
HAL Id: lirmm-00437252
https://hal-lirmm.ccsd.cnrs.fr/lirmm-00437252v1

Submitted on 26 Oct 2012

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Chapter 9: Fault Detection in Crypto-devices
Kaouthar Bousselam, Giorgio Di Natale, Marie-Lise Flottes, Bruno Rouzeyre

To cite this version:
Kaouthar Bousselam, Giorgio Di Natale, Marie-Lise Flottes, Bruno Rouzeyre. Chapter 9: Fault
Detection in Crypto-devices. Wei Zhang. Fault Detection, InTech, pp.177-194, 2010, 978-953-307-
037-7. �10.5772/213�. �lirmm-00437252�

https://hal-lirmm.ccsd.cnrs.fr/lirmm-00437252v1
https://hal.archives-ouvertes.fr

Fault Detection in Crypto-Devices 177

Fault Detection in Crypto-Devices

K. Bousselam, G. Di Natale, M.-L. Flottes and B. Rouzeyre

x

Fault Detection in Crypto-Devices

K. BOUSSELAM, G. DI NATALE, M.-L. FLOTTES and B. ROUZEYRE
LIRMM (Université Montpellier II / CNRS UMR 5506)

Montpellier, France

This chapter presents a study on fault detection mechanisms involved in secure devices in
order to prevent faults-based attacks. We explore the solutions based on the use of error
detection codes (parity bits, CRC) and we discuss the strengths and the weaknesses of these
solutions with regards to error and fault detection.

1. Introduction

Today’s secure devices are mainly used for storage and processing of confidential data.
Current products provide hardware and software secure solutions for civil and online
identification, telecommunication, healthcare, banking, pay-TV, access control for restricted
systems or areas, e-government... Tomorrow, they will include decision making capabilities
for machine to machine applications. 20 billion of secure devices are forecasted in 2020 (4
billion in 2007) [Eurosmart, 2007].
Due to their applications, secure devices must be designed so that they can guarantee high
levels of dependability and quality. But in addition to usual dependability features
(reliability, availability, safety, robustness to environmental conditions), we also expect that
they have the ability to protect information against unauthorized access and intentional
misuse. The digital security mechanisms involved in such devices rely on various principles:
secrecy of design and implementation, ciphering operations for encryption/decryption of
confidential data, and hardware and software countermeasures for attack detection or
tolerance.
Encryption is the process of transforming data in order to make it unreadable to anyone
except those possessing the decryption key. Encryption can be symmetric or asymmetric. In
symmetric encryption, a sender and a recipient share the same secret key, which is used for
both encryption of plaintexts and decryptions of corresponding cipher texts. Conversely,
the asymmetric algorithms use different keys for encryption and decryption. A sender S
communicate his/her public key to all recipients R; messages encrypted with that public key
by any R can only be decrypted by the sender S using his/her corresponding private key.
The symmetric and asymmetric algorithms are generally public, while the secret and private
keys are kept secret. Symmetric encryption is fast but senders and recipients need to define
a “secure” key exchange process prior to start communication. Asymmetric encryption can
be used for exchanging this secret key at the beginning of a communication, and then a
symmetric-key algorithm using that secret key can be used for fast encryption during the
remainder of the communication. The section 2 details the Advanced Encryption Standard

9

www.intechopen.com

Fault Detection178

(AES), a symmetric encryption process based on the Rijndael algorithm from Joan Daemen
and Vincent Rijmen.
Due to their applications, secure devices are subject to attacks aiming to gather private
information. Discovering the secret key of a symmetric cipher for instance allows decrypting
the text encrypted with that key. Numerous types of attack rely on the hardware
implementation of the cipher since cryptanalysis on recent algorithms is hopefully not
practical. Most recent invasive attacks using probes or modifications of the chip are
powerful but destroy the package, require time of specialists in laboratories and a proper
budget. Non-invasive side-channel attacks use leakage information related to the processed
data such as the operational timing, the power consumption of the chip, or the
electromagnetic interferences of signals. Active but semi or non-invasive fault-based attacks
rely on perturbation of the circuit behavior and use (expected) production of erroneous
results for inferring secret information. Section 3 gives an overview of implementation
techniques and data analysis performed on the reference encryption standard AES for fault-
based attacks.
Cipher algorithms are often integrated as coprocessors for better performance. As any other
function implemented in hardware, these coprocessors need to be carefully tested in order
to determine whether they are capable of performing the intended functions. So, test
contributes to the dependability and the quality of the devices in the sense that it prevents
insertion of failing hardware in dependable devices, and allows revealing faulty behaviours
during the chip lifetime. Classically, targeted fault-set includes permanent (or intermittent)
faults, which model physical defects due to manufacturing defaults or aging, and “natural”
transient faults due to the environment (particle hit) (Reed et al.., 2003). However, test can
also contribute to digital security by preventing maliciously injected transient faults to
contribute in revealing confidential data. While the detection of permanent faults is
generally performed during the execution of specific test modes after production or during
maintenance times, transient fault detection must be concurrent to the mission mode of the
circuit. Online test solutions are thus implemented in secure chips as part of protection
mechanisms targeting fault-attacks. In this context, fault-set includes transient stuck-at
faults on gate signals in the combination part of the cipher, and bit-flips on memory
elements (Leveugle, 2007). In this context, potential faults are generally detected through
identification of erroneous signal(s) on a function or sub-function output. Section 4 presents
the solutions from the literature for error-detection schemes in AES ciphers. These solutions
are first compared using common evaluation criteria such as implementation cost and fault
detection latency.
These solutions are then compared in terms of error detection capacity in Section 5.
Experimental data shows the percentage of undetected errors for each scheme according to
the number of erroneous bits injected in one or several bytes during execution of the AES
encryption.
Finally, the quality of the protection mechanisms is also evaluated in terms of capacity to
detect most frequent misbehavior. Section 6 presents an analysis on the diffusion of errors in
the responses of the AES cipher in the case of single transient stuck-at faults and discuss the
choice of appropriate detection mechanisms.

2. Advanced Encryption Standard

Even if fault detection techniques described in this chapter are general enough to be
implemented for secure devices implementing any cryptographic algorithm, we use the
Advanced Encryption Standard (AES) as support example. This section details the AES
which was adopted by the US government (FIPS-197, 2001).
The AES algorithm is a symmetric block cipher that can encrypt (encipher) and decrypt
(decipher) information. Encryption converts data to an unintelligible form called cipher text;
decrypting the cipher text converts the data back into its original form, called plaintext.
Encryption and decryption are performed by means of the same cryptographic secret key.
The AES algorithm is capable of using cryptographic keys of 128, 192, and 256 bits to
encrypt and decrypt data in blocks of 128 bits. This section focuses on the encryption
algorithm for 128-bits cryptographic keys (details on decryption and others key lengths are
fully described in (FIPS-197, 2001)).
The basic unit for processing in the AES algorithm is a byte. Input, output and secret key bit
sequences are internally processed on a two-dimensional array of bytes called the State. The
State consists of four rows of four bytes. In the State array, denoted by the symbol s, each
individual byte has two indices, with its row number r in the range 0 ≤ r < 3 and its column
number c in the range 0 ≤ c ≤ 3.

ŝŶϬ ŝŶϰ ŝŶϴ ŝŶϭϮ
ŝŶϭ ŝŶϱ ŝŶϵ ŝŶϭϯ
ŝŶϮ ŝŶϲ ŝŶϭϬ ŝŶϭϰ
ŝŶϯ ŝŶϳ ŝŶϭϭ ŝŶϭϱ

ƐϬ͕Ϭ ƐϬ͕ϭ ƐϬ͕Ϯ ƐϬ͕ϯ
Ɛϭ͕Ϭ Ɛϭ͕ϭ Ɛϭ͕Ϯ Ɛϭ͕ϯ
ƐϮ͕Ϭ ƐϮ͕ϭ ƐϮ͕Ϯ ƐϮ͕ϯ
Ɛϯ͕Ϭ Ɛϯ͕ϭ Ɛϯ͕Ϯ Ɛϯ͕ϯ

ŽƵƚϬ ŽƵƚϰ ŽƵƚϴ ŽƵƚϭϮ
ŽƵƚϭ ŽƵƚϱ ŽƵƚϵ ŽƵƚϭϯ
ŽƵƚϮ ŽƵƚϲ ŽƵƚϭϬ ŽƵƚϭϰ
ŽƵƚϯ ŽƵƚϳ ŽƵƚϭϭ ŽƵƚϭϱ

Fig. 1. Input, State and Output arrays

The AES algorithm is based on permutations and substitutions. Permutations are
rearrangements of data, while substitutions replace one unit of data with another. AES
performs permutations and substitutions using several different functions.
At the beginning of the encryption, the input is copied to the State array using the
conventions described in Fig. 1. After an initial XOR operation between the State array and
the cipher key, the State array is transformed by implementing a round function that is
repeated 10 times (see Section 2.1), with the final round differing slightly from the first 9
rounds. The final State is then copied to the output as shown in Fig. 1.
The round function is parameterized using a Key Expansion function that generates a
variation of the original cipher key at each round repetition (see Section 2.2).
Fig. 2 summarizes the AES algorithm.

2.1 Round
Round function is composed of 4 operations: SubBytes, ShiftRows, MixColumns, and
AddRoundKey. These functions operate and modify the value of the State. As shown in Fig.

www.intechopen.com

Fault Detection in Crypto-Devices 179

(AES), a symmetric encryption process based on the Rijndael algorithm from Joan Daemen
and Vincent Rijmen.
Due to their applications, secure devices are subject to attacks aiming to gather private
information. Discovering the secret key of a symmetric cipher for instance allows decrypting
the text encrypted with that key. Numerous types of attack rely on the hardware
implementation of the cipher since cryptanalysis on recent algorithms is hopefully not
practical. Most recent invasive attacks using probes or modifications of the chip are
powerful but destroy the package, require time of specialists in laboratories and a proper
budget. Non-invasive side-channel attacks use leakage information related to the processed
data such as the operational timing, the power consumption of the chip, or the
electromagnetic interferences of signals. Active but semi or non-invasive fault-based attacks
rely on perturbation of the circuit behavior and use (expected) production of erroneous
results for inferring secret information. Section 3 gives an overview of implementation
techniques and data analysis performed on the reference encryption standard AES for fault-
based attacks.
Cipher algorithms are often integrated as coprocessors for better performance. As any other
function implemented in hardware, these coprocessors need to be carefully tested in order
to determine whether they are capable of performing the intended functions. So, test
contributes to the dependability and the quality of the devices in the sense that it prevents
insertion of failing hardware in dependable devices, and allows revealing faulty behaviours
during the chip lifetime. Classically, targeted fault-set includes permanent (or intermittent)
faults, which model physical defects due to manufacturing defaults or aging, and “natural”
transient faults due to the environment (particle hit) (Reed et al.., 2003). However, test can
also contribute to digital security by preventing maliciously injected transient faults to
contribute in revealing confidential data. While the detection of permanent faults is
generally performed during the execution of specific test modes after production or during
maintenance times, transient fault detection must be concurrent to the mission mode of the
circuit. Online test solutions are thus implemented in secure chips as part of protection
mechanisms targeting fault-attacks. In this context, fault-set includes transient stuck-at
faults on gate signals in the combination part of the cipher, and bit-flips on memory
elements (Leveugle, 2007). In this context, potential faults are generally detected through
identification of erroneous signal(s) on a function or sub-function output. Section 4 presents
the solutions from the literature for error-detection schemes in AES ciphers. These solutions
are first compared using common evaluation criteria such as implementation cost and fault
detection latency.
These solutions are then compared in terms of error detection capacity in Section 5.
Experimental data shows the percentage of undetected errors for each scheme according to
the number of erroneous bits injected in one or several bytes during execution of the AES
encryption.
Finally, the quality of the protection mechanisms is also evaluated in terms of capacity to
detect most frequent misbehavior. Section 6 presents an analysis on the diffusion of errors in
the responses of the AES cipher in the case of single transient stuck-at faults and discuss the
choice of appropriate detection mechanisms.

2. Advanced Encryption Standard

Even if fault detection techniques described in this chapter are general enough to be
implemented for secure devices implementing any cryptographic algorithm, we use the
Advanced Encryption Standard (AES) as support example. This section details the AES
which was adopted by the US government (FIPS-197, 2001).
The AES algorithm is a symmetric block cipher that can encrypt (encipher) and decrypt
(decipher) information. Encryption converts data to an unintelligible form called cipher text;
decrypting the cipher text converts the data back into its original form, called plaintext.
Encryption and decryption are performed by means of the same cryptographic secret key.
The AES algorithm is capable of using cryptographic keys of 128, 192, and 256 bits to
encrypt and decrypt data in blocks of 128 bits. This section focuses on the encryption
algorithm for 128-bits cryptographic keys (details on decryption and others key lengths are
fully described in (FIPS-197, 2001)).
The basic unit for processing in the AES algorithm is a byte. Input, output and secret key bit
sequences are internally processed on a two-dimensional array of bytes called the State. The
State consists of four rows of four bytes. In the State array, denoted by the symbol s, each
individual byte has two indices, with its row number r in the range 0 ≤ r < 3 and its column
number c in the range 0 ≤ c ≤ 3.

ŝŶϬ ŝŶϰ ŝŶϴ ŝŶϭϮ
ŝŶϭ ŝŶϱ ŝŶϵ ŝŶϭϯ
ŝŶϮ ŝŶϲ ŝŶϭϬ ŝŶϭϰ
ŝŶϯ ŝŶϳ ŝŶϭϭ ŝŶϭϱ

ƐϬ͕Ϭ ƐϬ͕ϭ ƐϬ͕Ϯ ƐϬ͕ϯ
Ɛϭ͕Ϭ Ɛϭ͕ϭ Ɛϭ͕Ϯ Ɛϭ͕ϯ
ƐϮ͕Ϭ ƐϮ͕ϭ ƐϮ͕Ϯ ƐϮ͕ϯ
Ɛϯ͕Ϭ Ɛϯ͕ϭ Ɛϯ͕Ϯ Ɛϯ͕ϯ

ŽƵƚϬ ŽƵƚϰ ŽƵƚϴ ŽƵƚϭϮ
ŽƵƚϭ ŽƵƚϱ ŽƵƚϵ ŽƵƚϭϯ
ŽƵƚϮ ŽƵƚϲ ŽƵƚϭϬ ŽƵƚϭϰ
ŽƵƚϯ ŽƵƚϳ ŽƵƚϭϭ ŽƵƚϭϱ

Fig. 1. Input, State and Output arrays

The AES algorithm is based on permutations and substitutions. Permutations are
rearrangements of data, while substitutions replace one unit of data with another. AES
performs permutations and substitutions using several different functions.
At the beginning of the encryption, the input is copied to the State array using the
conventions described in Fig. 1. After an initial XOR operation between the State array and
the cipher key, the State array is transformed by implementing a round function that is
repeated 10 times (see Section 2.1), with the final round differing slightly from the first 9
rounds. The final State is then copied to the output as shown in Fig. 1.
The round function is parameterized using a Key Expansion function that generates a
variation of the original cipher key at each round repetition (see Section 2.2).
Fig. 2 summarizes the AES algorithm.

2.1 Round
Round function is composed of 4 operations: SubBytes, ShiftRows, MixColumns, and
AddRoundKey. These functions operate and modify the value of the State. As shown in Fig.

www.intechopen.com

Fault Detection180

2, all rounds are identical with the exception of the final round, which does not include the
MixColumns transformation.

PůĂŝŶƚĞǆƚ ;ϭϮϴ ďŝƚƐͿ

CŝƉŚĞƌƚĞǆƚ ;ϭϮϴ ďŝƚƐͿ

CǇƉŚĞƌ KĞǇ ;ϭϮϴ ďŝƚƐͿ

ĨŽƌ ŝсϭ ƚŽ ϭϬ

SƵďBǇƚĞƐ

SŚŝĨƚRŽǁƐ

MŝǆCŽůƵŵŶƐ

RŽƵŶĚKĞǇ ;ŝͿ ;ϭϮϴ ďŝƚƐͿ

ŝфϭϬ NŽ

RŽƵŶĚ

Fig. 2. AES Algorithm

A schematic view of the Round function is shown in Fig. 3. Next paragraphs describe in
detail each of the 4 operations.

Fig. 3. AES Round

The SubBytes transformation is a non-linear byte substitution that operates independently
on each byte of the State using a substitution table (S-box). The S-box is it is constructed by
composing two transformations:

1. The multiplicative inverse in the finite field GF(28), where the element (00000000)2 is
mapped to itself;

2. The following affine transformation (over GF(2)):

iiiiiii cbbbbbb 8mod)7(8mod)6(8mod)5(8mod)4(
'

for 0 ≤ i ≤ 7, where bi is the ith bit of the byte, and ci is the ith bit of a byte c whose
value is fixed by the standard and it is equal to {01100011}.

The S-box can be seen as a look-up table where for each 8-bits input there is a unique 8-bits
output value. Several hardware implementations have been proposed in the literature. They
can be classified in three major categories:

1. ROM-based (Zhang and Parhi, 2002);
2. Look-up table implementation (combinational logic): the S-box is written in any

hardware description language as a look-up table and it is converted into a gate-level
circuit using a logic synthesizer (Di Natale et al., 2007 A). This solution allows the
best performances in terms of speed and dynamic power consumption;

3. Mathematical implementation: instead of describing the S-box as look-up table, the
circuit is described as the sequence of operations in the finite field GF and then
synthesized. This alternative can provide better solutions in terms of area occupation
and leakage power consumption (Wolkerstorferm et al., 2002).

In order to provide an idea of the differences between look-up table based implementations
and mathematical implementations, we implemented in VHDL the solutions proposed in
(Di Natale et al., 2007 A) (look-up table) and in (Wolkerstorferm et al., 2002) (mathematical)
and then we synthesized the two circuits. Table 1 shows the comparison of area, speed and
power consumptions obtained using a 90nm technology library provided by ST
Microelectronics, where a new input is provided to the circuit every 3 ns.

 Look-up table implementation Mathematical implementation
Area [µm2] 1993 1122

Delay of critical path [ns] 1.25 (14 logic levels) 2.45 (25 logic levels)
Average Dynamic Power [mW] 0.136 0.907

Table. 1. Comparison of area, delay and power between look-up table implementation and
Mathematical implementation (ASIC)

The ShiftRows operation changes the byte position in the State. It rotates each row with
different offsets to obtain a new State as follows:

݁ݐܽݐܵ ൌ ൦ ଷݏଵସݏଽݏସݏ ଵହݏଵݏହݏݏ ݏଶݏଵଷݏ଼ݏ ଵଵ൪ݏݏଵݏଵଶݏ

The first row is unchanged; the second row is rotated one byte position to the left, the third
row two byte positions, and the fourth row three byte positions. ShiftRows is a linear
transformation. Hardware implementation of this transformation resumes to wiring.

The MixColumns operates column-wise altering all the bytes of the same column. It treats a
column as a 3rd degree polynomial with coefficients in GF (28) and produces the new

www.intechopen.com

Fault Detection in Crypto-Devices 181

2, all rounds are identical with the exception of the final round, which does not include the
MixColumns transformation.

PůĂŝŶƚĞǆƚ ;ϭϮϴ ďŝƚƐͿ

CŝƉŚĞƌƚĞǆƚ ;ϭϮϴ ďŝƚƐͿ

CǇƉŚĞƌ KĞǇ ;ϭϮϴ ďŝƚƐͿ

ĨŽƌ ŝсϭ ƚŽ ϭϬ

SƵďBǇƚĞƐ

SŚŝĨƚRŽǁƐ

MŝǆCŽůƵŵŶƐ

RŽƵŶĚKĞǇ ;ŝͿ ;ϭϮϴ ďŝƚƐͿ

ŝфϭϬ NŽ

RŽƵŶĚ

Fig. 2. AES Algorithm

A schematic view of the Round function is shown in Fig. 3. Next paragraphs describe in
detail each of the 4 operations.

Fig. 3. AES Round

The SubBytes transformation is a non-linear byte substitution that operates independently
on each byte of the State using a substitution table (S-box). The S-box is it is constructed by
composing two transformations:

1. The multiplicative inverse in the finite field GF(28), where the element (00000000)2 is
mapped to itself;

2. The following affine transformation (over GF(2)):

iiiiiii cbbbbbb 8mod)7(8mod)6(8mod)5(8mod)4(
'

for 0 ≤ i ≤ 7, where bi is the ith bit of the byte, and ci is the ith bit of a byte c whose
value is fixed by the standard and it is equal to {01100011}.

The S-box can be seen as a look-up table where for each 8-bits input there is a unique 8-bits
output value. Several hardware implementations have been proposed in the literature. They
can be classified in three major categories:

1. ROM-based (Zhang and Parhi, 2002);
2. Look-up table implementation (combinational logic): the S-box is written in any

hardware description language as a look-up table and it is converted into a gate-level
circuit using a logic synthesizer (Di Natale et al., 2007 A). This solution allows the
best performances in terms of speed and dynamic power consumption;

3. Mathematical implementation: instead of describing the S-box as look-up table, the
circuit is described as the sequence of operations in the finite field GF and then
synthesized. This alternative can provide better solutions in terms of area occupation
and leakage power consumption (Wolkerstorferm et al., 2002).

In order to provide an idea of the differences between look-up table based implementations
and mathematical implementations, we implemented in VHDL the solutions proposed in
(Di Natale et al., 2007 A) (look-up table) and in (Wolkerstorferm et al., 2002) (mathematical)
and then we synthesized the two circuits. Table 1 shows the comparison of area, speed and
power consumptions obtained using a 90nm technology library provided by ST
Microelectronics, where a new input is provided to the circuit every 3 ns.

 Look-up table implementation Mathematical implementation
Area [µm2] 1993 1122

Delay of critical path [ns] 1.25 (14 logic levels) 2.45 (25 logic levels)
Average Dynamic Power [mW] 0.136 0.907

Table. 1. Comparison of area, delay and power between look-up table implementation and
Mathematical implementation (ASIC)

The ShiftRows operation changes the byte position in the State. It rotates each row with
different offsets to obtain a new State as follows:

݁ݐܽݐܵ ൌ ൦ ଷݏଵସݏଽݏସݏ ଵହݏଵݏହݏݏ ݏଶݏଵଷݏ଼ݏ ଵଵ൪ݏݏଵݏଵଶݏ

The first row is unchanged; the second row is rotated one byte position to the left, the third
row two byte positions, and the fourth row three byte positions. ShiftRows is a linear
transformation. Hardware implementation of this transformation resumes to wiring.

The MixColumns operates column-wise altering all the bytes of the same column. It treats a
column as a 3rd degree polynomial with coefficients in GF (28) and produces the new

www.intechopen.com

Fault Detection182

column by multiplying it with a constant polynomial. This operation is performed modulo a
4th degree polynomial with coefficients in GF (28).
Let si,si+1,si+2,and si+3 be four consecutive bytes (column-wise), iǣ{0,4,8,12} in the State
matrix before MixColumns. These four bytes are transformed as:

൦ ାଷ൪ݐାଶݐାଵݐݐ ൌ ൦Ͳʹ ͲͳͲͳͲ͵
 Ͳ͵ ͲʹͲͳͲͳ

Ͳͳ Ͳ͵ͲʹͲͳ
ͲͳͲͳͲ͵Ͳʹ൪ ൦ ାଷ൪ݏାଶݏାଵݏݏ

where the ti's are the State bytes after the MixColumns operation. The MixColumns
operation is typically implemented as XOR-trees.
The AddRoundKey adds the corresponding round key to the current State. In the GF(28)
field, addition is implemented as a bit-wise XOR operation between the two elements. The
implementation of the AddRounkey operation resumes to a single layer of XOR gates.

2.2 Key Expansion
The AES algorithm takes the Cipher Key and performs a Key Expansion routine to generate
a key schedule. The Key Expansion generates a total of 11 words (the initial key plus one
roundkey for each of the ten rounds). Each generated key has 128 bits that are organized in
a state array as defined for the data in Figure 1 (i.e., the jth byte of the key state word is
composed of the bits from 8j to 8j+7).
We define Ki the key of ith round (0 i 10), where K0 denotes the initial secret key. The
generation of a new round key depends on the previous one. Fig. 4 shows the scheme of
generation on a new key Ki+1 starting from Ki. The transformation Fi is a non-linear function
composed of 4 S-boxes (one for each byte), a rotation of bytes, and the addition of a round
specific constant, defined by the standard. More details about the generation process are
given in (FIPS-197, 2001).

Ϭ ϯϮ ϲϰ ϵϲϯϭ ϲϯ ϵϱ ϭϮϳ

Ϭ ϯϮ ϲϰ ϵϲϯϭ ϲϯ ϵϱ ϭϮϳ

Kŝ

Kŝнϭ

Fŝ

Fig. 4. AES Key Expansion Scheme

3. Fault attacks

As mentioned in the introduction, faults can be either permanent (due to fabrication defects)
or transient (due to environmental conditions such as the exposure to cosmic radiations).
For the particular case of crypto-coprocessors, transient faults can also be maliciously and
intentionally injected in the circuit in order to retrieve the secret key (Blömer and Seifert,

2003). By comparing the result of a normal encryption with a faulty one, a hacker can
deduce the key. These techniques are referred to as "Differential Fault Analysis" (DFA).
Faults can be injected by different means such as temperature variation, clock frequency
modification, exposure to radiations UV, X or visible light (Kim and Quisquater, 2007). The
formers are quite efficient for software implementations of the crypto algorithm, while the
latter (i.e., laser-based fault injection) is particularly well-suited for hardware
implementations. The main advantage of laser-based fault injection is the localization of the
fault (in the timing and the spatial domains).
In this context, it is thus of prime importance to be able to detect such faults. Nevertheless,
independently of the mean used to inject the fault, the induced error must satisfy certain
conditions in order to be successfully exploited. The following subsections quickly review
the published DFA attacks on AES and analyze these conditions on the injected errors.

3.1 Attacks on 1 bit
One of the first cryptanalysis method using faults on AES has been published by (Giraud,
2005). The considered error is a single faulty bit on any of the 128 State bits at the input of
the SubBytes operation during execution of the last encryption round (10th round). This
error of multiplicity one (only one bit is affected)is equivalent to an error of multiplicity one
appearing on the round key or on the input of the previous AddRoundKey operation. This
error spreads, affects the output of the SubBytes operation and, since the last round does not
include the Mixcolum operation, it also affects one (and only one) byte of the final Output
array. The attack can be summarized as follows: let denote B9 one of the output bytes of the
last but one round (i.e., the one where the fault will be injected), e the 8-bit error mask (it
contains only one asserted bit in the position where the error is considered), and BK10 the
byte of the round key K10 at the same position of B9 (among the 16 bytes). The correct output
result should be {SubBytes(B9)BK10}. Because of the fault, the result is
{SubBytes(B9e)BK10}. By adding these two results, it comes:

d = {SubBytes(B9)BK10}{SubBytes(B9e)BK10} = SubBytes(B9)SubBytes(B9e)

There are 8 possibilities for the faulty bit. For each possibility, the list of possible B9 values is
built up. The same process is iterated with other values of e. In average, the value of B9 can
be obtained with 3 faults. Then, by adding SubBytes(B9) to the correct result, the byte BK10 of
the key is obtained. In about 50 fault injections, the whole round key K10 can be fully
determined. The primary key K0 can be mathematically derived from K10.

In (Blömer and Seifert, 2003) the authors proposed attacks based on the “safe error”
principle, i.e. "the error affects the result or not". The considered fault is a stuck-at-0
affecting one bit of the key. If the result is faulty, the actual value of the key bit is 1.

In (Blömer and Krummel, 2006) the authors report another attack based on the injection of
an error of multiplicity one which exploits collision effects, i.e. the fact that a two messages
(one without, the other one with an error) will give the same result.

www.intechopen.com

Fault Detection in Crypto-Devices 183

column by multiplying it with a constant polynomial. This operation is performed modulo a
4th degree polynomial with coefficients in GF (28).
Let si,si+1,si+2,and si+3 be four consecutive bytes (column-wise), iǣ{0,4,8,12} in the State
matrix before MixColumns. These four bytes are transformed as:

൦ ାଷ൪ݐାଶݐାଵݐݐ ൌ ൦Ͳʹ ͲͳͲͳͲ͵
 Ͳ͵ ͲʹͲͳͲͳ

Ͳͳ Ͳ͵ͲʹͲͳ
ͲͳͲͳͲ͵Ͳʹ൪ ൦ ାଷ൪ݏାଶݏାଵݏݏ

where the ti's are the State bytes after the MixColumns operation. The MixColumns
operation is typically implemented as XOR-trees.
The AddRoundKey adds the corresponding round key to the current State. In the GF(28)
field, addition is implemented as a bit-wise XOR operation between the two elements. The
implementation of the AddRounkey operation resumes to a single layer of XOR gates.

2.2 Key Expansion
The AES algorithm takes the Cipher Key and performs a Key Expansion routine to generate
a key schedule. The Key Expansion generates a total of 11 words (the initial key plus one
roundkey for each of the ten rounds). Each generated key has 128 bits that are organized in
a state array as defined for the data in Figure 1 (i.e., the jth byte of the key state word is
composed of the bits from 8j to 8j+7).
We define Ki the key of ith round (0 i 10), where K0 denotes the initial secret key. The
generation of a new round key depends on the previous one. Fig. 4 shows the scheme of
generation on a new key Ki+1 starting from Ki. The transformation Fi is a non-linear function
composed of 4 S-boxes (one for each byte), a rotation of bytes, and the addition of a round
specific constant, defined by the standard. More details about the generation process are
given in (FIPS-197, 2001).

Ϭ ϯϮ ϲϰ ϵϲϯϭ ϲϯ ϵϱ ϭϮϳ

Ϭ ϯϮ ϲϰ ϵϲϯϭ ϲϯ ϵϱ ϭϮϳ

Kŝ

Kŝнϭ

Fŝ

Fig. 4. AES Key Expansion Scheme

3. Fault attacks

As mentioned in the introduction, faults can be either permanent (due to fabrication defects)
or transient (due to environmental conditions such as the exposure to cosmic radiations).
For the particular case of crypto-coprocessors, transient faults can also be maliciously and
intentionally injected in the circuit in order to retrieve the secret key (Blömer and Seifert,

2003). By comparing the result of a normal encryption with a faulty one, a hacker can
deduce the key. These techniques are referred to as "Differential Fault Analysis" (DFA).
Faults can be injected by different means such as temperature variation, clock frequency
modification, exposure to radiations UV, X or visible light (Kim and Quisquater, 2007). The
formers are quite efficient for software implementations of the crypto algorithm, while the
latter (i.e., laser-based fault injection) is particularly well-suited for hardware
implementations. The main advantage of laser-based fault injection is the localization of the
fault (in the timing and the spatial domains).
In this context, it is thus of prime importance to be able to detect such faults. Nevertheless,
independently of the mean used to inject the fault, the induced error must satisfy certain
conditions in order to be successfully exploited. The following subsections quickly review
the published DFA attacks on AES and analyze these conditions on the injected errors.

3.1 Attacks on 1 bit
One of the first cryptanalysis method using faults on AES has been published by (Giraud,
2005). The considered error is a single faulty bit on any of the 128 State bits at the input of
the SubBytes operation during execution of the last encryption round (10th round). This
error of multiplicity one (only one bit is affected)is equivalent to an error of multiplicity one
appearing on the round key or on the input of the previous AddRoundKey operation. This
error spreads, affects the output of the SubBytes operation and, since the last round does not
include the Mixcolum operation, it also affects one (and only one) byte of the final Output
array. The attack can be summarized as follows: let denote B9 one of the output bytes of the
last but one round (i.e., the one where the fault will be injected), e the 8-bit error mask (it
contains only one asserted bit in the position where the error is considered), and BK10 the
byte of the round key K10 at the same position of B9 (among the 16 bytes). The correct output
result should be {SubBytes(B9)BK10}. Because of the fault, the result is
{SubBytes(B9e)BK10}. By adding these two results, it comes:

d = {SubBytes(B9)BK10}{SubBytes(B9e)BK10} = SubBytes(B9)SubBytes(B9e)

There are 8 possibilities for the faulty bit. For each possibility, the list of possible B9 values is
built up. The same process is iterated with other values of e. In average, the value of B9 can
be obtained with 3 faults. Then, by adding SubBytes(B9) to the correct result, the byte BK10 of
the key is obtained. In about 50 fault injections, the whole round key K10 can be fully
determined. The primary key K0 can be mathematically derived from K10.

In (Blömer and Seifert, 2003) the authors proposed attacks based on the “safe error”
principle, i.e. "the error affects the result or not". The considered fault is a stuck-at-0
affecting one bit of the key. If the result is faulty, the actual value of the key bit is 1.

In (Blömer and Krummel, 2006) the authors report another attack based on the injection of
an error of multiplicity one which exploits collision effects, i.e. the fact that a two messages
(one without, the other one with an error) will give the same result.

www.intechopen.com

Fault Detection184

3.2 Attacks on 1 byte
In (Giraud, 2005), Giraud also proposes a more complex attack with the advantage of
considering a less restrictive error model than errors on a single bit only. Here, errors of
multiplicity x (x ≥1) affecting one byte are taken into account. The attack is composed of
three steps:
1. an error is injected on the round key K9 just before the last KeySchedule. This error

affects 5 bytes of the next key K10, four of them being on the same line of the Key State
array. Using the same set of equations than in the previously mentioned attack, one byte
of the last column of the last round key is obtained. By repeating this step 4 times, the 4
bytes of the last column of K9 are retrieved.

2. an error is injected on the last column of K8 before the penultimate KeySchedule. This
spreads on 10 bytes. One of these faulty bytes gives information on the propagated error
during the last KeySchedule. Since, the last column of K9 is known, 3 bytes of K8 can be
definitely determined and it remains 130 possibilities of its fourth byte. This gives the
penultimate column of K9.

3. in the last step, an error is injected on the last column of the State array before round 10.
Thus, all values which satisfy the observed differences on the output are determined
using an exhaustive search on the 242 possibilities. Since, the last column before round
10 is known and also the two last columns of K9, one can derive 14 bytes of K10. The two
last ones are determined using an exhaustive search.

Some other attacks relying on several fault injections on bytes are reported in (Chen and
Yen, 2003), (Piret and Quisquater, 2003), and (Dusart et al., 2003).

The attack in (Blömer and Seifert, 2003), based on the "safe error" principle, can be extended
to the case of attack on 1 byte. In this case all the input bits of an S-box must be stuck at 0.
Then, by applying all 256 values at the input of the S-box, a collision appears: when the byte
has the same value as the key, the result equals the one obtained with the stuck-at fault.

3.3 Attacks on several bytes on the same column
In (Moraidi et al., 2006) the authors propose a generalization of the attack on a single byte,
focusing on 3 or 4 bytes in the first State array column. The faults can be injected at any step
of the AES process. For the attack to be successful, it is necessary to know if the error affects
3 or 4 bytes. Furthermore, 6 and 1500 error injections have to be performed for 3 and 4 faulty
bytes respectively.

3.4 Conclusions
In this paper, we do not discuss about the actual capabilities of injecting faults according to
the hypothesis underlying those attacks. Nevertheless, from this overview, it can be
concluded that:
 To our knowledge, errors affecting more than one byte (except (Moraidi et al., 2006))

cannot be exploited to perform an attack. Thus it's of prime importance to detect errors
located within a byte. All error multiplicities (1 to 8) have to be considered.

 According to the variety of reported attacks, all time steps (rounds) of the AES algorithm
are prone to fault injections. Thus, the data protection mechanism must span over the
whole AES process.

 While errors affecting more than one byte are not exploitable by nowadays reported
attacks, their detection is of interest since, firstly it helps in detecting an attack (for
instance laser-based attacks need in practice many shots before succeeding in flipping
bits within a single byte), and secondly the ingenuity of hackers may make efficient these
attacks in the future.

4. Error Detection Methods

Concurrent fault detection for hardware implementations of secure devices is important not
only to protect the system from random faults, but also to protect it the from an attacker
who may maliciously inject faults in order to find the encryption secret key.
Several error detection solutions have been proposed in the literature, they rely on the use of
some form of spatial or temporal redundancy. (Karri et al., 2002) propose a solution suitable
for systems containing both encryption and decryption modules. The basic idea is to use the
decryption module to decrypt the encrypted data (ciphertext), and to verify that the
ciphertext is equal to the actual plaintext. (Maistri et al., 2007) propose a design solution that
exploits temporal redundancy by a Double-Data-Rate mechanism in order to perform the
computation twice without affecting adversely the overall throughput of the system.
(Monnet et al., 2006) propose quasi-delay insensitive (QDI) asynchronous logic design to
cope with fault attacks. Indeed, specific properties of asynchronous circuits make them
inherently resistant against a large class of faults. Finally, several papers have been
published on the use of codes to detect faults in secure devices. In particular, we focus the
analysis on the architectures proposed in (Wu et al., 2004), (Bertoni et al., 2003), (Yen and
Wu, 2006), and (Di Natale et al., 2007 B), as representative of the wide range of code-based
solutions.
In a code-based fault detection scheme for a block of logic gates, the basic approach is that
the output code of the block is predicted from the input data and this code is compared to
the actual code calculated from the block output data of the block. The disadvantage of this
technique is the use of the data bits to predict the code since corrupted bits may affect the
code and the error may not be detected.
 (Wu et al., 2004) propose the use of a parity bit for each of the 16 S-boxes that are XOR-
merged in a single parity bit for the whole 128-bits data block. The single parity bit is used to
check the correctness of the other blocks of the round. The datapath implementing the AES
round with concurrent checking is shown in Fig. 5.
The principle is to compare the input parity of a round with the predicted output parity of
the previous round, at each round. For that, the parity of the input values of a round is first
determined (P(x) in the figure). Then, the parity bit is modified according to the operations
executed during the round. In particular, a parity bit of the word composed by the input (xi)
and the output (yi) is predicted for each S-box. The 16 parity bits so calculated are then
added to obtain a single parity bit (P(x)P(y)). This parity bit is added again to the input
parity bit P(x) so that the parity P(y) is determined. P(y) is not affected by neither ShiftRows,
which only changes the byte position in the state array, nor MixColumns operations (Wu et
al., 2004). This parity bit is then modified by adding the parity of the key P(k) and stored in a

www.intechopen.com

Fault Detection in Crypto-Devices 185

3.2 Attacks on 1 byte
In (Giraud, 2005), Giraud also proposes a more complex attack with the advantage of
considering a less restrictive error model than errors on a single bit only. Here, errors of
multiplicity x (x ≥1) affecting one byte are taken into account. The attack is composed of
three steps:
1. an error is injected on the round key K9 just before the last KeySchedule. This error

affects 5 bytes of the next key K10, four of them being on the same line of the Key State
array. Using the same set of equations than in the previously mentioned attack, one byte
of the last column of the last round key is obtained. By repeating this step 4 times, the 4
bytes of the last column of K9 are retrieved.

2. an error is injected on the last column of K8 before the penultimate KeySchedule. This
spreads on 10 bytes. One of these faulty bytes gives information on the propagated error
during the last KeySchedule. Since, the last column of K9 is known, 3 bytes of K8 can be
definitely determined and it remains 130 possibilities of its fourth byte. This gives the
penultimate column of K9.

3. in the last step, an error is injected on the last column of the State array before round 10.
Thus, all values which satisfy the observed differences on the output are determined
using an exhaustive search on the 242 possibilities. Since, the last column before round
10 is known and also the two last columns of K9, one can derive 14 bytes of K10. The two
last ones are determined using an exhaustive search.

Some other attacks relying on several fault injections on bytes are reported in (Chen and
Yen, 2003), (Piret and Quisquater, 2003), and (Dusart et al., 2003).

The attack in (Blömer and Seifert, 2003), based on the "safe error" principle, can be extended
to the case of attack on 1 byte. In this case all the input bits of an S-box must be stuck at 0.
Then, by applying all 256 values at the input of the S-box, a collision appears: when the byte
has the same value as the key, the result equals the one obtained with the stuck-at fault.

3.3 Attacks on several bytes on the same column
In (Moraidi et al., 2006) the authors propose a generalization of the attack on a single byte,
focusing on 3 or 4 bytes in the first State array column. The faults can be injected at any step
of the AES process. For the attack to be successful, it is necessary to know if the error affects
3 or 4 bytes. Furthermore, 6 and 1500 error injections have to be performed for 3 and 4 faulty
bytes respectively.

3.4 Conclusions
In this paper, we do not discuss about the actual capabilities of injecting faults according to
the hypothesis underlying those attacks. Nevertheless, from this overview, it can be
concluded that:
 To our knowledge, errors affecting more than one byte (except (Moraidi et al., 2006))

cannot be exploited to perform an attack. Thus it's of prime importance to detect errors
located within a byte. All error multiplicities (1 to 8) have to be considered.

 According to the variety of reported attacks, all time steps (rounds) of the AES algorithm
are prone to fault injections. Thus, the data protection mechanism must span over the
whole AES process.

 While errors affecting more than one byte are not exploitable by nowadays reported
attacks, their detection is of interest since, firstly it helps in detecting an attack (for
instance laser-based attacks need in practice many shots before succeeding in flipping
bits within a single byte), and secondly the ingenuity of hackers may make efficient these
attacks in the future.

4. Error Detection Methods

Concurrent fault detection for hardware implementations of secure devices is important not
only to protect the system from random faults, but also to protect it the from an attacker
who may maliciously inject faults in order to find the encryption secret key.
Several error detection solutions have been proposed in the literature, they rely on the use of
some form of spatial or temporal redundancy. (Karri et al., 2002) propose a solution suitable
for systems containing both encryption and decryption modules. The basic idea is to use the
decryption module to decrypt the encrypted data (ciphertext), and to verify that the
ciphertext is equal to the actual plaintext. (Maistri et al., 2007) propose a design solution that
exploits temporal redundancy by a Double-Data-Rate mechanism in order to perform the
computation twice without affecting adversely the overall throughput of the system.
(Monnet et al., 2006) propose quasi-delay insensitive (QDI) asynchronous logic design to
cope with fault attacks. Indeed, specific properties of asynchronous circuits make them
inherently resistant against a large class of faults. Finally, several papers have been
published on the use of codes to detect faults in secure devices. In particular, we focus the
analysis on the architectures proposed in (Wu et al., 2004), (Bertoni et al., 2003), (Yen and
Wu, 2006), and (Di Natale et al., 2007 B), as representative of the wide range of code-based
solutions.
In a code-based fault detection scheme for a block of logic gates, the basic approach is that
the output code of the block is predicted from the input data and this code is compared to
the actual code calculated from the block output data of the block. The disadvantage of this
technique is the use of the data bits to predict the code since corrupted bits may affect the
code and the error may not be detected.
 (Wu et al., 2004) propose the use of a parity bit for each of the 16 S-boxes that are XOR-
merged in a single parity bit for the whole 128-bits data block. The single parity bit is used to
check the correctness of the other blocks of the round. The datapath implementing the AES
round with concurrent checking is shown in Fig. 5.
The principle is to compare the input parity of a round with the predicted output parity of
the previous round, at each round. For that, the parity of the input values of a round is first
determined (P(x) in the figure). Then, the parity bit is modified according to the operations
executed during the round. In particular, a parity bit of the word composed by the input (xi)
and the output (yi) is predicted for each S-box. The 16 parity bits so calculated are then
added to obtain a single parity bit (P(x)P(y)). This parity bit is added again to the input
parity bit P(x) so that the parity P(y) is determined. P(y) is not affected by neither ShiftRows,
which only changes the byte position in the state array, nor MixColumns operations (Wu et
al., 2004). This parity bit is then modified by adding the parity of the key P(k) and stored in a

www.intechopen.com

Fault Detection186

1-bit register. Errors are detected when this predicted parity bit differs from the input parity
computed at the beginning of the next round.
The authors implemented this solution on a Xilinx Virtex 1000 FPGA. The hardware
overhead is about 8% and the additional time delay is about 5%. Details about error
detection capability are given in Section 5. It must be noted that this technique, while being
effective when S-boxes are ROM-implemented, is quite costly for standard gates
implementations.

SBŽǆϬ SBŽǆϭ SBŽǆϭϱ

SŚŝĨƚRŽǁ

MŝǆCŽůƵŵŶƐ

ŬϬ Ŭϭ Ŭϭϱ
ϴ ϴ ϴ

P;ǆϬͿP;ǇϬͿ P;ǆϭͿP;ǇϭͿ
P;ǆϭϱͿP;ǇϭϱͿ

ϴ ϴ ϴ

ǇϬ Ǉϭ Ǉϭϱ

ǌϬ ǌϭ ǌϭϱ

ƵϬ Ƶϭ Ƶϭϱ

ǀϬ ǀϭ ǀϭϱ

P;ŬͿ

P;ǆͿP;ǇͿ

P;ǇͿ

P;ǆͿ

ǆϬ ǆϭ ǆϭϱ

ϴ ϴ ϴ

P;ǆͿ CŚĞĐŬ Ăƚ
ƌŽƵŶĚ
ůĞǀĞů

Fig. 5. (Wu et al., 2004) concurrent checking scheme

In (Bertoni et al., 2003) the authors propose to use 16 parity bits instead of a single bit. In
particular, a parity bit is associated to each byte of the state (see Fig. 6).
Concerning the S-boxes, the authors propose a ROM-based implementation. The extra
parity bit is stores in that ROM resulting in a 256x9 bits memory. Moreover, to detect input
parity errors and some internal memory (data or decode) errors, authors propose the use of
a 512×9 ROM, where the ninth bit is driven bit the input parity bit. They deliberately force
all the ROM words corresponding to a wrong input address (i.e., S-boxes input with a
wrong parity bit associated) with a dummy output value where the output parity is wrong,
so that the detection mechanism will detect the fault.
As before, the parity bit associated to each byte does not change after the ShiftRows
operation. On the contrary, the prediction of the output parity bits of the MixColumns is the
most mathematically complex for this type of architecture, because it depends on the value
of 4 bytes of the state (see details in (Bertoni et al., 2003)). For AddRoundKey operation, the
prediction of the output parity bit easily consists in adding the current parity bits with the
parity bits of the corresponding round key.
(Yen and Wu, 2006) propose the use of a systematic (n+1,n) Cyclic Redundancy Check
(CRC) over GF(28) to detect errors during encryption, where n{4,8,16} is the number of
bytes contained in the message (see Fig. 7). The generator polynomial is g(x)=1+x. The CRC

byte can be associated either to each column of the state (i.e., to 4 bytes and so they use
CRC(5,4)), or to two columns (i.e., 89 bytes, so CRC(9,8)), or to the whole State (CRC(17,16)).
This solution allows a very high error detection level at the cost of high area overhead (in
the order of a thousand additional ports).

Fig. 6. AES round with (Bertoni et al., 2003) model

Since S-boxes represent the largest part of the circuit, (Di Natale et al., 2007 B) propose a
solution that focuses on S-boxes only. They propose the use of two parity bits per S-box, one
parity bit for the input byte of the S-box and one for its output byte. This double parity per
S-box was also proposed in (Wu et al., 2004), but the two parity bits are now independently
generated by dedicated prediction logics.

Fig. 7. AES round with (Yen and Wu, 2006) model

www.intechopen.com

Fault Detection in Crypto-Devices 187

1-bit register. Errors are detected when this predicted parity bit differs from the input parity
computed at the beginning of the next round.
The authors implemented this solution on a Xilinx Virtex 1000 FPGA. The hardware
overhead is about 8% and the additional time delay is about 5%. Details about error
detection capability are given in Section 5. It must be noted that this technique, while being
effective when S-boxes are ROM-implemented, is quite costly for standard gates
implementations.

SBŽǆϬ SBŽǆϭ SBŽǆϭϱ

SŚŝĨƚRŽǁ

MŝǆCŽůƵŵŶƐ

ŬϬ Ŭϭ Ŭϭϱ
ϴ ϴ ϴ

P;ǆϬͿP;ǇϬͿ P;ǆϭͿP;ǇϭͿ
P;ǆϭϱͿP;ǇϭϱͿ

ϴ ϴ ϴ

ǇϬ Ǉϭ Ǉϭϱ

ǌϬ ǌϭ ǌϭϱ

ƵϬ Ƶϭ Ƶϭϱ

ǀϬ ǀϭ ǀϭϱ

P;ŬͿ

P;ǆͿP;ǇͿ

P;ǇͿ

P;ǆͿ

ǆϬ ǆϭ ǆϭϱ

ϴ ϴ ϴ

P;ǆͿ CŚĞĐŬ Ăƚ
ƌŽƵŶĚ
ůĞǀĞů

Fig. 5. (Wu et al., 2004) concurrent checking scheme

In (Bertoni et al., 2003) the authors propose to use 16 parity bits instead of a single bit. In
particular, a parity bit is associated to each byte of the state (see Fig. 6).
Concerning the S-boxes, the authors propose a ROM-based implementation. The extra
parity bit is stores in that ROM resulting in a 256x9 bits memory. Moreover, to detect input
parity errors and some internal memory (data or decode) errors, authors propose the use of
a 512×9 ROM, where the ninth bit is driven bit the input parity bit. They deliberately force
all the ROM words corresponding to a wrong input address (i.e., S-boxes input with a
wrong parity bit associated) with a dummy output value where the output parity is wrong,
so that the detection mechanism will detect the fault.
As before, the parity bit associated to each byte does not change after the ShiftRows
operation. On the contrary, the prediction of the output parity bits of the MixColumns is the
most mathematically complex for this type of architecture, because it depends on the value
of 4 bytes of the state (see details in (Bertoni et al., 2003)). For AddRoundKey operation, the
prediction of the output parity bit easily consists in adding the current parity bits with the
parity bits of the corresponding round key.
(Yen and Wu, 2006) propose the use of a systematic (n+1,n) Cyclic Redundancy Check
(CRC) over GF(28) to detect errors during encryption, where n{4,8,16} is the number of
bytes contained in the message (see Fig. 7). The generator polynomial is g(x)=1+x. The CRC

byte can be associated either to each column of the state (i.e., to 4 bytes and so they use
CRC(5,4)), or to two columns (i.e., 89 bytes, so CRC(9,8)), or to the whole State (CRC(17,16)).
This solution allows a very high error detection level at the cost of high area overhead (in
the order of a thousand additional ports).

Fig. 6. AES round with (Bertoni et al., 2003) model

Since S-boxes represent the largest part of the circuit, (Di Natale et al., 2007 B) propose a
solution that focuses on S-boxes only. They propose the use of two parity bits per S-box, one
parity bit for the input byte of the S-box and one for its output byte. This double parity per
S-box was also proposed in (Wu et al., 2004), but the two parity bits are now independently
generated by dedicated prediction logics.

Fig. 7. AES round with (Yen and Wu, 2006) model

www.intechopen.com

Fault Detection188

Then, the actual output parity is compared with the predicted output parity bit, and the
actual input parity bit is compared to the predicted one (Fig. 8). When the S-box and the
prediction circuits are synthesized as combinational logic, the area overhead is 38.33% with
respect to the original S-box. This double parity checking allows additional detection of 27%
of errors of even multiplicity compared to the solution of (Wu et al., 2004), besides all odd
multiplicity of errors.

Fig. 8. SubBytes transformation with (Di Natale et al., 2007 B) model

Concerning error detection flags, the predicted and actual parity bits can be compared after
each operation, each round, or after execution of the whole encryption. These solutions are
equivalent from the detection capability point of view. They only differ in terms of
hardware overhead and detection latency. Multiplicity of checkpoints decreases the error
detection latency but increases the hardware overhead.

5. Error Detection

The error detection schemes detailed in the preceding section are now compared in terms of
error detection capabilities.
Concerning the experimental setup, we assume single transient stuck-at faults, which are
supposed to occur during the execution of one operation in one round (Fig. 9). S-boxes are
implemented using random logic. Concerning the scheme presented in (Yen and Wu, 2006),
we used a CRC (5,4) i.e. 4 CRC bytes, one for each column of the State array (32 bits). Since
the error detection scheme presented in (Di Natale et al, 2007 B) only addresses errors on the
S-boxes outputs, this protection scheme is completed with the solution proposed in (Bertoni
et al., 2003): a faulty parity bit is affected to an S-box operation when either faulty input or
output parities are detected. This S-box parity bit is subsequently used in the following
prediction operations.
We first analyzed the detection capabilities of these four techniques with respect to errors
affecting a single byte. Errors have been exhaustively injected in every byte, every operation
and at every round. Table 2 reports the error multiplicity (one to eight faulty bits), the

number of simulated errors for each error multiplicity (e.g. ͳ כ ͶͲ כ ቀʹͅቁ = 17920 error
instances for 2 faulty bits among 8 bits, affecting one byte over 16 in the State array, after one
of the 40 operations executed during the encryption), and the number of the undetected
errors for each technique under evaluation.

Fig. 9. Errors injection model

As expected, errors with odd multiplicity are more easily detected with detection schemes
based on parity codes (Wu et al., 2004), while the CRC-based scheme proposed in (Yen and
Wu, 2006) outperforms other techniques by detecting even-multiplicity errors too.

Output errors
multiplicity

of
possible
errors

 Number and percentage of the undetected errors

(Wu et al., 2004)
(1 parity bit)

(Bertoni et al.,
2003)

(16 parity bits)

(Yen and
Wu, 2006)

(4 CRC
bytes)

(Di Natale et al.,
2007 B)

(16 parity bits +
S-box protection)

1 5120 125 (2.44%) 0 (0%) 0 (0%) 0 (0%)
2 17920 2644 (14.75%) 16912 (94.38%) 0 (0%) 14666 (81.84%)
3 35840 841 (2.35%) 0 (0%) 0 (0%) 0 (0%)
4 44800 6614 (14.76%) 39760 (88.75%) 0 (0%) 34095 (76.10%)
5 35840 898 (2.51%) 0 (0%) 0 (0%) 0 (0%)
6 17920 2620 (14.62%) 14896 (83.13%) 0 (0%) 12642 (70.55%)
7 5120 110 (2.15%) 0 (0%) 0 (0%) 0 (0%)
8 640 98 (15.31%) 496 (77.50%) 0 (0%) 171 (26.72%)

Table 2. Detection capability for errors in a single byte

In the next experiments we injected random errors affecting any of the 128 state bits, with
error multiplicity ranging from 1 to 64 faulty bits. Note that if errors affecting several bytes
are not easily exploitable during DFA, their detection is of prime interest for detecting the

www.intechopen.com

Fault Detection in Crypto-Devices 189

Then, the actual output parity is compared with the predicted output parity bit, and the
actual input parity bit is compared to the predicted one (Fig. 8). When the S-box and the
prediction circuits are synthesized as combinational logic, the area overhead is 38.33% with
respect to the original S-box. This double parity checking allows additional detection of 27%
of errors of even multiplicity compared to the solution of (Wu et al., 2004), besides all odd
multiplicity of errors.

Fig. 8. SubBytes transformation with (Di Natale et al., 2007 B) model

Concerning error detection flags, the predicted and actual parity bits can be compared after
each operation, each round, or after execution of the whole encryption. These solutions are
equivalent from the detection capability point of view. They only differ in terms of
hardware overhead and detection latency. Multiplicity of checkpoints decreases the error
detection latency but increases the hardware overhead.

5. Error Detection

The error detection schemes detailed in the preceding section are now compared in terms of
error detection capabilities.
Concerning the experimental setup, we assume single transient stuck-at faults, which are
supposed to occur during the execution of one operation in one round (Fig. 9). S-boxes are
implemented using random logic. Concerning the scheme presented in (Yen and Wu, 2006),
we used a CRC (5,4) i.e. 4 CRC bytes, one for each column of the State array (32 bits). Since
the error detection scheme presented in (Di Natale et al, 2007 B) only addresses errors on the
S-boxes outputs, this protection scheme is completed with the solution proposed in (Bertoni
et al., 2003): a faulty parity bit is affected to an S-box operation when either faulty input or
output parities are detected. This S-box parity bit is subsequently used in the following
prediction operations.
We first analyzed the detection capabilities of these four techniques with respect to errors
affecting a single byte. Errors have been exhaustively injected in every byte, every operation
and at every round. Table 2 reports the error multiplicity (one to eight faulty bits), the

number of simulated errors for each error multiplicity (e.g. ͳ כ ͶͲ כ ቀʹͅቁ = 17920 error
instances for 2 faulty bits among 8 bits, affecting one byte over 16 in the State array, after one
of the 40 operations executed during the encryption), and the number of the undetected
errors for each technique under evaluation.

Fig. 9. Errors injection model

As expected, errors with odd multiplicity are more easily detected with detection schemes
based on parity codes (Wu et al., 2004), while the CRC-based scheme proposed in (Yen and
Wu, 2006) outperforms other techniques by detecting even-multiplicity errors too.

Output errors
multiplicity

of
possible
errors

 Number and percentage of the undetected errors

(Wu et al., 2004)
(1 parity bit)

(Bertoni et al.,
2003)

(16 parity bits)

(Yen and
Wu, 2006)

(4 CRC
bytes)

(Di Natale et al.,
2007 B)

(16 parity bits +
S-box protection)

1 5120 125 (2.44%) 0 (0%) 0 (0%) 0 (0%)
2 17920 2644 (14.75%) 16912 (94.38%) 0 (0%) 14666 (81.84%)
3 35840 841 (2.35%) 0 (0%) 0 (0%) 0 (0%)
4 44800 6614 (14.76%) 39760 (88.75%) 0 (0%) 34095 (76.10%)
5 35840 898 (2.51%) 0 (0%) 0 (0%) 0 (0%)
6 17920 2620 (14.62%) 14896 (83.13%) 0 (0%) 12642 (70.55%)
7 5120 110 (2.15%) 0 (0%) 0 (0%) 0 (0%)
8 640 98 (15.31%) 496 (77.50%) 0 (0%) 171 (26.72%)

Table 2. Detection capability for errors in a single byte

In the next experiments we injected random errors affecting any of the 128 state bits, with
error multiplicity ranging from 1 to 64 faulty bits. Note that if errors affecting several bytes
are not easily exploitable during DFA, their detection is of prime interest for detecting the

www.intechopen.com

Fault Detection190

attack itself. For each error multiplicity, 1000 randomly-chosen injection positions have been
selected among randomly-chosen State array bits after execution of a randomly-chosen
encryption operation. Simulation results are reported in Table 3.
All the techniques detect errors with multiplicity larger than 6 bits, except the detection
scheme in (Wu et al., 2004) that provides only one parity bit for the whole State array.

Error
multiplicity

Number and percentage of the undetected errors

 (Di Natale et al.,
2007 B)

(16 parity bits + S-
box protection)

(Yen and Wu, 2006)
(4 CRC bytes)

 (Bertoni et al., 2003)
(16 parity bits)

 (Wu et al., 2004)
(1 parity bit)

1 0 (0.00%) 0 (0.00%) 0 (0.00%) 975 (2.44%)
2 1883 (4.71%) 549 (1.37%) 2164 (5.41%) 5992 (14.98%)
3 0 (0.00%) 2 (0.01%) 0 (0.00%) 1037 (2.59%)
4 262 (0.66%) 70 (0.18%) 320 (0.80%) 6069 (15.17%)
5 0 (0.00%) 1 (0.00%) 0 (0.00%) 981 (2.45%)
6 61 (0.15%) 0 (0.00%) 80 (0.20%) 6050 (15.13%)
7 0 (0.00%) 0 (0.00%) 0 (0.00%) 995 (2.49%)
8 0 (0.00%) 0 (0.00%) 0 (0.00%) 5956 (14.89%)
9 0 (0.00%) 0 (0.00%) 0 (0.00%) 1022 (2.56%)
10 0 (0.00%) 0 (0.00%) 0 (0.00%) 5933 (14.83%)
11 0 (0.00%) 0 (0.00%) 0 (0.00%) 991 (2.48%)
12 0 (0.00%) 0 (0.00%) 0 (0.00%) 6021 (15.05%)
13 0 (0.00%) 0 (0.00%) 0 (0.00%) 1001 (2.50%)
14 0 (0.00%) 0 (0.00%) 0 (0.00%) 6021 (15.05%)
15 0 (0.00%) 0 (0.00%) 0 (0.00%) 1018 (2.55%)
16 0 (0.00%) 0 (0.00%) 0 (0.00%) 5997 (14.99%)
….
63 0 (0.00%) 0 (0.00%) 0 (0.00%) 1019 (2.55%)
64 0 (0.00%) 0 (0.00%) 0 (0.00%) 6008 (15.02%)

Table 3. Detection capability for random errors in 1 to 64 bits of a State

6. Faults and Error multiplicity

In the previously mentioned papers, the authors present the error detection capability of the
methods (for instance, parity based architectures can detect all odd multiplicity errors).
However, none of the papers correlatesthe error multiplicity, that appear at the output of
round operations, with detected transient stuck-at faults affecting signals in logic blocks
during execution of these operations.
In this section we evaluate the effectiveness of the solutions described in Section 4 with
respect to fault detection. We focused this study on the S-box only, for the following
reasons:
 it implements a 8 input bits function so it is possible to perform an exhaustive study;
 most of the attacks are performed on this block;
 Shiftrow module is anyway out of concern since it resumes to wiring;

 AddRoundKey resumes to a single layer of XOR gates. Thus, under the selected fault
model, only error of multiplicity 1 may occur when a fault affects a XOR gate signal;

 MixCloumns operates on 32 input bits so an exhaustive study cannot be performed.
Moreover, since the error propagation on the output of the SubBytes operation strongly
depends on the implementation (netlist) of the S-box, we implemented different versions of
the S-box using different synthesis parameters and implementation styles. In particular, we
implemented the following designs using the AMS 0.35µm technology library:
 Sbox1: description in VHDL as combinational look-up table, synthesis with Cadence©,

553 cells
 Sbox2: description in VHDL as combinational look-up table, synthesis with Design

Compiler (Synopsys©) with “-map_effort high” option, 477 cells
 Sbox3: description in VHDL as combinational look-up table, synthesis with Design

Compiler with “-map_effort medium” option, 482 cells
 Sbox4: description in VHDL as combinational look-up table, synthesis with Design

Compiler with “-map_effort low” option, 474 cells
 Sbox5: mathematical description in VHDL of two blocks: the inversion in GF(28)

described as combinational look-up table plus the affine transformation, synthesis with
Design Compiler with “-map_effort high” option, 481 cells

 Sbox6: mathematical description in VHDL, by using the decomposition of calculations in
GF(24) as described in (Wolkerstorferm et al., 2002), synthesis with Design Compiler
with “-map_effort high” option, 193 cells

For each S-box implementation we performed exhaustive fault simulation, i.e. we applied all
the possible input values (256 values) and we fault simulated the behavior of the device for
each possible stuck-at in the circuit. The fault simulation produced a fault dictionary
composed by all the possible couples C formed by { input value / fault } and, associated to
each of them, the number of erroneous bits at the output of the S-box.
Table 4 reports the number of couples C leading to error multiplicities ranging from 0 to 8
for each S-box implementation. The first column (error multiplicity = 0) represents all the
cases where the fault is not excited by a specific input value, or its effect is not propagated to
the output. For all the other cases, the cell reports, besides the number of couples C, the
percentage with respect to the overall number of couples and, in bold, the percentage with
respect to the number of couples that lead to at least 1 error at the output of the S-box.
It is possible to note that, for instance, among the 11% of fault simulations for which a fault
injection results in erroneous data on the Sbox1 output (89% of experiments result in 0
error), about 78% of the cases result in only one erroneous output bit, justifying therefore the
use of code-based solution that exploits simple parity bit. Likewise, the 14 couple
[fault/vector] providing 8 output errors correspond to faults at the input of the Sbox. It
might not be necessary to protect the Sbox with detection schemes able to detect 8 error bits,
if these errors are detected at the input of the Sbox.
Obviously, different S-box implementations lead the series of fault injection to different
profiles in terms of error multiplicity. The presented implementations differ in terms of
power consumption, performance and area according to chosen synthesis parameters. But
the synthesis tool generates also quite different implementations whether the initial
VHDL model is described as a look-up table or a mathematical expression.When starting
from look-up table, the number of errors at the output of the S-box is concentrated around 1
or 2 erroneous bits. On the contrary, mathematical-based architectures (Sbox5 and Sbox6)

www.intechopen.com

Fault Detection in Crypto-Devices 191

attack itself. For each error multiplicity, 1000 randomly-chosen injection positions have been
selected among randomly-chosen State array bits after execution of a randomly-chosen
encryption operation. Simulation results are reported in Table 3.
All the techniques detect errors with multiplicity larger than 6 bits, except the detection
scheme in (Wu et al., 2004) that provides only one parity bit for the whole State array.

Error
multiplicity

Number and percentage of the undetected errors

 (Di Natale et al.,
2007 B)

(16 parity bits + S-
box protection)

(Yen and Wu, 2006)
(4 CRC bytes)

 (Bertoni et al., 2003)
(16 parity bits)

 (Wu et al., 2004)
(1 parity bit)

1 0 (0.00%) 0 (0.00%) 0 (0.00%) 975 (2.44%)
2 1883 (4.71%) 549 (1.37%) 2164 (5.41%) 5992 (14.98%)
3 0 (0.00%) 2 (0.01%) 0 (0.00%) 1037 (2.59%)
4 262 (0.66%) 70 (0.18%) 320 (0.80%) 6069 (15.17%)
5 0 (0.00%) 1 (0.00%) 0 (0.00%) 981 (2.45%)
6 61 (0.15%) 0 (0.00%) 80 (0.20%) 6050 (15.13%)
7 0 (0.00%) 0 (0.00%) 0 (0.00%) 995 (2.49%)
8 0 (0.00%) 0 (0.00%) 0 (0.00%) 5956 (14.89%)
9 0 (0.00%) 0 (0.00%) 0 (0.00%) 1022 (2.56%)
10 0 (0.00%) 0 (0.00%) 0 (0.00%) 5933 (14.83%)
11 0 (0.00%) 0 (0.00%) 0 (0.00%) 991 (2.48%)
12 0 (0.00%) 0 (0.00%) 0 (0.00%) 6021 (15.05%)
13 0 (0.00%) 0 (0.00%) 0 (0.00%) 1001 (2.50%)
14 0 (0.00%) 0 (0.00%) 0 (0.00%) 6021 (15.05%)
15 0 (0.00%) 0 (0.00%) 0 (0.00%) 1018 (2.55%)
16 0 (0.00%) 0 (0.00%) 0 (0.00%) 5997 (14.99%)
….
63 0 (0.00%) 0 (0.00%) 0 (0.00%) 1019 (2.55%)
64 0 (0.00%) 0 (0.00%) 0 (0.00%) 6008 (15.02%)

Table 3. Detection capability for random errors in 1 to 64 bits of a State

6. Faults and Error multiplicity

In the previously mentioned papers, the authors present the error detection capability of the
methods (for instance, parity based architectures can detect all odd multiplicity errors).
However, none of the papers correlatesthe error multiplicity, that appear at the output of
round operations, with detected transient stuck-at faults affecting signals in logic blocks
during execution of these operations.
In this section we evaluate the effectiveness of the solutions described in Section 4 with
respect to fault detection. We focused this study on the S-box only, for the following
reasons:
 it implements a 8 input bits function so it is possible to perform an exhaustive study;
 most of the attacks are performed on this block;
 Shiftrow module is anyway out of concern since it resumes to wiring;

 AddRoundKey resumes to a single layer of XOR gates. Thus, under the selected fault
model, only error of multiplicity 1 may occur when a fault affects a XOR gate signal;

 MixCloumns operates on 32 input bits so an exhaustive study cannot be performed.
Moreover, since the error propagation on the output of the SubBytes operation strongly
depends on the implementation (netlist) of the S-box, we implemented different versions of
the S-box using different synthesis parameters and implementation styles. In particular, we
implemented the following designs using the AMS 0.35µm technology library:
 Sbox1: description in VHDL as combinational look-up table, synthesis with Cadence©,

553 cells
 Sbox2: description in VHDL as combinational look-up table, synthesis with Design

Compiler (Synopsys©) with “-map_effort high” option, 477 cells
 Sbox3: description in VHDL as combinational look-up table, synthesis with Design

Compiler with “-map_effort medium” option, 482 cells
 Sbox4: description in VHDL as combinational look-up table, synthesis with Design

Compiler with “-map_effort low” option, 474 cells
 Sbox5: mathematical description in VHDL of two blocks: the inversion in GF(28)

described as combinational look-up table plus the affine transformation, synthesis with
Design Compiler with “-map_effort high” option, 481 cells

 Sbox6: mathematical description in VHDL, by using the decomposition of calculations in
GF(24) as described in (Wolkerstorferm et al., 2002), synthesis with Design Compiler
with “-map_effort high” option, 193 cells

For each S-box implementation we performed exhaustive fault simulation, i.e. we applied all
the possible input values (256 values) and we fault simulated the behavior of the device for
each possible stuck-at in the circuit. The fault simulation produced a fault dictionary
composed by all the possible couples C formed by { input value / fault } and, associated to
each of them, the number of erroneous bits at the output of the S-box.
Table 4 reports the number of couples C leading to error multiplicities ranging from 0 to 8
for each S-box implementation. The first column (error multiplicity = 0) represents all the
cases where the fault is not excited by a specific input value, or its effect is not propagated to
the output. For all the other cases, the cell reports, besides the number of couples C, the
percentage with respect to the overall number of couples and, in bold, the percentage with
respect to the number of couples that lead to at least 1 error at the output of the S-box.
It is possible to note that, for instance, among the 11% of fault simulations for which a fault
injection results in erroneous data on the Sbox1 output (89% of experiments result in 0
error), about 78% of the cases result in only one erroneous output bit, justifying therefore the
use of code-based solution that exploits simple parity bit. Likewise, the 14 couple
[fault/vector] providing 8 output errors correspond to faults at the input of the Sbox. It
might not be necessary to protect the Sbox with detection schemes able to detect 8 error bits,
if these errors are detected at the input of the Sbox.
Obviously, different S-box implementations lead the series of fault injection to different
profiles in terms of error multiplicity. The presented implementations differ in terms of
power consumption, performance and area according to chosen synthesis parameters. But
the synthesis tool generates also quite different implementations whether the initial
VHDL model is described as a look-up table or a mathematical expression.When starting
from look-up table, the number of errors at the output of the S-box is concentrated around 1
or 2 erroneous bits. On the contrary, mathematical-based architectures (Sbox5 and Sbox6)

www.intechopen.com

Fault Detection192

are composed of several blocks that operate in cascade, and an error in a particular element
is spread over several output bits. Therefore this type of implementation is first more
sensitive to faults (in the case of Sbox6, 37% of couples generates an error at the output,
while only 11% for Sbox1), and second it generates a higher number of output errors (the
highest average is between 4 and 5).
Such experiments must be conducted for selecting appropriate fault detection schemes.

 0 1 2 3 4 5 6 7 8
Sbox1 450382

90%
36551

7% / 78%
6448

1% / 14%
2033

0% / 4%
953

0% / 2%
474

0% / 1%
235

0% / 1%
62

0% / 0%
14

0% / 0%
Sbox2 441836

89%
23664

5% / 43%
16744

3% / 30%
8547

2% / 15%
3922

1% / 7%
1631

0% / 3%
637

0% / 1%
147

0% / 0%
24

0% / 0%
Sbox3 438510

89%
23849

5% / 44%
16609

4% / 30%
8212

2% / 15%
3801

1% / 7%
1544

0% / 3%
619

0% / 1%
145

0% / 0%
23

0% / 0%
Sbox4 441855

89%
23658

5% / 43%
16745

3% / 30%
8534

2% / 15%
3924

1% / 7%
1629

0% / 3%
636

0% / 1%
147

0% / 0%
24

0% / 0%
Sbox5 418618

86%
7311

2% / 11%
8973

2% / 13%
4808

1% / 7%
9949

2% / 15%
27511

6% / 41%
8486

2% / 13%
212

0% / 0%
20

0% / 0%
Sbox6 144592

63%
9392

4% / 11%
8515

4% / 10%
10443

5% / 12%
24581

11% / 29%
21571

9% / 26%
4473

2% / 5%
3401

1% / 4%
2152

1% / 3%
Table 4. Fault vs error multiplicity on S-boxes output

7. Conclusions

This chapter presented a study on mechanisms involved for detecting faults-based attacks
on crypto-processors. Using the example of a standard in symmetric cryptographic, fault-
based attacks were discussed with respect to their requirements in terms of error
multiplicity (spatial and timing characteristics). We presented countermeasures to fault-
based attacks that consist in detecting errors on the ciphered information. We analyzed
more precisely some error detection schemes based on code-redundancy, with respect to
their cost and ability to detect errors occurring at run time. Analysis on error detection has
been conducted according to the error multiplicity in order to check the ability of the
protection schemes to detect exploitable errors. We also analyzed error detection schemes
performances in terms of transient fault detection (natural or maliciously injected).
Current attacks using laser-based fault injection require errors localized on very few bytes,
without need of large precision as for the attack launch instant. Error detection schemes can
be used for preventing these attacks or detecting natural transient faults. Dedicated parity
and CRC -based solutions exploit typical features of the cipher for optimization of cost
factors (area, latency) and improvement of their error detection capacity. The correlation
between the transient faults affecting the combinational parts of the circuit and the errors
produced on sub-function outputs strongly depends on the implementation of the cipher.
Experiments show that for some particular implementations, most of the faults results in
only one or two erroneous output bits, while there is no internal faults affecting all the
output bits. Such analysis on ciphering operations can justify simple and non expensive
code-redundancy solutions.

8. References

Bertoni, G.; Breveglieri, L.; Koren I.; Maistri, P. & Piuri, V. (2003), Error Analysis and
Detection Procedures for a Hardware Implementation of the Advanced Encryption
Standard, IEEE Trans. on Computers, Vol. 52., No.4, April 2003

Blömer J. & Krummel, V. (2006), Fault Based Collision Attacks on AES, Proceedings of FDTC
2006, pp. 106-120.

Blömer, J. & Seifert, J.P. (2003), Fault Based Cryptanalysis of the Advanced Encryption
Standard (AES), Proceedings of CHESS 2003, pp 162-181.

Chen, C.N. & Yen, S.M. (2003), Differential Fault Analysis on AES Key Schedule and Some
Countermeasures, Proceedings of Australasian Conference on Information Security and
Privacy 2003, LNCS 2727, Springer-Verlag, pp. 118–129.

Di Natale, G.; Flottes M.L. & Rouzeyre, B. (2007 B), An On-Line Fault Detection Scheme for
SBoxes in Secure Circuits, Proceedings of 13th IEEE International On-Line Testing
Symposium, IOLTS 2007, pp. 57-62.

Di Natale, G.; Flottes, M.L. & Rouzeyre, B. (2007 A), A Novel Parity Bit Scheme for SBox in
AES Circuits, Proceedings of IEEE Design and Diagnostics of Electronic Circuits and
Systems, DDECS 2007, April 2007, pp. 1–5, DOI 10.1109/DDECS.2007.4295295

Dusart, P.; Letourneux, G. & Vivolo, O. (2003), Differential Fault Analysis on A.E.S., Applied
Cryptography and Network Security, Springer Ed., Vol. 2846/2003, pp 293-306.

Eurosmart (2007), Vision paper 2020,
 http://www.eurosmart.com/index.php/publications/vision-paper-2020.html

FIPS-197 (2001), Advanced Encryption Standard (AES), Federal Information Processing
Standards Publication 197, http://csrc.nist.gov/publications/, November 26, 2001

Giraud, C. (2005), DFA on AES, Proceedings of 4th International Conference on AES 2005,
Springer publisher, pp 27-41.

Karri, R.; Wu, K.; Mishra, P. & Kim, Y. (2002), Concurrent Error Detection Schemes for Fault-
Based Side-Channel Cryptanalysis of Symmetric Block Ciphers, IEEE Transactions
on Computer-Aided Design of Integrated Circuits and Systems, Vol. 21, N. 12, December
2002, pp. 1509-1517

Kim, C.H. & Quisquater, J.-J. (2007), Faults, Injection Methods, and Fault Attacks, IEEE
Design & Test of Computers, Nov.-Dec. 2007, Vol.24, Issue 6, pp.544-545.

Leveugle, R. (2007), Early Analysis of Fault-Based Attack Effects in Secure Circuits, IEEE
Transactions on Computers, Vol. 56, N. 10, October 2007, pp. 1431-1434

Maistri, P.; Vanhauwaert, P. & Leveugle, R. (2007), A Novel Double-Data-Rate AES
Architecture Resistant against Fault Injection, Workshop on Fault Diagnosis and
Tolerance in Cryptography, 2007, DOI 10.1109/FDTC.2007.8, pp. 54-61

Monnet, Y.; Renaudin, M. & Leveugle, R. (2006), Designing Resistant Circuits against
Malicious Faults Injection Using Asynchronous Logic, IEEE Transactions on
Computers, Vol. 55, N. 9, September 2006, pp. 1104-1115

Moradi, A.; Manzuri Shalmani, M.T. & Salmasizadeh, M. (2006), A Generalized Method of
Differential Fault Attack Against AES Cryptosystem, Proceedings of Cryptographic
Hardware and Embedded Systems, CHESS 2006, pp 91-100.

Piret, G. & Quisquater, J.J. (2003), A Differential Fault Attack Technique against SPN
Structures, with Application to the AES and KHAZAD, Proceedings of Chess 2003,
pp 77-88.

www.intechopen.com

Fault Detection in Crypto-Devices 193

are composed of several blocks that operate in cascade, and an error in a particular element
is spread over several output bits. Therefore this type of implementation is first more
sensitive to faults (in the case of Sbox6, 37% of couples generates an error at the output,
while only 11% for Sbox1), and second it generates a higher number of output errors (the
highest average is between 4 and 5).
Such experiments must be conducted for selecting appropriate fault detection schemes.

 0 1 2 3 4 5 6 7 8
Sbox1 450382

90%
36551

7% / 78%
6448

1% / 14%
2033

0% / 4%
953

0% / 2%
474

0% / 1%
235

0% / 1%
62

0% / 0%
14

0% / 0%
Sbox2 441836

89%
23664

5% / 43%
16744

3% / 30%
8547

2% / 15%
3922

1% / 7%
1631

0% / 3%
637

0% / 1%
147

0% / 0%
24

0% / 0%
Sbox3 438510

89%
23849

5% / 44%
16609

4% / 30%
8212

2% / 15%
3801

1% / 7%
1544

0% / 3%
619

0% / 1%
145

0% / 0%
23

0% / 0%
Sbox4 441855

89%
23658

5% / 43%
16745

3% / 30%
8534

2% / 15%
3924

1% / 7%
1629

0% / 3%
636

0% / 1%
147

0% / 0%
24

0% / 0%
Sbox5 418618

86%
7311

2% / 11%
8973

2% / 13%
4808

1% / 7%
9949

2% / 15%
27511

6% / 41%
8486

2% / 13%
212

0% / 0%
20

0% / 0%
Sbox6 144592

63%
9392

4% / 11%
8515

4% / 10%
10443

5% / 12%
24581

11% / 29%
21571

9% / 26%
4473

2% / 5%
3401

1% / 4%
2152

1% / 3%
Table 4. Fault vs error multiplicity on S-boxes output

7. Conclusions

This chapter presented a study on mechanisms involved for detecting faults-based attacks
on crypto-processors. Using the example of a standard in symmetric cryptographic, fault-
based attacks were discussed with respect to their requirements in terms of error
multiplicity (spatial and timing characteristics). We presented countermeasures to fault-
based attacks that consist in detecting errors on the ciphered information. We analyzed
more precisely some error detection schemes based on code-redundancy, with respect to
their cost and ability to detect errors occurring at run time. Analysis on error detection has
been conducted according to the error multiplicity in order to check the ability of the
protection schemes to detect exploitable errors. We also analyzed error detection schemes
performances in terms of transient fault detection (natural or maliciously injected).
Current attacks using laser-based fault injection require errors localized on very few bytes,
without need of large precision as for the attack launch instant. Error detection schemes can
be used for preventing these attacks or detecting natural transient faults. Dedicated parity
and CRC -based solutions exploit typical features of the cipher for optimization of cost
factors (area, latency) and improvement of their error detection capacity. The correlation
between the transient faults affecting the combinational parts of the circuit and the errors
produced on sub-function outputs strongly depends on the implementation of the cipher.
Experiments show that for some particular implementations, most of the faults results in
only one or two erroneous output bits, while there is no internal faults affecting all the
output bits. Such analysis on ciphering operations can justify simple and non expensive
code-redundancy solutions.

8. References

Bertoni, G.; Breveglieri, L.; Koren I.; Maistri, P. & Piuri, V. (2003), Error Analysis and
Detection Procedures for a Hardware Implementation of the Advanced Encryption
Standard, IEEE Trans. on Computers, Vol. 52., No.4, April 2003

Blömer J. & Krummel, V. (2006), Fault Based Collision Attacks on AES, Proceedings of FDTC
2006, pp. 106-120.

Blömer, J. & Seifert, J.P. (2003), Fault Based Cryptanalysis of the Advanced Encryption
Standard (AES), Proceedings of CHESS 2003, pp 162-181.

Chen, C.N. & Yen, S.M. (2003), Differential Fault Analysis on AES Key Schedule and Some
Countermeasures, Proceedings of Australasian Conference on Information Security and
Privacy 2003, LNCS 2727, Springer-Verlag, pp. 118–129.

Di Natale, G.; Flottes M.L. & Rouzeyre, B. (2007 B), An On-Line Fault Detection Scheme for
SBoxes in Secure Circuits, Proceedings of 13th IEEE International On-Line Testing
Symposium, IOLTS 2007, pp. 57-62.

Di Natale, G.; Flottes, M.L. & Rouzeyre, B. (2007 A), A Novel Parity Bit Scheme for SBox in
AES Circuits, Proceedings of IEEE Design and Diagnostics of Electronic Circuits and
Systems, DDECS 2007, April 2007, pp. 1–5, DOI 10.1109/DDECS.2007.4295295

Dusart, P.; Letourneux, G. & Vivolo, O. (2003), Differential Fault Analysis on A.E.S., Applied
Cryptography and Network Security, Springer Ed., Vol. 2846/2003, pp 293-306.

Eurosmart (2007), Vision paper 2020,
 http://www.eurosmart.com/index.php/publications/vision-paper-2020.html

FIPS-197 (2001), Advanced Encryption Standard (AES), Federal Information Processing
Standards Publication 197, http://csrc.nist.gov/publications/, November 26, 2001

Giraud, C. (2005), DFA on AES, Proceedings of 4th International Conference on AES 2005,
Springer publisher, pp 27-41.

Karri, R.; Wu, K.; Mishra, P. & Kim, Y. (2002), Concurrent Error Detection Schemes for Fault-
Based Side-Channel Cryptanalysis of Symmetric Block Ciphers, IEEE Transactions
on Computer-Aided Design of Integrated Circuits and Systems, Vol. 21, N. 12, December
2002, pp. 1509-1517

Kim, C.H. & Quisquater, J.-J. (2007), Faults, Injection Methods, and Fault Attacks, IEEE
Design & Test of Computers, Nov.-Dec. 2007, Vol.24, Issue 6, pp.544-545.

Leveugle, R. (2007), Early Analysis of Fault-Based Attack Effects in Secure Circuits, IEEE
Transactions on Computers, Vol. 56, N. 10, October 2007, pp. 1431-1434

Maistri, P.; Vanhauwaert, P. & Leveugle, R. (2007), A Novel Double-Data-Rate AES
Architecture Resistant against Fault Injection, Workshop on Fault Diagnosis and
Tolerance in Cryptography, 2007, DOI 10.1109/FDTC.2007.8, pp. 54-61

Monnet, Y.; Renaudin, M. & Leveugle, R. (2006), Designing Resistant Circuits against
Malicious Faults Injection Using Asynchronous Logic, IEEE Transactions on
Computers, Vol. 55, N. 9, September 2006, pp. 1104-1115

Moradi, A.; Manzuri Shalmani, M.T. & Salmasizadeh, M. (2006), A Generalized Method of
Differential Fault Attack Against AES Cryptosystem, Proceedings of Cryptographic
Hardware and Embedded Systems, CHESS 2006, pp 91-100.

Piret, G. & Quisquater, J.J. (2003), A Differential Fault Attack Technique against SPN
Structures, with Application to the AES and KHAZAD, Proceedings of Chess 2003,
pp 77-88.

www.intechopen.com

Fault Detection194

Reed, R.A.; Kinnison, J.; Pickel, J.C.; Buchner, S.; Marshall, P.W.; Kniffin, S. & LaBel, K.A.
(2003), Single-event effects ground testing and on-orbit rate prediction methods: the
past, present, and future, IEEE Transactions on Nuclear Science, Vol. 50, pp. 622-634,
June 2003

Wolkerstorferm, J.; Oswald, E. & Lamberge, M. (2002), An ASIC Implementation of the AES
SBoxes, Proceedings of The Cryptographer's Track at the RSA Conference on Topics in
Cryptology 2002, Lecture Notes In Computer Science, Vol. 2271; pp. 67-78

Wu, K; Karri, R.; Kuznetsov, G. & Goessel, M. (2004), Low Cost Concurrent Error Detection
for the Advanced Encryption Standard, Proceedings of IEEE International Test
Conference, 2004. pp 1242- 1248

Yen, C.H. & Wu, B.F. (2006), Simple Error Detection Methods for Hardware Implementation
of Advanced Encryption Standard, IEEE Trans. on Computers, June 2006, Vol. 55,
No.6, pp 720-731

Zhang, X. & Parhi, K.K. (2002), Implementation approaches for the Advanced Encryption
Standard algorithm, IEEE Circuits and Systems Magazine, Volume 2, Issue 4, Fourth
Quarter 2002, pp. 24-46, DOI 10.1109/MCAS.2002.1173133

www.intechopen.com

Fault Detection
Edited by Wei Zhang

ISBN 978-953-307-037-7
Hard cover, 504 pages
Publisher InTech
Published online 01, March, 2010
Published in print edition March, 2010

InTech Europe
University Campus STeP Ri
Slavka Krautzeka 83/A
51000 Rijeka, Croatia
Phone: +385 (51) 770 447
Fax: +385 (51) 686 166
www.intechopen.com

InTech China
Unit 405, Office Block, Hotel Equatorial Shanghai
No.65, Yan An Road (West), Shanghai, 200040, China

Phone: +86-21-62489820
Fax: +86-21-62489821

In this book, a number of innovative fault diagnosis algorithms in recently years are introduced. These
methods can detect failures of various types of system effectively, and with a relatively high significance.

How to reference
In order to correctly reference this scholarly work, feel free to copy and paste the following:

K. Bousselam, G. Di Natale, M.-L. Flottes and B. Rouzeyre (2010). Fault Detection in Crypto-Devices, Fault
Detection, Wei Zhang (Ed.), ISBN: 978-953-307-037-7, InTech, Available from:
http://www.intechopen.com/books/fault-detection/fault-detection-in-crypto-devices

