
by A, denoted L(A), is the set of all accepted words :

L(A) =
{
w ⊆ Σ∗ | ∃ c : q0

w,−−→ qj, qj ∈ F
}

Definition 4 (The Sequential Patterns Automaton). The sequential
patterns automaton (SPA) is a deterministic finite state automaton,
i.e. a 5-tuple SPA =

(
Q, q0, F, Σ, δ

)
, whose accepted language L(SPA)

is the set of frequent sequential patterns.

Definition 5 (The sequence item). Let SPA =
(
Q, q0, F, I, δ

)
be the automa-

ton of sequential patterns. We add to the set Σ, a special item called the
sequence item, denoted arbitrarily #. This item is an item that separates item-
sets within sequential patterns (cf. figure 1).

q0

1

q1

1

q2

1

q3

1

q4

1

q5

1

q6

1
a b # a b c

Fig. 1 An automaton indexing the sequential pattern < (a,b)(a,b,c) >

Definition 6 (The sink state). Let SPA =
(
Q, q0, F, I, δ

)
be the automaton of

sequential patterns. We add to the set Q, a special state called the sink state,
denoted q∞. It’s a temporary state used by the transition function to generate
the other states of the automaton.

Definition 7 (Support of a state). Let SPA=
(
Q, q0, F, I, δ

)
be the automaton

of sequential patterns, and q ∈Q, a final state. We define the support of the state
q, denoted |q|, as an integer representing the support of sequential patterns
recognised in this state.

Lemma 1. Let Lq ⊆L(SPA) be the set of words (i.e. sequential patterns) recognised
in the state q ∈ Q. According to definition 7, the following assertion is definitely
obvious :

∀ wi,wj ∈ Lq ⊆ L(SPA) (1 ≤ i, j ≤ |Lq|) , supp(wi) = supp(wj)

SPAMS, Sequential Patterns Automaton for Mining Streams 7

Property 1. Let SPA=
(
Q, q0, F, Σ, δ

)
be the sequential patterns automa-

ton :

∀qi
α,−−→ qj ∈ SPA (qi,qj ∈ Q, α ∈ Σ) , |qi| ≥| qj|

Proof. Let c1 : q0
w,−−→ qi and c2 : qi

α,−−→ qj ∈ SPA be two paths (α ∈ Σ; w ∈ Σ∗).
According to the Apriori property [1] (i.e. for any frequent itemset, all sub-
itemsets are frequent), if z = w ·α is the label of a successful path c3 : q0

z,−−→
qj, then c1 is also a successful path and supp(w) ≥ supp(z). According to
definition 7, supp(w) = |qi| and supp(z) = |qj|. This shows that |qi| ≥| qj|

Property 2. Let SPA=
(
Q, q0, F, Σ, δ

)
be the sequential patterns automa-

ton, R(Q,α) be the set of reachable states by α and R(Q,β) be the set of
reachable states by β :

∀α,β ∈ Σ , R(Q,α)∩R(Q,β) = ∅

4.2 The SPAMS algorithm

4.2.1 Notations

In the following, we define some of the notations used in SPAMS :

2 T is the set of transition of the automaton.
2 Ts is the set of ingoing transitions on the state s ∈ Q.
2 |Ts| is the number of ingoing transitions on the state s ∈ Q.
2 Q# is the set of reachable states by the sequence item.
2 Qcid is the set of reachable states for a customer id cid.
2 Tr is the set of reachable transitions, i.e. transitions labelled by the item

being processed.
2 C is the set of customers id.
2 Cs is the set of customers id for a state s ∈ Q, i.e. the customers whose

indexed sequential patterns use the state s.

8 L. VINCESLAS & al.

4.2.2 Presentation

According to definition 7, a state may recognise several sequential patterns
whose support is the same. So, if the support of one or more sequential pat-
terns recognised in a state q, has to change (i.e. their support is incremented
by 1), the definition 7 is no longer respected. To resolve this problem, we
make a copy q′ of the state q : all sequential patterns recognised in the state q
are not moved. We move only on the state q′, the sequential patterns whose
support has changed. This is done by a movement of some ingoing transi-
tions from the state q to the state q′. It is evident that all sequential patterns
recognised in the state q′ have the same support (cf. definition 7). Finally, we
create the same outgoing transitions of the state q for the state q′.

Our algorithm is divided into three main modules which are Insert,
Prune and Next.

The Insertmodule : This module is called by the SPAMS algorithm for
each item read from the data stream. Let cid be the customer id, and α ∈ Σ
the item being processed. This module is responsible for the creation of new
transitions in the automaton, and therefore of the application of definition 7.
So, the Insertmodule will try to create all necessary transitions of the form
s α,−−→ s′. Therefore, we need to know the corresponding states s and s′. The
state s is obtained by scanning the list of reachable states for the customer id
cid, denoted Qcid. This means each customer id has its own set of reachable
states. We proceed in the following way :

2 First, if this customer id is new (cid ! C), we update the following sets :
C = C∪{ cid } , Qcid = { q0 } and Cq0 = Cq0 ∪{cid}.

2 Then, for each state s ∈Qcid, if there is no state s′ ∈Q such that the transition
s α,−−→ s′ exist, we create a new transition to the sink state (T = T∪{s α,−−→ q∞})
and update the set : Tr = Tr∪{s α,−−→ q∞}. Otherwise, if the transition s α,−−→ s′

exists, we update the set : Tr = Tr∪{s α,−−→ s′}.
2 For each state s′ such that s α,−−→ s′ ∈ Tr, we make the following step :

• If the state s′ " q∞ and |Ts′ | = |Ts′ ∩Tr|, then :
1. we update the set : Qcid = Qcid∪{ s′ }.
2. if the customer id cid ! Cs′ , then |s′| = |s′|+ 1 and we update the set :

Cs′ = Cs′ ∪ { cid }.
3. if |s′| <min sup, we call the prune module : Prune(s′)
• Otherwise (i.e. s′ = q∞ or |Ts′ | " |Ts′ ∩Tr|) :
1. we create a new state p and update the set : Qcid = Qcid∪{ p }.
2. we also update the set : Cp = Cs′ ∪ { cid }
3. if the customer id cid ! Cs′ , then |p| = |s′|+1, otherwise |p| = |s′|
4. if the item α is the sequence item, we update the set : Q# = Q#∪{ p }

SPAMS, Sequential Patterns Automaton for Mining Streams 9

5. for each ingoing transition s α,−−→ s′ ∈ Tr, we delete it and create the
ingoing transition s α,−−→ p : T = T \

{
s α,−−→ s′

}
∪
{
s α,−−→ p

}

6. for each outgoing transition s′
β,−−→ s′′ ∈ T (β ∈ Σ, s′′ ∈ Q) , we create the

same outgoing transition for the state p : T = T∪
{
p
β,−−→ s′′

}

7. if |p| <min sup, we call the prune module : Prune(p)

2 We update the set of reachable transitions : Tr = ∅

The Prunemodule : This module is called by the Insertmodule in order
to prune a state from the automaton. Not only does it erases the concerned
state but also the states and transitions reachable from itself.

The Nextmodule : When the module Insert has processed all items of a
transaction, for a given customer id (cid), the module Next is called.
This module works as follows :

1. We save the set Qcid : Z = Qcid
2. We update the set Qcid : Qcid = Qcid \ {Qcid∩Q− ∪ {q0}}
3. We call the module Insert giving as parameters the customer id (cid) and

the sequence item (#).
4. We update the set Qcid : Qcid = Z∩Q#∪{q0}

Fig. 2 Example of an unordered data stream generated from table 1

C1 ,T1︷!!!!!!!!!!!︸︸!!!!!!!!!!!︷
(1,1,b) (1,1,d)

C2 ,T4︷!!!!!!!!!!!!!!!!!!!!!︸︸!!!!!!!!!!!!!!!!!!!!!︷
(2,4,b) (2,4,c) (2,4,d)

C1 ,T2︷!!!!!!!!!!!!!!!!!!!!!︸︸!!!!!!!!!!!!!!!!!!!!!︷
(1,2,a) (1,2,b) (1,2,d) · · ·

4.2.3 An example of construction

To illustrate the functioning of our algorithm, we process the example of
Table 1, as an unordered stream database (cf. figure 2), using θ = 0.4 as
the support threshold. Thus, we work in the general case of data streams,
i.e. without assuming any ordering of transactions by customer id.
Figures 3, 4, 6, 7, 8 and 10 illustrate the module Insert, i.e. the reading and
the insertion of an item (cf. Section 4.2.2 for further explanation).
Figures 5 and 9 illustrate the module Next, i.e. the end of the call to the
module Insert, which also corresponds to the end of processing every item
of a transaction (cf. Section 4.2.2 for further explanation).

10 L. VINCESLAS & al.

Fig. 3 Reading and insertion of item b (transaction 1)

q0

1

q∞
0

b

(i) Reading of item b

q0

1

q∞
0

q1

1b

(ii) Creating state q1, and
moving reachable transitions.

q0

1

q∞
0

q1

1b

(iii) Final automaton

Fig. 4 Reading and insertion of item d (transaction 1)

q0

1

q∞
0

q1

1b

d

d

(i) Reading of item d

q0

1

q∞
0

q1

1

q2

1

b
d

d

(ii) Creating of state q2, and
moving reachable transitions.

q0

1

q∞
0

q1

1

q2

1

b
d

d

(iii) Final automaton

Fig. 5 End of processing transaction 1

q0

1

q∞
0

q1

1

q2

1

b
d

d

#

#

(i) Reading of item #

q0

1

q∞
0

q1

1

q3

1

q2

1

b
d

d
#

#

(ii) Creating state q3, and
moving reachable transitions.

q0

1

q∞
0

q1

1

q3

1

q2

1

b
d

d
#

#

(iii) Final automaton.

Fig. 6 Reading and insertion of item b (transaction 2)

q0

1

q∞
0

q1

1

q3

1

q2

1

b
d

d
#

#

(i) Reading of item b

q0

1

q∞
0

q1

2

q3

1

q2

1

b
d

d
#

#

(ii) Incrementing support of
state q1

q0

1

q∞
0

q1

2

q3

1

q2

1

b
d

d
#

#

(iii) Final automaton

Fig. 7 Reading and insertion of item c (transaction 2)

q0

1

q∞
0

q1

2

q3

1

q2

1

b
d

d
#

#

c

c

(i) Reading of item c

q0

1

q∞
0

q1

2

q3

1

q2

1

q4

1

b
d

d
#

#

c

c

(ii) Creating state q4, and
moving reachable transitions.

q0

1

q∞
0

q1

2

q3

1

q2

1

q4

1

b
d

d
#

#

c

c

(iii) Final automaton

After processing the table 1 as a stream database, the resulting automaton
has 38 states and 80 transitions, and contains 233 sequential patterns : this

SPAMS, Sequential Patterns Automaton for Mining Streams 11

Fig. 8 Reading and insertion of item d (transaction 2)

q0

1

q∞
0

q1

2

q3

1

q2

1

q4

1

b
d

d
#

#

c

c

d

(i) Reading of item d

q0

1

q∞
0

q1

2

q3

1

q2

2

q4

1

q5

1

b
d

d
#

#

c

c

d

(ii) Creating state q5, and
moving reachable transitions

q0

1

q∞
0

q1

2

q3

1

q2

2

q4

1

q5

1

b
d

d
#

#

c

c

d

(iii) Final automaton

Fig. 9 End of processing transactions 2

q0

1

q∞
0

q1

2

q3

1

q2

2

q4

1

q5

1

b
d

d
#

#

c

c

d

#
#

#

#

(i) Reading of item #

q0

1

q∞
0

q1

2

q3

1

q2

2

q4

1

q5

1

q6

1

b
d

d
#

#

c

c

d

#
#

#

#

(ii) Creating state q6, and
moving reachable transitions.

q0

1

q∞
0

q1

2

q3

1

q2

2

q4

1

q5

1

q6

1

b
d

d
#

#

c

c

d

#
#

#

#

(iii) Final automaton

Fig. 10 Reading and insertion of item a (transaction 3)

q0

1

q∞
0

q1

2

q3

1

q2

2

q4

1

q5

1

q6

1

b
d

d
#

#

c

c

d

#
#

#

#

a

a

(i) Reading of item a

q0

1

q∞
0

q1

2

q3

1

q2

2

q4

1

q5

1

q6

1

q7

1

b
d

d
#

#

c

c

d

#
#

#

#

a

a

(ii) Creating state q7, and
moving reachable transitions.

q0

1

q∞
0

q1

2

q3

1

q2

2

q4

1

q5

1

q6

1

q7

1

b
d

d
#

#

c

c

d

#
#

#

#

a

a

(iii) Final automaton

automaton indexes sequential patterns whose support is equal or greater
than the statistical support threshold θ−ε (cf. figure 11).
By traversing the automaton, we can extract the sequential patterns whose
support is strictly greater than θ. In this case, 12 states and 19 transitions
are used to index the corresponding sequential patterns, i.e. 19 sequential
patterns (cf. table 2).

12 L. VINCESLAS & al.

Table 2 This is the set of sequential patterns extracted by SPAMS using table 1 as a stream
database (θ = 0.4)

< (1) >:2 < (2) >:3 < (2)(4) >:2 < (2,4)(4) >:2 < (4)(2) >:2
< (1)(3) >:2 < (2)(2) >:2 < (2,4) >:2 < (3) >:3 < (4)(2,4) >:2
< (1,2) >:2 < (2)(2,4) >:2 < (2,4)(2) >:2 < (3,4) >:2 < (4)(4) >:2
< (1,2)(3) >:2 < (2)(3) >:2 < (2,4)(2,4) >:2 < (4) >:2

Fig. 11 This is the resulting automaton generated by SPAMS, indexing all frequent se-
quential patterns of the statistical cover (θ = 0.4) : the filled states have a support equal or
greater than θ, while the white states have a support belonging to [θ−ε;θ[.

4

#

4

2

2

#

4

#

4

4

2

4

#

#

4

1

3

1

2

#

1

#
#

4

1

4

3 #

4

3

4

3

3

3

#

3

4

2

2

#

4

1

4

#

3

3

2

#

3

#

#

#

4

4

3

4

4

3

4

#

4

#

1

2

4

2

1

3

1

#

4

#

4

1

3

#

4

4

#

1

24

25
26

27

20 2122

23

28
29

1

3

2

5
4

7

6

98

38

1110

13
12

1514

17

16

1918

31

30

37

3635
34

33

32

4.2.4 SPAMS pseudo-code

In the following, we present the pseudo-code of our algorithm. In Sec-
tion 4.2.2, the module Insert is the subject of a detailed explanation from
which it is easy to deduce the pseudo-code. It’s the same for the module
Next. Thus, we choose to present only the pseudo-code of the main module
of our algorithm as well as that of the module Prune (cf. algorithms 1 & 2).

5 Experimental Results

We have now designed a great number of performance tests in order to
highlight our algorithm efficiency. We have used a SPAMS implementation
in C++, using the Standard Template Library (STL) and the ASTL [10] li-

SPAMS, Sequential Patterns Automaton for Mining Streams 13

Algorithm 1: Main()
Data: Stream, θ
Result: spaθ
begin

Create two states q0 and q∞ : Q←− { q0, q∞
}

T←− ∅
cid←−NULL
tid←−NULL
C←− ∅
Cq0 ←− ∅
Cq∞ ←− ∅
δ←− 0.01
minSup←− 0
for each (cid′, tid′, α) ∈ Stream do

if (cid " cid′) or (tid " tid′) then
Next(cid)
cid←− cid′
tid←− tid′

Insert(α, cid)
end

Algorithm 2: Prune()
Data: s′, α, Tr, cid
begin

for each s α,−−→ s′ ∈ T do
Delete the transition s α,−−→ s′ : T←− T \

{
s α,−−→ s′

}

if s α,−−→ s′ ∈ Tr then
Tr←− Tr \

{
s α,−−→ s′

}

for each s′
β,−−→ s′′ ∈ T do

Prune(s′′, β, Tr, cid)
Qcid←−Qcid \ { s′ }
for each cid′ ∈Cs′ do

Qcid′ ←−Qcid′ \ { s′ }
Delete the set Ws′

Delete the state s′ : Q←−Q\ { s′ }
end

brary, compiled with the option -03 of the g++ compiler on a 700MHz Intel
Pentium(R) Core2 Duo PC machine with 4G memory, running Linux Debian
Lenny.

Several experiments have been carried out in order to test the efficiency
of our approach. Empirical experiments were done on synthetic datasets
(cf. table 3) generated by the IBM data generator in [14].

14 L. VINCESLAS & al.

Table 3 Parameters used in datasets generation

Symbols Meaning

D Number of customers in 000s
C Average number of transactions per customer
T Average number of items per transaction
N Number of different items in 000s
S Average length of maximal sequences

We illustrate on figures 12-(i),12-(ii) the time and the memory con-
sumption performances of SPAMS, for different support values, on small
medium and large datasets, respectively D7C7T7S7N1, D10C10T10S10N1
and D15C15T15S15N1. Figures 12-(iii), 12-(iv), 12-(v), 12-(vi) represent the
evolution of the running time, the memory and the number of customers
in relation to the number of transactions on the dataset D15C15T15S15N1,
with a fixed support value of 40%. Figure 12-(viii) illustrates that the sta-
tistical support used tends to the support threshold θ during the insertion
of new transactions, which reduce the (θ−ε)-frequent patterns of the statis-
tical cover. To calculate the ε parameter (see section 3), we have chosen the
value of 0.01 for the statistical risk parameter δ. These experiments show
that we have found a satisfactory compromise between time performances,
memory consumption and the quality of the mining results in recall as well
as in precision (cf. figure 12-(vii)). They also show the applicability and the
scalability of the SPAMS algorithm for mining data streams.

6 Conclusion

In this paper, we bring an original contribution by proposing a new one-pass
algorithm, named SPAMS, enabling the building and the maintaining of an
automaton data structure: the SPA, which indexes the frequent sequential
patterns in a data stream. The SPA is built from scratch and is updated on
the volley, as a new transaction is inserted. The current frequent patterns can
be output in real time based on any user’s specified thresholds. Thus, the
SPA is a very informative and flexible data structure, well-suited for mining
frequent sequential patterns in data streams. With the SPA, our contribution
opens a promising gateway, by using an automaton as a data structure for
mining frequent sequential patterns in data streams. Furthermore, taking
into account the characteristics of data streams, we propose a well-suited
method, said to be approximate, since we can provide near optimal results
with a high probability, while maintaining satisfactory performances of the
SPAMS algorithm. Experimental studies show the scalability and the ap-

SPAMS, Sequential Patterns Automaton for Mining Streams 15

plicability of the SPAMS algorithm. In the future, we will examine how to
extend this work to mine closed sequential patterns on sliding windows.

References

1. Agrawal, R., Srikant, R.: Fast algorithms for mining association rules. In: 20th VLDB
Conf. (1994)

2. Ayres, J., Flannick, J., Gehrke, J., Yiu, T.: Sequential pattern mining using a bitmap
representation (2002)

3. Chang, J.H., Lee, W.S.: Efficient mining method for retrieving sequential patterns over
online data streams. J. Inf. Sci. 31(5), 420–432 (2005). DOI http://dx.doi.org/10.1177/
0165551505055405

4. Garofalakis, M.N., Gehrke, J., Rastogi, R.: Querying and mining data streams: you
only get one look a tutorial. In: M.J. Franklin, B. Moon, A. Ailamaki (eds.) SIGMOD
Conference, p. 635. ACM (2002). URL http://dblp.uni-trier.de/db/conf/sigmod/
sigmod2002.html#GarofalakisGR02

5. Gouda, K., Hassaan, M., Zaki, M.J.: Prism: A primal-encoding approach for frequent
sequence mining. In: ICDM, pp. 487–492. IEEE Computer Society (2007). URL http:
//dblp.uni-trier.de/db/conf/icdm/icdm2007.html#GoudaHZ07

6. Han, J., Pei, J., Mortazavi-Asl, B., Chen, Q., Dayal, U., Hsu, M.: Freespan: frequent
pattern-projected sequential pattern mining. In: KDD, pp. 355–359 (2000)

7. Hopcroft, J.E., Ullman, J.D.: Introduction to Automata Theory, Languages, and Com-
putation. Addison Wesley, Reading, Massachusetts (1979)

8. Laur, P.A., Symphor, J.E., Nock, R., Poncelet, P.: Statistical supports for mining sequen-
tial patterns and improving the incremental update process on data streams. Intell.
Data Anal. 11(1), 29–47 (2007)

9. Li, H., Chen, H.: Graseq : A novel approximate mining approach of sequential patterns
over data stream. In: R. Alhajj, H. Gao, X. Li, J. Li, O.R. Zaane (eds.) ADMA, Lecture
Notes in Computer Science, vol. 4632, pp. 401–411. Springer (2007). URL http://dblp.
uni-trier.de/db/conf/adma/adma2007.html\#LiC07

10. Maout, V.L.: Tools to implement automata, a first step: Astl. In: D. Wood, S. Yu (eds.)
Workshop on Implementing Automata, Lecture Notes in Computer Science, vol. 1436,
pp. 104–108. Springer (1997)

11. Masseglia, F., Cathala, F., Poncelet, P.: The psp approach for mining sequential pat-
terns. In: J.M. Zytkow, M. Quafafou (eds.) PKDD, Lecture Notes in Computer Science,
vol. 1510, pp. 176–184. Springer (1998)

12. Pei, J., Han, J., Mortazavi-Asl, B., Pinto, H., Chen, Q., Dayal, U., Hsu, M.: Prefixspan:
Mining sequential patterns by prefix-projected growth. In: ICDE, pp. 215–224. IEEE
Computer Society (2001)

13. Raı̈ssi, C., Poncelet, P.: Sampling for sequential pattern mining: From static databases
to data streams. In: ICDM, pp. 631–636 (2007)

14. Srikant, R., Agrawal, R.: Mining sequential patterns: Generalizations and performance
improvements. In: P.M.G. Apers, M. Bouzeghoub, G. Gardarin (eds.) EDBT, Lecture
Notes in Computer Science, vol. 1057, pp. 3–17. Springer (1996)

15. Zaki, M.J.: Spade: An efficient algorithm for mining frequent sequences. Machine
Learning 42(1/2), 31–60 (2001)

16 L. VINCESLAS & al.

Fig. 12 Self performance evaluation of SPAMS over small, medium and large datasets.

 0.1

 1

 10

 100

 0.4 0.42 0.44 0.46 0.48 0.5

R
u

n
n

in
g

 t
im

e
 (

se
co

n
d

s)

Support threshold

Varying support for different size of datasets

D7C7T7S7I7
D10C10T10S10I10
D15C15T15S15I15

(i) Running time

 1000

 10000

 100000

 0.4 0.42 0.44 0.46 0.48 0.5

V
ir
tu

a
l M

e
m

o
ry

 P
e

a
k

(K
B

)

Support threshold

Varying support for different size of datasets

D7C7T7S7I7
D10C10T10S10I10
D15C15T15S15I15

(ii) Memory consumption

 10

 100

 0 5 10 15 20 25

R
u

n
n

in
g

 t
im

e
 (

se
co

n
d

s)

Number of processed transactions (x 10000)

Dataset : D15C15T15S15N1 (θ=0.4)

SPAMS

(iii) Running time on D15C15T15S15N1

 0.0001

 0.001

 0.01

 0.1

 1

 10

 100

 0 5 10 15 20 25

U
p

d
a

tin
g

 t
im

e
 (

se
co

n
d

s)

Number of processed transactions (x 10000)

Dataset : D15C15T15S15N1 (θ=0.4)

SPAMS

(iv) Updating time on D15C15T15S15N1

 100

 1000

 10000

 100000

 0 5 10 15 20 25

N
u

m
b

e
r

o
f

cl
ie

n
ts

Number of processed transactions (x 10000)

Dataset : D15C15T15S15N1 (θ=0.4)

SPAMS

(v) Number of clients on D15C15T15S15N1

 98848

 98848.5

 98849

 98849.5

 98850

 98850.5

 98851

 98851.5

 98852

 0 5 10 15 20 25

V
ir
tu

a
l M

e
m

o
ry

 P
e

a
k

(K
B

)

Number of processed transactions (x 10000)

Dataset : D15C15T15S15N1 (θ=0.4)

SPAMS

(vi) Memory consumption on
D15C15T15S15N1

 0.97

 0.975

 0.98

 0.985

 0.99

 0.995

 1

 0.4 0.42 0.44 0.46 0.48 0.5

V
a

lu
e

Support threshold

Dataset : D15C15T15S15N1 (θ=0.4)

Recall
Precision

(vii) Recall and precision on
D15C15T15S15N1

 0.01

 0.1

 1

 0 5 10 15 20 25

P
a

ra
m

e
te

r
va

lu
e

Number of processed transactions (x 10000)

Dataset : D15C15T15S15N1 (θ=0.4)

θ - ε
θ
ε

(viii) Evolution of the statistal support on
D15C15T15S15N1

