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Afferent muscle spindle activity in response to passive muscle stretch was recorded in vivo using thin-film longitudinal
intrafascicular electrodes. A neural spike detection and classification scheme was developed for the purpose of separating activity
of primary and secondary muscle spindle afferents. The algorithm is based on the multiscale continuous wavelet transform using
complex wavelets. The detection scheme outperforms the commonly used threshold detection, especially with recordings having
low signal-to-noise ratio. Results of classification of units indicate that the developed classifier is able to isolate activity having
linear relationship with muscle length, which is a step towards online model-based estimation of muscle length that can be used
in a closed-loop functional electrical stimulation system with natural sensory feedback.

1. Introduction

Functional electrical stimulation (FES) is one solution for
restoring movement in paralyzed limbs. In order to correct
for disturbances and unavoidable musculoskeletal modeling
errors, closed-loop FES is desirable. With the advent of
advanced implanted prosthetic interfaces, natural sensors
are being explored as an alternative source for feedback
information. By directly interfacing the peripheral nerves, it
is possible to record signals from natural sensors distributed
throughout the body [1–4]. Muscle spindles are one type
of natural sensor. Their main function is to signal changes
in the length of the muscle within which they reside [5].
Changes in the muscle length are associated with changes
in the angles of the joints that the muscles cross. Therefore,
their activity can be used to provide feedback information
about muscle state in a closed-loop FES system [6], as these
sensors remain intact and active below the level of lesion
in spinal cord injured patients [7]. In a number of studies
muscle spindle afferent activity was recorded using cuff

electrodes to provide natural sensory feedback [1, 4, 8–10].
Despite their chronic stability and noise immunity, the use
of cuff electrodes is ultimately limited by their low selectivity,
which requires them to be distributed throughout the body
and in close proximity to the sensory end organs targeted
for use in feedback [11]. An alternative to the cuff is the
longitudinal intrafascicular electrode (LIFE). It is designed
to be implanted longitudinally within the peripheral nerve
where it can record activity from a relatively small population
of nerve fibers [12–16].

In a previous study a simple corrector controller was
implemented to follow a desired joint angle trajectory in
the presence of externally applied disturbances [6]. The
approach proved to be applicable as feedback in online
closed-loop control in restrictive conditions (limited motion
speed and range), probably due to the unaccounted variation
of dynamic sensitivity of the two different types of muscle
spindle sensory endings. Type Ia sensory fibers predomi-
nately encode information about the rate of change of muscle
length, and type II sensory fibers predominately encode
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information about the muscle length. The former introduce
a component in nerve response that makes the relationship
between nerve activity and muscle length velocity dependant.
The new generation of LIFE, the thin-film LIFE (tfLIFE)
[17], was used in a recent study in which effort was made
towards modeling the neural response of muscle afferents to
passive muscle stretch [18]. Even though the multichannel
tfLIFE provides improved selectivity compared to the older
single-channel LIFE, the same effect of velocity dependence
in the neural response was observed. Solving this issue
would require the decomposition of the multiunit recorded
signals into components originating from different fiber
types. Isolation of the activity of type II sensory fibers could
allow for a linear model approximation to be used to track
muscle length variations [19, 20]. In the following we give a
brief overview of the state of the art in real-time neural spike
sorting of multiunit ENG recorded with LIFE.

Voltage threshold triggering is a common way for
detecting neural spikes [21]. This method requires minimal
computing power for signal processing and it is also easy to
implement. On the other hand it does not always provide
acceptable isolation between nerve and noise spikes. A
method using the discrete wavelet transform (DWT) for
signal denoising was developed by Donoho [22] to detect
action potentials buried in noise. It involves thresholding of
the detail coefficients in the wavelet decomposition. After
denoising, spikes are detected by the simple voltage thresh-
olding method. Eventually, the signals are reconstructed
by applying the inverse DWT. The procedure was applied
on ENG signals by Diedrich et al. [23] and recently on
intraneural signals recorded using thin-film LIFE [24]. In
both studies the authors used the Symlet 7 wavelet because
of its similarity to typical action potential waveforms in the
recordings. No quantitative analysis was given to justify the
choice of wavelet and the denoising threshold was chosen
empirically. In the latter study cycle spinning was used, a
method developed by Coifman and Donoho [25], to reduce
but not completely remove the effects of DWT translation
variance. Signal detection can also be performed in wavelet
space, without the need for reconstructing the signal. That
way the required computing power is reduced which is an
important issue for real-time implementation. Only being
interested in analysis, and not synthesis, also relaxes the
constraints on wavelet choice, since not all wavelets are
suitable for signal reconstruction. K. H. Kim and S. J.
Kim [26] have suggested using multiscale wavelet analysis
as an equivalent to multiple approximations of matched
filters. Their method utilizes the point-wise product of
wavelet transform coefficients over several selected scales.
The detection method proposed does not require “quanti-
tative” a priori information on either the target signal or
background noise, and only involves qualitative information
that is common to the neural signal recordings, that is, spike
waveform shapes that are most common. Unlike the discrete
wavelet transform, the continuous wavelet transform (CWT)
can operate at every scale, from that of the original signal up
to some maximum scale that one determines by trading off
the need for detailed analysis with available computational
horsepower. During computation the analyzing wavelet is

shifted smoothly over the full domain of the analyzed
function. This eliminates the problem of translation variance
when using the DWT. The stationary DWT and its equivalent
methods reduce but not completely eliminate this problem
[27]. The complex wavelet transform (CoWT) is a complex-
valued two-dimensional extension of the standard wavelet
transform. It provides a suitable framework to incorporate
two wavelets into one transformation, and one wavelet being
the real part, and the other the imaginary part of the
transform. A recent study demonstrated that spike detection
in the auditory nerve based on this approach outperforms a
matched filter approach [28].

Detected neural action potentials can be classified using
different sets of features. Action potentials waveform shapes
depend on neuron type, electrode construction, electrode
placement relative to the neuron, and the local properties
of the tissue surrounding the electrode. Action potentials
from different neurons can be distinctively different, but
can also be quite similar. Moreover, high noise levels on
weak nerve signals make rapid and accurate classification
of spikes challenging. Classification using Fourier transform
coefficients as features gives higher classification error rates
when compared to methods using time domain features
[29, 30]. One method for choosing features automatically is
with principal component analysis [31, 32]. The idea behind
principal component analysis (PCA) is to find an ordered
set of orthogonal basis vectors that capture the directions
in the data of largest variation. Real-time implementation
of PCA is also possible using transversal filter structures
[30]. To the best of our knowledge, there are no results
published about the use of PCA on intrafascicular ENG
recordings. McNaughton and Horch reported that classifica-
tion using artificial neural networks (ANNs) outperformed
both methods using time-domain features and methods
using Fourier transform coefficients [33]. In another study
the ANN approach managed to classify 6 out of a total
of 10 units present in the signals. With more than 10 units
present, the number of separable units dropped [34]. In these
studies a three-layer feedforward ANN was used. The main
drawback of using ANNs is that the results of classification
are very sensitive to the data set used to train these networks,
and obtaining a “good” training set is difficult, especially in
the case with low SNR [26]. Moreover, there are no criteria
for defining the appropriate structure and size of an ANN.
Many trials are necessary to obtain good results. At the end,
it is uncertain whether acceptable results are obtained or not.
Moreover, amplitude and shape of neural spikes change over
time, due to electrode drift and fibrous encapsulation of the
electrode recording sites (tissue reaction to implantation).
Classifiers based on artificial neural networks would require
tedious and supervised relearning procedures which are con-
ducted in laboratory conditions [35]. This would not be very
practical in real-life working conditions of neuroprosthetic
devices.

Independent component analysis is a method that can
improve source separation by taking advantage of multiple
channels available. However, one restrictive assumption of
this approach is that the minimum number of channels must
equal the number of sources [21]. It will be shown later



Computational Intelligence and Neuroscience 3

that the number of units picked up by one channel of the
LIFE is greater than the number of available recording sites
on the electrode. Methods for source separation based on
the relative difference between spike features recorded by
different channels [36] are not applicable in the case of the
LIFE either. Analysis of recorded data shows that the different
channels need not pick up activity from the same units.

In this paper we present a novel approach to neural spike
detection and classification based on the continuous wavelet
transform using complex wavelets.

2. Methods

2.1. Acute Animal Experiments. Acute rabbit experiments
were conducted on 10 New Zealand white rabbits (median
weight 4 kg and standard deviation 0.24 kg) to acquire
experimental data for validating the spike sorting algorithm.

2.1.1. Animal Preparation. Anesthesia was induced and
maintained throughout the experiments with periodic
intramuscular doses of a cocktail of 0.15 mg/kg Midazo-
lam (Dormicum, Alpharma A/S), 0.03 mg/kg Fetanyl and
1 mg/kg Fluranison (combined in Hypnorm, Janssen Phar-
maceutica). In order to immobilize the left leg of the rabbit, it
was anchored at knee and ankle joints to a fixed mechanical
frame using bone pins placed through the distal epiphyses
of the femur and tibia. The common calcaneal tendon was
attached to the arm of a motorized lever system (Dual-
mode system 310B Aurora Scientific Inc.) using a yarn of
polyaramid fibers (Kevlar 49, Goodfellow Cambridge Ltd).
The motorized lever system provided both the actuation
and measuring. Pulling the Kevlar fibers produced ankle
extension and releasing tension on the Kevlar fibers resulted
in ankle flexion (stretched muscle returning to its resting
state due to its intrinsic elasticity). Fixation to the mechanical
frame insured the elimination of mechanical vibration that
might have resulted from a free swinging foot. A tripolar
cuff electrode was implanted around the sciatic nerve. It was
used to find the length-tension curve for the medial gastroc-
nemius (MG) muscle. Electrical charge was delivered using
a stimulation unit (Grass Technologies SD9), coupled with
a photoelectric isolation unit (Grass Technologies PSIU6).
The nerve was stimulated with 300 microseconds pulses
and a pulse repetition frequency of 2 Hz. The stimulation
intensity was set to the level that produced maximal nerve
twitch response (maximal amplitude of compound action
potential). Keeping the stimulation level constant, muscle
length was varied in small incremental steps. Isometric
force produced by the stimulated muscle was simultaneously
monitored.

A tfLIFE structure was implanted in the tibial branch of
the sciatic nerve innervating the MG muscle of the rabbit’s
left hind limb. It was located 3 cm distal to the cuff electrode
implantation site. The tfLIFE enabled the monitoring of
multichannel ENG from the fascicle in which the structure
was implanted. By having the electrode implanted very close
to the muscle, chances of having anything except muscle
spindle activity recorded are minimized. Moreover, in order

to have purely muscle afferent activity in the recordings,
the sciatic nerve was crushed proximally of the cuff and
tfLIFE implantation sites using a pair of forceps. It should
also be mentioned that with increasing levels of anesthesia,
the effects of reflex mechanisms diminish, and decreased
tonic stiffness of muscles is observed [37, 38]. As for Golgi
tendon organ activity that encodes muscle force information,
it accounts for only a small part of the muscle afferent signal
under passive conditions. A histological study reports that
they account for less than 5% of the total number of receptors
in tibialis anterior muscle [39].

Animals were euthanized at the end of the experiments.
All procedures used in experiments were approved by
the Danish Committee for the Ethical use of Animals in
Research.

2.1.2. Data Acquisition System. The amplification system
consisted of a low-noise preamplifier (AI402, Axon Instru-
ments), followed by a gain-filter amplifier (Cyberamp 380,
Axon Instruments). Signals were recorded using a custom
modified multichannel digital tape recorder (ADAT-XT,
Alesis). ENG data were band pass filtered (4th order Bessel,
corners at 0.1 Hz and 10 kHz), amplified (gain 5000), and
acquired with a sampling rate of 48 kHz per channel. Out
of the eight available electrode sites on the tfLIFE, only the
four having the lowest background noise level were selected
to be recorded from, due to the limited number of available
channels on our recording system.

Signals for driving the motorized lever system (Aurora
Scientific) were generated on a portable computer using
LabVIEW (National Instruments). Before feeding the analog
signal into the lever system input, the signal passed through a
low-pass filtering stage (corner at 100 Hz) in order to remove
any quantization noise resulting from the D/A conversion.
Quantization noise would translate into vibration of the
lever arm which could have induced activity of muscle
spindles [40, 41]. Length and force signals were recorded
simultaneously with the ENG.

2.1.3. Muscle Stretch Protocol. The recorded nerve activity
is a mixture of activity from two sensory fiber types. A
convenient and common way for studying muscle spindle
afferent response is applying sinusoidal extensions to a
muscle and simultaneously recording the muscle receptor
afferent ENG [40, 41]. With recordings made with such a
protocol, it is later possible to analyze the contributions of
the two components to the aggregate recorded activity. In
our experiments the MG muscle was passively stretched by
rotating the ankle in the extension/flexion plane using the
lever arm. The initial muscle length was set to the muscle
length at which the produced isometric force was maximal.
Ankle position was set so it was flexed 90◦ and then finely
adjusted by experimentally finding the maximum of the
length/tension curve.

The muscle was presented with sinusoidal stretches of 2
frequencies: 0.01 Hz and 0.25 Hz. Both stretch profiles had
peak-to-peak amplitudes of 4 mm which covered a large
portion of the normal range of motion of the ankle. The two
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frequencies were selected to model slow movements, such as
slow walking (0.25 Hz) and correction for postural control
(0.01 Hz). They were selected to be below a critical frequency
corresponding to a system pole related to the activation and
conduction delays of the neuromuscular system at 1-2 Hz.
The maximum frequency in the pass band of the system is
about 1/5 the pole frequency [6]. The faster sine frequency
was chosen accordingly. According to Kralj and Bajd, FES
assisted walking with minimal energy cost is between 0.35
and 0.56 m/s [42]. If we use FES gait with stride length of 1 m,
then the frequency is between 0.35 and 0.56 Hz. Regarding
body sway, it has been reported that most of the energy
in able-bodied body sway is in the band between 0.02 and
0.2 Hz [43, 44]. It is more difficult to estimate low frequencies
because of the lack of velocity sensitivity and lower levels of
neural activity. We chose lower frequencies to demonstrate
a worst case scenario. The durations of the recordings were
2 minutes for the slower stretch (to allow for one full cycle
of the sinusoid to complete), and just over 1 minute for
the faster stretch (4 cycles of the sinusoid). Simultaneous
recordings were made from the four intrafascicular electrode
sites, together with force and position recordings from the
muscle lever system. The muscle was not stimulated while
being stretched.

2.2. Neural Spike Detection. The methodology for spike
detection we developed is an expansion of the idea of using
complex wavelets, so it covers a range of temporal scales.
Contrary to the matched filtering approach, where a priori
information is necessary about action potential shapes, using
the multiscale complex wavelet approach provides multiple
approximations of matched filters, making it a more generic
approach and probably more robust when addressing the
issue of changes in the spike waveforms. A training set of
action potentials waveforms is therefore not necessary, which
is an advantage of the wavelets approach over using artificial
neural networks.

2.2.1. Choice of Complex Wavelet Family and Scale Factors.
The following equation defines the wavelet transform W :

W(α, τ) =
∫ +∞

−∞
x(t)

1√
α
Ψ
(
t − τ
α

)
dt, (1)

where the real numbers α and τ denote scale and translation,
respectively. The wavelet transform essentially performs a
correlation analysis between the input signal x and the
translated and dilated version of a reference signal called
the mother wavelet Ψ. Hence, it would be expected that
the output would have local maxima where the input signal
most closely resembles the analysis template, that is, the
wavelet function. Some wavelet basis functions are similar
in shape to neural action potentials. In addition, the basis
function is dilated over a range of scales. If the scales are
well chosen, the wavelet transform can act as a number of
effective approximations of the matched filter, even though
the exact action potential waveforms are not known. In the
case of complex wavelets the mother wavelet function Ψ is
complex and the wavelet transform is also complex.

Figure 1: Five distinctive action potential waveforms extracted
from experimentally recorded data. Length of each trace is
1 milliseconds.

In order to find the optimal complex wavelet, around
30 action potentials with different waveforms were visu-
ally identified by inspecting the recorded ENG data and
extracted. Five action potentials with distinctly different
shapes are shown on Figure 1. The CoWT was computed for
all extracted waveforms using a series of complex wavelet
families available in the MATLAB wavelets toolbox (The
Mathworks). The computations were done using a range
of scales to find the optimal scales, which produced the
wavelet coefficient with the maximal magnitude. Optimal
scales were selected to be the ones that produced at least one
coefficient with a magnitude larger than 95% of the maximal
CoWT response among all scales. An example of time-
scale representations of two action potentials with different
shapes is shown on Figure 2. In this example, the CoWT was
computed using the cgau1 wavelet using scales from 1 to 16.
Panel (a) shows coefficient magnitudes for the first action
potential waveform. Panel (b) shows only the coefficients
above the 95% threshold. On panels (c) and (d) are the
corresponding plots for the other action potential waveform.
The complex Gaussian family and the complex Morlet family
of wavelets both produced well localized peaks in CoWT
space, that is, these peaks appeared with a small or zero delay
relative to the position of the waveform peaks in the time
domain. In terms of the magnitude of the output coefficients,
the complex Morlet family produced wavelet coefficients
with a 50% lower magnitude compared to the complex
Gaussian family. This was consistent for all extracted action
potentials. With the complex Shannon family both the peak
localization and the magnitude of the output coefficients
were poor. Therefore, only the complex Gaussian family
of wavelets was considered in the process of selecting the
optimal wavelet to be used for spike detection.

Within the complex Gaussian family, as a general rule,
higher-order wavelets produced wavelet coefficients with
lower magnitudes, for example, cgau1 produced a larger
response than cgau2, and cgau2 produced a larger response
than cgau3 and so on. Consequently, the cgau1 wavelet was
chosen as optimal for neural spike detection. The real and
imaginary parts of the cgau1 wavelet are shown on Figure 3.
The optimal scales range was from 1 to 6.

For comparison, the above analysis was also performed
using non-complex wavelets that support CWT, from which
the db2 wavelet produced wavelet coefficients with maximal
magnitudes. Compared to the cgau1 wavelet, the range of
scales for the db2 wavelet was larger more than two times
(scales from 2 to 16). Comparing the inter-quartile ranges of
the scale factors, the cgau1 wavelet requires 3 times less scale
factors in order to cover all action potential waveforms. This
is important when later looking into the implementation
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Figure 2: Time-scale plots of two action potential waveforms with different waveform shapes (a, c) and the same plots showing only wavelet
coefficients larger than 95% of the coefficient with the maximal magnitude (b, d).

(a) (b)

Figure 3: Real (a) and imaginary (b) parts of the cgau1 wavelet.

of the algorithm. If the number of scale factors were the
same, the cgau1 wavelet would require double processing
time compared to using the db2 wavelet. As the number
of scale factors for the db2 wavelet is more than double,
implementing the algorithm using the cgau1 wavelet would
require less processing time.

Another benefit of having a smaller range for scale
factors is the fact that it should result in better detector
specificity. Using the analogy that low scale factors cor-
respond to low frequencies in the signal spectrum and
higher scale factors to higher frequency components in
the signal spectrum, then a wider range of scale factors
would correspond to a wider frequency bandwidth of the
transforms and thus there would be more noise influence on
detection performance. We will show this to be correct later
on.

2.2.2. Algorithm Implementation. Prior to detection, ENG
signals were band pass filtered to remove noise and artifacts.
Implementing a matched filter to remove powerline noise
in real time is also a possibility. The algorithm needs to be
robust enough to adapt to the changing parameters of the
powerline noise. Not only does the amplitude of the harmon-
ics change, due to multipath propagation, but so does the
frequency [45]. Fitting a sine wave of 50 Hz and a number
of its harmonics on the raw data and subtracting the fit give
good results. Fitting and subtraction of noise harmonics up
until the 5th or 6th harmonic of the noise was sufficient
to remove slow baseline oscillations. Performing the fit on
20 millisecond windows (corresponding to 50 Hz) insureed
that the fitting algorithm locks onto the phase of the noise.
This value is also suitable for real-time implementation since
it is below the delay that can be tolerated in closed-loop FES
control.

The detection algorithm consisted of finding peaks in
the signal transformed into wavelet space that crossed a
preset threshold. Wavelet coefficients were computed only
at optimal scales. In order to have the scales independent
of length of the signal being processed, a windowed con-
tinuous wavelet transform was implemented. The transform
was computed using a 20 millisecond moving window,
matching the window duration from the noise removal
step.
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Depending on the shape of an action potential, there
were cases where computation of the wavelet transform
resulted in maxima from different scales to appear at
different time instants—if more than one wavelet coefficient
had a magnitude larger that a preset detection threshold,
multiple detections of the same neural spike occurred. The
effect of multiple peaks in wavelet space is illustrated on
Figure 2, where for one action potential the maxima are
localized at a single time instant (one vertical bar on the panel
(b)), while for the other waveform the maxima appear in 2
time instants (2 vertical bars on panel (d)). In the latter case
there would be two events detected above the threshold for
only one action potential. In order to avoid this, a refractory
period was introduced into the algorithm: when a spike
is detected, another event can be registered only after the
expiration of the preset time interval. (Not to be confused
with the nerve fiber refractory period. This refractory period,
implemented in the algorithm, is a period during which any
other peaks crossing the detector threshold are ignored).
Exploratory data analysis on all extracted action potentials
showed that the scattering of wavelet coefficient maxima was
never larger than 146 microseconds. The refractory period
was therefore set to this value.

2.3. Classification of Action Potentials. It is important to note
that our objective was not to classify all the action potentials
to eventually have accurate information about single-unit
activity, but rather to isolate activity from subsets of fibers
that would be usable for closed-loop FES. In other words,
we were interested in classes that would provide a linear
relationship between neural firing and muscle length and
therefore independent of muscle stretch velocity.

In principle, there are two approaches when wavelets are
used in pattern recognition problems. The first is to use one
wavelet to represent all spike shape variations, and the other
is to use different wavelets for each of the spike templates.
In the former case one wavelet may not be sufficient if
there is a large variation between the action potentials
waveforms. This is very probable if a larger number of
units are present in the recording. In the latter case, the
best representation of different spike waveforms would be
achieved by designing new wavelets for continuous wavelet
transform. The procedure consists of approximating a given
pattern using least squares optimization under constraints
leading to an admissible wavelet [27]. We have tried this
on spike waveforms extracted from experimentally recorded
ENG, and good fits could not be found for all waveforms
because of the imposed constraints. Only certain biphasic
action potentials produced good fits. Even if a set of
wavelets could be found that represents all spike waveforms,
the computational power required for real-time parallel
computation of CoWT coefficients and processing would
exceed the computing power available today. A compromise
between the two approaches could be the representation of
the full set of action potential waveforms by a reduced set of
wavelets, for example, using complex wavelets. Two different
action potential waveforms would be represented by the real
and imaginary parts of a complex wavelet.

Table 1: Estimates of the number of units.

0.01 Hz sinusoidal stretch 0.25 Hz sinusoidal stretch

Rabbit Ch 1 Ch 2 Ch 3 Ch 4 Ch 1 Ch 2 Ch 3 Ch 4

1 10 9 10 8 9 9 9 6

2 13 13 10 12 12 12 9 12

3 7 8 5 6 7 7 6 7

4 7 8 5 6 7 7 4 6

5 15 15 5 3 14 14 4 3

6 8 9 8 8 7 7 8 8

7 6 4 7 10 6 3 6 8

8 5 11 8 12 6 10 10 11

9 11 9 8 8 10 9 8 8

10 9 7 7 9 8 8 7 9

Estimates of the number of units from which the electrode picks up activity
at the point when the muscle is maximally stretched. Results are shown for
each channel for both sinusoidal frequencies, for all 10 experiments.

The multiscale CoWT has an advantage that it also offers
a framework for classifying the detected neural spikes. Action
potentials differ in their shape and amplitude and it was
necessary to choose a feature set and a distance metric
with which they would be distinguishable. Exploratory data
analysis on the extracted neural spike waveforms indicated
that the CoWT coefficients computed using the same range
of scale factors as in the detection algorithm could be suitable
as classification features. Visual inspection of time-scale
plots, like those shown on Figure 2, indicate that they are
different for different spike waveforms. Classification could
therefore be performed by creating feature vectors using the
computed wavelet coefficients and then clustering the data
using the Euclidean distance metric. Feature vectors were
created by concatenating rows of the time-scale plots for the
real and imaginary parts of the CoWT transform, where each
row consisted of the CoWT coefficients from a particular
scale.

In our context, there are two steps in the classification
of detected action potentials. The first is the calibration
phase, where the classification is performed offline. The
purpose of the calibration is to identify action potentials
that encode relevant information for closed-loop control. In
other words, we look for classes of action potentials having
a linear relationship between firing rate and muscle length.
Once they are identified, the second step of the classification
is to recognize and track these particular action potentials
online in order to estimate muscle state.

Action potentials were classified using k-means. In order
to avoid local minima in the optimization, clustering was
repeated 50 times (replicates), each time using different
starting points. Clustering using less replicates sometimes
produced different clustering results using the same data set.
After the classification was complete, firing rates of each class
were computed. Eventually, the linearity of the relationship
between firing rates and muscle length was checked for each
class.

One requirement for using k-means algorithm is to know
in advance the total number of classes. In order to estimate
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Figure 4: Steps in the creation of a synthetic signal. Top 3 traces are the generated action potential trains for 3 units. The onset of the first
spike train is at t = 1 second, the second train at t = 2 second, and so on. The fourth trace is the superposition of traces 1–3. Background
noise is eventually added resulting in a signal on the bottom trace.
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Figure 5: ROC curves for four SNR levels. Performances of a simple threshold detector (empty-circle line) and the wavelet-based detector
(full-triangle line) are compared.
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Figure 6: (a) ROC curves for the detector based on the non-complex db2 wavelet (open-circle curve) and the detector based on the cgau1
wavelet (full-circle curve). (b) Ranges of detection scale factors for the cgau1 and db2 wavelets. The increment between successive scales is
0.25.
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Figure 7: Classification error rates depending on the number
of units simultaneously active, compared for three classification
approaches: template matching (black), principal components
analysis (gray), and wavelet-based (white).

the number of units each site of the tfLIFE picks up activity
from, aggregate afferent firing rates of the postprocessed
ENG signals were computed by counting the number of
peaks above threshold in a 1-ms moving time window.
This window duration matches approximately the absolute
refractory period of mammalian sensory nerve fibers [46].
Since there cannot be two spikes originating from the same
axon within this period, an estimation of the minimal
number of axons can be made by counting the number
of spikes in the window. Miscounts can occur in cases
where two or more spikes overlap. By extending the above
analysis onto a number of periods of the faster sine wave, the
probability of spike overlap becomes smaller, as it is unlikely
that the same subset of spikes will overlap in each period at
the same phase. The number of units being picked up by
the recording electrode changes depending on how much
the muscle is stretched. The more the muscle is stretched,
the more units are firing. Values in the Table 1 are estimates
of the number of units at the time the muscle is maximally
stretched. No significant differences in the numbers are
found between the slower and faster sine wave data. On
the other hand, there is a large variation when comparing
between rabbits and in some cases between different channels

of one electrode. Statistically, the median number of units
picked up at maximal stretch is 8, with a standard deviation
of 2.7. To account for the changing number of classes, the
total number of classes for off-line k-means clustering was
set to 10, allowing the algorithm to create empty classes.

2.4. Evaluation. In order to be able to evaluate the perfor-
mance of the spike sorting algorithm, knowledge of the exact
timing and class of each action potential in the ENG signal
is needed. Because of uncertainty about this information
in experimental data, artificial signals based upon recorded
action potentials were synthesized. Five action potentials
with distinctly different shapes were chosen to represent
5 neural spikes originating from different axons, that is,
different spike classes. These are shown on Figure 1. The
waveforms were normalized and used to synthesize spike
trains. Spike train firing rates were randomly chosen from
within the range found in the literature [47]. With the
exception of burst firing, muscle spindle afferents can fire
with a rate up to about 75 Hz. Burst firing was not considered
because the amplitude of an action potential firing in burst
mode can vary often as much as 50% [36]. Spike amplitudes
were scaled by integer values ranging from 3 to 6 standard
deviations of the background noise level, which corresponds
to the range of values found by inspecting the recorded
data. These 4 scaling factors represented different SNR
levels for which the analysis was performed. Therefore, the
SNR is defined here as the ratio of the peak amplitude of
the noise-free action potential and the standard deviation
of background noise. Signals were synthesized by adding
the spike trains onto experimentally recorded background
noise. Signals with up to 10 units firing simultaneously
were synthesized. Spikes having the same waveform and
amplitude were considered to be from the same axon
(belonging to the same class). A total of 900 signals were
generated: 100 signals with 2 units active, another 100 with
3 units, and so on until 100 signals with 10 units. Steps in the
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Figure 8: Afferent neural firing rate versus muscle length. Aggregate activity of all detected spikes (a) and activity from 2 clusters having a
good linear fit to the data (b) were used to compute the firing rates. Linear regression analyses are the full lines. Muscle length was normalized
by 4 mm.
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Figure 9: Comparison of cluster centroids for the slow (full circles)
and fast (triangles) muscle stretch rates.

creation of one synthetic signal with up to 3 units active are
shown on Figure 4.

3. Results

Performances of the wavelet-based detector and the detector
using simple amplitude thresholding are shown on Figure 5
in the form of receiver operating characteristics, or ROC
curves. These curves are graphical representations of detector
sensitivity versus specificity using a range of detection
thresholds. On the whole range of SNR levels the wavelet-
based detector outperforms the detector based on amplitude
thresholding; that is, for any given specificity, the corre-
sponding sensitivity is greater for the wavelet-based detector.
The performance gap becomes especially prominent with
low SNR.

Compared to detection using the non-complex db2
wavelet, detection using the cgau1 wavelet shows better
specificity in ROC space (Figure 6(a)). This is most probably
due to the wider range of wavelet transform scale factors

required for the db2 wavelet (Figure 6(b)). A wider scales
range translates into a wider frequency bandwidth, as
explained earlier. For the cgau1 wavelet the scales range was
from 1 to 6, and for the db2 wavelet it was from 2 to 14.

Classification results are shown in the form of clas-
sification error rates which are ratios of the number of
misclassified spikes to the total number of spikes being
classified. The wavelet-based classification is compared to
two other methods of classification: principal components
analysis (PCA) and template matching. Results are shown on
Figure 7 starting from the case when only two different spike
classes are present in the signal up to the case where 10 units
are simultaneously firing. Classification based on template
matching produced the highest classification error rates,
while wavelet-based and PCA-based approaches showed
similar results.

The spike sorting technique was eventually applied
on experimentally recorded muscle spindle afferent nerve
activity. Only flexion periods of ankle joint motion (stretch
periods of the MG muscle) were analyzed. The detection
threshold was chosen to be seven times the standard
deviations of the background noise level (in wavelet space).
Throughout all the trials, this threshold value corresponded
to the point on the ROC curves, where the specificity starts
to rapidly deteriorate while at the same time there is little
improvement in sensitivity.

The detected units were classified into 10 clusters. The
analysis was performed on data from all rabbits. Two to three
spike classes per rabbit showed a linear relationship between
their computed neural firing rate and instantaneous muscle
length. Since this relationship was not linear when using
the aggregate afferent firing rate, the result is an indication
that the algorithm is capable of isolating activity of units
less sensitive to muscle stretch velocity. Results from one
rabbit are shown on Figure 8. (a) shows the aggregate firing
rate of all detected spikes. The relationship is clearly not
linear in the region where the muscle stretch velocity slows
down rapidly (region where normalized muscle length is
close to 1). (b) shows the same relationship, but this time
using only the activity of the fibers insensitive to the velocity
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Figure 10: Typical profiles of firing rates versus muscle length for single clusters. On each plot the abscissa is the normalized muscle length
and the ordinate is the firing rate in spikes per second.

of muscle stretch. A linear regression analysis performed on
both shows that the fit on (b) is better.

4. Discussion

Results show that the CoWT is the preferred method for
neural spike detection. Even though this wavelet-based
classification does not show improvement in error rates
compared to the PCA-based algorithm, the advantage of
using the wavelet-based approach is that it provides a unique
framework for both spike detection and classification, that
is, after computing the complex wavelet coefficients in the
detection stage, no additional computation is required in the
subsequent classification.

4.1. Cluster Centroid Comparison for Different Stretch Rates.
It was of interest to compare activities of the same units for
the slow and fast muscle stretch rates in order to see if there
is a change in their velocity sensitivity. However, it is difficult
to identify same units in the 2 stretching conditions. Even if
units have a similar shape, there is no guarantee that they
are from the same sensory neuron. As we have seen from
the extracted waveforms, there are fewer distinctive shapes

than there are action potentials in a recording. Nevertheless,
comparison of cluster centroids from the 2 data sets was
done. In order to graphically present cluster inter-distance,
PCA was used to reduce the dimensionality of the time-
scale signatures of cluster centroids. Results for one rabbit are
shown on Figure 9. Full-circle and empty-triangle markers
correspond to cluster centroids from the slower and faster
sinusoidal muscle stretch, respectively. Pairs of centroids are
easily identifiable, which is a strong indication that they
correspond to the same sensory neuron. When relationships
between firing rate and muscle length are plotted for the
cluster pairs, firing rates from the slower muscle motion
exhibit linear or close to linear relationships with length,
while firing rates for the faster muscle motion show obvious
nonlinear behavior. Under the assumption that the cluster
pairs correspond to the same sensory neurons, one could
conclude that classes showing different behavior at different
muscle stretch rates originate from group Ia sensory fibers,
while classes showing linear behavior regardless of the stretch
rate originate from group II sensory fibers. There is however
not enough evidence to conclude that the units that keep
their linear behavior during the faster stretch rate are velocity
insensitive. Even the 0.25 Hz muscle stretching is a very slow
rate. If a definite conclusion is to be made, the behavior of
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these units needs to be studied using faster stretch rates than
those used in this study.

4.2. Aggregate Compared to Single-Cluster Activity. In cases
where the relationship between the aggregate firings rate and
muscle length from the faster sinusoidal stretch is nonlinear,
activity of single classes exhibits different behavior. A few
distinctive cases are shown on Figure 10. Class 1 shows the
typical behavior of a sensory neuron with a low activation
threshold and saturation point before maximal muscle
extension is reached. Activity is registered even at minimal
muscle stretch and saturation occurs even before the half
of the muscle stretch range. The second class illustrates the
difference between saturation and velocity sensitivity. Instead
of maintaining a constant firing rate after saturation, with
further increase in muscle length the rate starts dropping
at maximal stretch, where the velocity of the sinusoidal
movement decreases. The third plot is an example of a
class with a linear firing rate throughout the whole range of
motion. These are the action potentials we are interested in.
The fourth plot most probably represents 2 action potentials
with similar waveforms classified in one single class. The
first starts firing as soon as the muscle starts stretching,
after which it quickly saturates. As the muscle is stretched
further, the second starts firing and continues firing until
maximal muscle extension is reached. Classes with this kind
of behavior could also be useful for control purposes as
long as their activity can be modeled as a piece-wise linear
function.

4.3. Application in Closed-Loop FES. Results show that the
spike sorting algorithm may be useful in closed-loop FES
using natural sensory feedback. The spike sorting scheme
seems to be capable of isolating the activity of secondary
sensory endings from the aggregate neural activity of muscle
spindle afferents, making it possible to establish a linear
relationship between muscle length and neural firing rate.
This result is a step towards an online model-based estimator
of muscle length. The more classes having linear behavior
are found, the more robust the estimation of muscle state
would eventually be. Information about cluster centroids
from the calibration step would be used as initial values
for the classifier and each detected spike would be assigned
to one of these initial clusters. Cluster centroid for that
class would be updated, taking into account the signature of
the new class member. Updating insures the algorithm can
adapt to any slow changes in the shape of action potentials,
resulting from electrode drift or fibrous encapsulation of
the electrode recording sites. Lastly, not all classes would be
needed. Only classes relevant for feedback purposes would
be tracked.

To give an idea of the computational requirements,
off-line computation of complex wavelet coefficients at
16 scales using the cgau1 wavelet took approximately 4
seconds for 100 ms of data (update time in closed-loop
control). It is expected that the processing time would
be reduced approximately tenfold when the algorithm is
implemented using a low-level programming language, and

even more if implemented using an application-specific
integrated circuit (ASIC). Therefore, it is expected that real-
time implementation is possible.

Regardless of the spike algorithm, the overall perfor-
mance of spike sorting is highly dependant on the quality
of signal recording. Apart from signal processing methods
to minimize the effects of noise, work on novel signal
acquisition techniques [48] would be beneficial.

5. Conclusions

The CoWT offers a convenient framework for neural spike
detection and classification: (1) it is time invariant, unlike
the undecimated DWT, (2) it needs 3 times less scale factors
compared to the CWT to achieve the same performance in
terms of spike detection and localization, (3) it requires less
computing power (50%), and (4) it is covers a narrower
frequency band, resulting in processing that is less sensitive
to noise. Contrary to the previous work [24, 26], no
inverse wavelet transform and no additional computation
is necessary in the classification stage as we propose a
classification scheme based on the wavelet coefficients used
to detect spikes. By doing so, computation cost is reduced,
and detection and classification are unified in a single data
processing flow.

Evaluation on synthesized multiunit ENG shows the
wavelet-based neural spike detection outperforms the
threshold detection method, especially in cases of low SNR.
Results are even better when comparing the CoWT to CWT.

We demonstrated that the complex wavelet-based clas-
sification is able to isolate afferent muscle spindle activity
having a linear relationship with muscle length. Results are
consistent in all experiments. This is a step towards an
online model-based estimator of muscle length that can
be used in a closed-loop FES system with natural sensory
feedback. We show that by using a single signal processing
method based on the complex wavelet transform, it is
possible to estimate the length of a muscle based on ENG
recordings.

The algorithm could be further optimized in terms of
computational speed. Reducing the number of scaling factors
used to compute the CoWT could perhaps produce neg-
ligible deterioration in performance. We were conservative
when making the initial choice in order to demonstrate
feasibility and to focus on the method itself. This potential
improvement will be investigated in more detail before
proceeding with the real-time hardware implementation of
the spike sorting scheme.
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