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Abstract. We describe a Branch-and-Bound algorithm for computing a parsimonious species tree
given a set of gene family trees. Our algorithm can compute a parsimonious species tree for three
cost measures: number of gene duplications, number of gene losses, and both combined. Moreover, to
cope with intrinsic limitations of Branch-and-Bound algorithms for species trees inference regarding
the number of taxa that can be considered, our algorithm can naturally take into account predefined
relationships between sets of taxa. We test our algorithm on a dataset of eukaryotic gene families
spanning 29 taxa.
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1 Introduction

Speciation is the fundamental mechanism of genome evolution, especially for eukaryotic genomes.
However, other events can happen, that do not result immediately in the creation of new species but
act as fundamental evolutionary mechanisms, such as gene duplication and loss [9]4. Duplication is
the genomic process where one or more genes of a single genome are copied, resulting in two copies of
each duplicated gene. Gene duplication allows one copy to possibly develop a new biological function
through point mutation, while the other copy often preserves its original role. A gene is considered
to be lost when the corresponding sequence has been deleted by a genomic rearrangement or has
completely lost any functional role (i.e. has become a pseudogene). (See [9] for example). Genes of
contemporary species that evolved from a common ancestor, through speciations and duplications,
are said to be homologs [7] and are grouped into a gene family. Such gene families are in general
inferred using protein sequence comparison.

The availability of large datasets of gene families makes now possible to perform genome-scale
phylogenetic analyses. A widely used approach, named Gene Tree Parsimony (GTP for short),
is based on the notion of reconciliation between a gene tree and a species tree introduced in [8],
and seeks a species tree with a minimum overall reconciliation cost with the whole set of input
gene trees. Given a gene tree G and a species tree S for the corresponding taxa, the reconciliation
cost is the minimum number of duplications, losses, or mutations (duplications plus losses) that is
needed to explain the (possible) discrepancies between G and S. Computing a most parsimonious
reconciliation between a given gene tree and a species tree can be done in linear time [22], but
inferring a parsimonious species tree is an NP-complete problem for both duplication and mutation
criteria [12], although fixed-parameter tractable algorithms have been described in [13, 20]. Hence,
in most cases, studies based on GTP use either a brute-force approach when the number of taxa is
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low, as in [18], greedy heuristics [4, 5] or the local search approach with edit operations on species
trees such as the Subtree Pruning and Regrafting (rSPR) [14, 1] or Nearest-Neighbour Interchange
(NNI) [2]. Although such heuristics, especially local-search ones, are fast and proved to be effective
on large datasets [21], they do not guarantee to infer an optimal species tree.

A Branch-and-Bound approach is a classical method when dealing with hard species tree infer-
ence problems, as it implicitly explores the space of species trees and guarantees to find an optimal
phylogeny for a given criterion. The optimality of such an approach requires that the objective
function is nondecreasing during a downward phase of the exploration space and its effectiveness
relies significantly on the required time to compute the cost measure associated to a newly vis-
ited species tree given the previous one. This method has been used [10] for evolutionary criteria
such as Maximum Parsimony and Maximum Likelihood (the reader is referred to [6] for a brief
overview), but it has not been considered up to now for the GTP. In the present work, we present a
Branch-and-Bound algorithm that guarantees to find a species tree S with the minimum cost for a
given gene tree G, and works for the three usual criteria (duplications, losses, and mutations). Our
algorithm relies on a new way to explore the space of species trees that allows to update efficiently
the cost (for the three considered costs) of a partial species tree and to naturally account for prior
knowledge of the species phylogeny, and then process datasets that span a significant number of
taxa.

The plan of the paper is as follows. In Section 2, formal notations are defined. In Section 3, we
describe our Branch-and-Bound algorithm. In Section 4, we apply our algorithm on a dataset of
1111 gene families from 29 animal genomes taken from the TreeFam database [11, 17].

2 Preliminaries

Gene trees, species trees, forests. Except when indicated, any considered tree is rooted, binary,
unordered and leaf-labeled. For simplicity, we consider that each leaf label is an integer. For a given
tree T , let V (T ), r(T ), L(T ), Λ (T ) and I(T ) respectively denote its vertex set, its root, its leaf
set, its label set (the set of integers that appear at its leaves), and its internal vertex set (that is
V (T ) \ L(T )). The depth of a vertex is the length of the unique path to r(T ) and the height of T ,
denoted h(T ), is its maximal depth. We will adopt the convention that the root is at the top of the
tree and the leaves at the bottom.

Given two vertices u and v of T , u ≤T v (resp. u <T v) if and only if v is on the unique path
from u to r(T ) (resp. and u 6= v); in such a case, u is said to be a (resp. strict) descendant of v.
For a vertex u of T , we denote by u1 and u2 its children (when u /∈ L(T )), by p(u) its parent, by
s(u) its sibling (when u 6= r(T )), and by Tu the subtree of T rooted at u. It is important to point
out that because T is an unordered tree, the children u1 and u2 of an internal vertex u of T are
interchangeable, that is u1 may arbitrarily be selected as the unique children of u that respects a
given constraint. The distance between two vertices u and v of a tree T , where u <T v, is denoted
dT (u, v) and is the number of vertices on the path from u to v in T , excluding u and v.

A forest T is a set of trees. The notations V (T ), r(T ), L(T ), Λ (T ) and I(T ) have the same
definitions as for single trees, except that r(T ) is the set of roots of all the trees in T . A forest is
said to be ordered if there is a total order on the trees it contains. Given two trees S1 and S2 of a
forest, we denote by (S1 + S2) the trees obtained by joining S1 and S2 under a common (binary)
root x (i.e. creating two edges from x to the roots of S1 and S2).

A species tree S is a tree such that each element of Λ (S) represents an extant species and labels
exactly one leaf of S (there is a bijection between L(S) and Λ (S)). A species forest F is simply a



set of trees with disjoint label sets. A gene tree G is a tree such that Λ (G) ⊆ Λ (S) (each leaf of G
represents an extant gene that belongs to a species of Λ (S)).

Reconciliation between a gene tree and a species tree. A reconciliation between a gene tree G and a
species tree S maps each internal vertex of G onto a vertex of S and induces an evolutionary history
in term of gene duplications and losses. The Lowest Common Ancestor mapping (LCA-mapping),
that maps a gene u of G onto the most recent species of S that is ancestor of all genomes that contain
a gene descendant of u, is the most widely used mapping. It depicts a parsimonious evolutionary
process for each of the three usual combinatorial criteria, which is also the unique parsimonious
scenario for the number of losses and the number of mutations [5], while there can be several
parsimonious reconciliations for the number of duplications.

Definitions 2 to 4 below define how to read the different costs associated to the reconciliation
between a given gene tree G and a given species tree S.

Definition 1. The LCA-mapping between a gene tree G and a species tree S, denoted MS :

V (G) → V (S), is defined as follows: given a vertex u of G, MS(u) is the unique vertex x of S such
that Λ(Gu) ⊆ Λ(Sx) and either x is a leaf of S, or Λ(Gu) 6⊆ Λ(Sx1

) and Λ(Gu) 6⊆ Λ(Sx2
). ⋄

Definition 2. An internal vertex u ∈ I(G) is a duplication if MS(u) = MS(u1) and/or MS(u) =
MS(u2). The duplication cost of the reconciliation between G and S is d(G,S) =

∑

u∈I(G) d(u, S),
where d(u, S) has value 1 if and only if u ∈ I(G) is a duplication and 0 otherwise. ⋄

Definition 3. The loss cost of the reconciliation between G and S is l(G,S) =
∑

u∈I(G) l(u, S),
where l(u, S) is defined as follows

l(u, S) =











0 (1) if MS(u) = MS(u1) = MS(u2);
dS(MS(u1),MS(u)) + 1 (2) if MS(u1) 6= MS(u) and MS(u2) = MS(u);
dS(MS(u1),MS(u)) + dS(MS(u2),MS(u)) (3) if MS(u1) 6= MS(u) and MS(u2) 6= MS(u).

⋄

Definition 4. The mutation cost of the reconciliation between G and S is m(G,S) = l(G,S) +
d(G,S). ⋄

Note that some internal vertices of G correspond to duplications for any given species tree S.
Such vertices, that are called apparent duplications (also sometimes forced duplications) are defined
as the vertices u such that Λ(Gu1

) ∩ Λ(Gu2
) 6= ∅. Internal vertices u such that |Λ(Gu)| = 1 are

obviously apparent duplications, and then, from now, without loss of generality, we consider that
such vertices are replaced by a single leaf, which implies that there is no extant gene u (leaf) of G
that has the same label as its sibling s(u).

The LCA-mapping between a gene tree G and a species forest F , denoted MF : V (G) → V (F),
is defined similarly to the case of a single species tree (see Definition 1). For a given vertex u ∈ V (G),
MF(u) = MS(u), if there is a species tree S of F such that MS(u) is defined. Otherwise, MF(u) is
said to be undefined (which is denoted MF(u) = ∅ from now).

The goal of the current work is the design of an exact method to solve the following optimization
problem, given a cost measure c (either d, l, or m) for the reconciliation between a gene tree and
a species tree.

Minimum C Species Tree Problem

Input. A gene tree forest G = {G1, . . . , Gk}
Output. A species tree S such that

∑k
i=1 c(Gi, S) is minimized.



3 A Branch-and-Bound algorithm for the GTP

We now describe our Branch-and-Bound algorithm. We assume that there are n taxa, denoted by
{1, 2, . . . , n}, and denote by Kn the set of all possible species trees on these n taxa. Without loss
of generality, we describe our algorithm for a single gene tree G.

The algorithm is based on the exploration of a rooted tree denoted T n, where each vertex corre-
sponds to a forest of species trees, and such that each internal forest corresponds to an incomplete
species tree for n species, and each leaf forest to a complete species tree S of Kn. The Branch-and-
Bound explores this tree and each time it visits a forest denoted F , it computes a lower bound on
the cost c(G,S) (where c = l or c = d) of any species tree S ∈ Kn located in T n

F , that is the subtree
of T n rooted at F . To ensure the optimality of this approach, such a lower bound has to respect
the following definition.

Definition 5. Let π : Kn → N be an objective function that we seek to minimize. A function
ω : V (T n) → N is a Consistent Lower Bound (CLB) for π if and only if (1) it is non-decreasing
along the path that starts at r(T n) and ends at any leaf {S} of T n and (2) ω({S}) = π(S). ⋄

Given a CLB, denoted c(G,F), for the considered cost c(G,S), then T n
F is explored if and only

if c(G,F) < c(G,Smin), where Smin ∈ Kn is the best solution found since the beginning of the
exploration of T n and is updated when a species tree with a lower cost is found. Such a Branch-
and-Bound guarantees to find an optimal species tree Smin such that c(G,Smin) is minimum.

The plan of this section is as follows: first, we formally define the space tree T n and give
important combinatorial properties that are central in the design of the Branch-and-Bound; second,
we describe an algorithm that updates the LCA-mapping MF : V (G) → V (F) for the current visited
forest F given the mapping of the previously visited forest; third, we define the two CLBs for the
costs d(G,S) and l(G,S); and finally, we explain how T n can easily be adapted to account for prior
knowledge on the species phylogeny.

Combinatorial structure of T n (i.e. the species trees space exploration tree). The main structural
feature of T n is that a child F ′ of an internal forest F is defined by joining two of its trees under a
(new) vertex (thus forming a new clade). This architecture is different from the classical one used in
a Branch-and-Bound approach for phylogenetic inference, where the exploration starts with a tree
with two leaves and one internal node, an then iteratively add a leaf and an edge until a complete
tree is obtained. The advantage of the architecture of T n over the classical one is that it is more
adapted to efficiently compute the LCA-mapping during its traversal, which is essential to rapidly
explore the space and solve our problem. Definition 7 formally describes the architecture of T n,
illustrated by Figure 1, and Property 1 shows that it is an appropriate structure for the exploration
of Kn. Below, given a species tree S over {1, . . . , n}, min(Λ(S)) denotes the minimum label of the
leaves of S. We also define an order on the trees of a forest as follows.

Definition 6. Given two trees S and S′ of a forest F, S ≺F S′ (resp. �F) if and only if min(Λ(S)) <
min(Λ(S′)) (resp. ≤). ⋄

Definition 7. T n is an ordered and rooted tree where each vertex is an ordered species forest F
on {1, . . . , n}, with a distinguished tree called the branching tree β(F). The branching structure of
T n is defined below.

1. The root forest r(T n) is the forest composed of n trees {S1, . . . , Sn}, where Si is the tree reduced
to a single vertex labeled i, and its branching tree is the tree S1.



2. Each leaf of T n is a forest F containing a single tree that is a species tree from Kn.
3. A forest Fx is a child of an internal forest F if and only if there exists two trees Sx1

and Sx2
in

F , with Sx1
≺F Sx2

, such that
(a) Fx = F − {Sx1

, Sx2
} ∪ {Sx}, where Sx = (Sx1

+ Sx2
) is the branching tree of Fx,

(b) and either Sx2
= β(F) or β(F) �F Sx1

.

Finally, the children of an internal vertex (i.e. forest) F of T n are totally ordered as follows: if Fx and
Fy are two children of F, where the corresponding branching trees are respectively Sx = (Sx1

+Sx2
)

and Sy = (Sy1
+ Sy2

), then, Fx precedes Fy if and only if either i) Sx1
≺F Sy1

or ii) Sx1
= Sy1

and
Sx2

≺F Sy2
. ⋄
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Fig. 1. For n = 4, representation of the space tree T n, where each square represents a forest, an arrow indicates one
of its child, the root r(T n) is the darkest square and its first child (according to the total order) is represented by
the darkest arrow. The children of a forest are ordered according to the anti-clockwise direction. The darkest edges
of a forest Fx indicate the two subtrees Sx1

and Sx2
of F that are joined together to form the new tree Sx of Fx.

Property 1 below follows immediately from the structure of T n described in Definition 7, and
in particular from the order on the trees in a forest, that ensures that no two different paths from
the root can lead to the same species forest.

Property 1. The tree T n is such that (1) there are no two nodes that represent the same species
forest; (2) L(T n) = Kn; (3) its height is Θ(n); and (4) the number of children of each internal
vertex is bounded by O(n2).

The general principle of our Branch-and-Bound algorithm is to visit T n starting at its root, and
then to recursively visit the children of the starting vertex forest F according to the order described



in Definition 7. We now explain how a subtree of T n can be explored in time linear in the number
of species forests it contains. There are two key points:

– To visit the children of an internal vertex F according to the order defined in Definition 7, it is
sufficient that the trees of F are ordered according to ≺F .

– To maintain the order ≺F in constant time when visiting a child forest Fx (of F) with Sx =
(Sx1

+ Sx2
) as its branching tree, Sx2

is removed from the ordered forest and Sx replaces Sx1

(as min(Λ(Sx)) = min(Λ(Sx1
))). And then, when the traversal goes back to F after visiting

the subtree T n
Fx

, the ordered forest F can be retrieved (in constant time) assuming that both
the position of Sx2

in F and Sx = (Sx1
+ Sx2

) (the used branching tree) were previously saved,
which can be implemented easily using lists and pointers.

Together that the height of T n is in Θ(n), this proves the following result.

Proposition 1. The complete exploration of a subtree T of T n can be implemented to run in time
Θ(|V (T )|) and space Θ(n).

We finally introduce some combinatorial properties on the architecture of T n that will be used
to define a CLB for the cost l(G,S). According to Definition 3, the cost l(u, S) induced by an
internal vertex u of G depends on the distance in S between MS(u) and MS(u1) (resp. MS(u2)).
Hence, the main idea behind a CLB for l(G,S) resides on the definition of a CLB for the distance
dS(MS(u1),MS(u)) (resp. dS(MS(u2),MS(u))). Formally, considering a forest F of T n, a non-root
vertex u of G, and any species tree S ∈ Kn that is located at a leaf of T n

F , the question is as follows:
how can a CLB for dS(MS(u),MS(p(u))) be efficiently computed during the traversal of T n along
the path that connects r(T n) and F? To define such a CLB, we introduce incremental forests.

Definition 8. Let F be a forest of T n and Fx one of its children, whose branching tree is Sx =
(Sx1

+ Sx2
). Given a non-root vertex u of G, if the mapping MF(u) is defined in either Sx1

or Sx2

and MFx
(p(u)) is not defined, then Fx is said to be an incremental forest for u. ⋄

It is easy to see that each incremental forest for u located between r(T n) and F (including F)
corresponds to an increment of one on dS(MS(u),MS(p(u))). If dF (u) denotes the number of such
incremental forests, then the property below immediately follows from the usual LCA-mapping
(between G and S) and Definition 7.

Property 2. Given a leaf forest {S} of T n and a vertex u of V (G)\{r(G)}, dS(MS(u),MS(p(u))) =
d{S}(u), and then dF (u) is a CLB for dS(MS(u),MS(p(u))).

Updating the LCA-mapping. Let F be an internal forest of T n, and Fx be one of its child forest and
the next one to be visited during the traversal of the space tree. The main issue here is to detect
as efficiently as possible the vertices u of G for which the LCA-mapping was undefined in F but is
now defined in Fx. Definition 9 below describes the smallest forest of subtrees of G that contains
all these vertices, Figure 2 depicts a simple example of this architecture, and then we explain how
it can be explored in linear time.

Definition 9. Let F be an internal forest of T n and Fx be one of its child, where Sx = (Sx1
+Sx2

)
is the branching tree (see Definition 7). Gx denotes the forest of subtrees of G such that its root
set is r(Gx) = MSx

= {u ∈ V (G) \ {r(G)} : MSx
(u) 6= ∅ and MSx

(s(u)) = ∅} and its leaf set is
L(Gx) = MSx1

∪MSx2
. ⋄
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Fig. 2. Representation of the forest Gx, given a gene tree G and a forest Fx of T n, where n = 4. The vertices of G

that are in r(Gx) (resp. L(Gx)) are represented by a grey square (resp. circle). The two trees Sx1
and Sx2

of F used
to define the branching tree Sx of Fx are indicated by larger edges. Because u1 is mapped in Sx and u2 is not, u1 is
both a leaf and a root of Gx.

The main problem for the exploration of Gx is that it is not explicitly defined when the forest
Fx is visited during the traversal of T n. However, as F is the previous forest and the parent of Fx,
we can assume that both sets MSx1

and MSx2
are computed, together with the LCA-mappings

of their vertices, and that the leaf set L(Gx) is available (see Definition 9). The traversal of the
whole forest Gx is done by a bottom-up approach in such a way that each vertex of Gx located at
a given depth in G is visited before any vertex located at a lower depth. Such a traversal ensures
that when a vertex u of Gx is visited, its mapping MFx

(u) is defined (in Sx), and if the mapping
MFx

(s(u)) of its sibling is not defined, then s(u) is not in Gx and u is a root of this forest. This
observation is formally stated in the Property 3 below, which also describes the calculations that
are required during the traversal of Gx in such a way that the root set r(Gx) and the LCA-mappings
of its vertices are computed.

Property 3. Let u be the current visited vertex during the bottom-up traversal of Gx and assume
that its mapping MFx

(u) is defined. If MFx
(s(u)) is defined and is in Sx, then both s(u) and p(u)

are in Gx and MFx
(p(u)) = x. Otherwise, neither s(u) nor p(u) is in Gx and u ∈ MSx

(= r(Gx)).

Proposition 2. Let Fx be a child of an internal forest F of T n, with Sx = (Sx1
+ Sx2

) as the
branching tree, and suppose that MSx1

and MSx2
are given with their vertices ordered in decreasing

order of their depth in G. The bottom-up traversal of Gx, which computes the set MSx
(with the

same order described above) and the LCA-mapping MF (u) for each vertex u ∈ V (Gx), can be
implemented to run in time Θ(|V (Gx)|) and space O(

∣

∣V (Gx)
∣

∣) + Θ(
∣

∣V (Fx)
∣

∣).

Proof. The bottom-up traversal of Gx is briefly described below.

1. Let Q be a queue (with the usual order) of vertices of G, initialized with MSx1
and MSx2

.

2. A first loop on the vertices of Q is performed.

(a) Let Q′ be an empty queue.

(b) A second loop over all the vertices u located at the front of Q and at the same depth in G,
where the calculations described in Property 3 are done and p(u) is inserted in Q′ if and
only if p(u) ∈ V (Gx).

(c) All the vertices of Q′ are moved at the front of Q.

As line 1 is done in Θ(|L(Gx|)) time, and all operations of Property 3, as well as line 2c, are done in
constant time, the expected time complexity is immediate. The expected space complexity follows
immediately from the traversal of Gx described above.



Definition and computation of the two CLBs. For both duplication and loss criteria, we formally
define a cost for a forest F of T n, prove that it is a CLB for the considered criterion, and explain
how it is computed in linear time when a child forest Fx of F is visited. Below, Sx = (Sx1

+ Sx2
)

denotes the branching tree of Fx, I ′(G) denotes the subset {u ∈ V (G) \ L(G) : MF (u) 6= ∅}, and
when the context is unambiguous, S refers to the species tree of F where the mapping MF (u), of a
vertex u ∈ I ′(G), is defined. We denote by kG the number of apparent duplications in G, by kG,F the
number of such apparent duplications whose LCA-mapping is defined in F , and by dG,F the number
of internal vertices of G that are duplications according to F , that is dG,F =

∑

u∈I′(G) d(u, S).

Definition 10. The duplication cost between a forest F of T n and a gene tree G is denoted d(G,F)
and is defined as follows: d(G,F) = dG,F + kG − kG,F . ⋄

Together with Definition 2 and the fact that each apparent duplication u ∈ I(G) is such that
d(u, S) = 1 for any species tree S ∈ Kn, d(G,F) is obviously a CLB for d(G,S). The inconvenient
of this CLB, when considering only the vertices of G that are not apparent duplication, is that it
requires the LCA-mapping of such a vertex to determine if it is a duplicated gene for any species
tree located below the considered forest F . Moreover, it is important to assess the efficiency of this
CLB against the one that does not take advantage of the constant cost induced by the apparent
duplications (such a CLB is equal to dG,F ). Recall that all kG apparent duplications are considered
in the cost d(G,F) of any forest F of T n, which means that the CLB described in Definition 10
can be reduced solely to the non-apparent duplications. Formally, if F is the current visited forest
and S∗ is the best species tree found since the beginning of the traversal of T n, then F is pruned if
and only if dG,F − kG,F ≥ d(G,S∗) − kG. In other words, the advantage given by the kG apparent
duplications present in G can not be evaluated by how large kG is, as the efficiency of the CLB
d(G,F) to cut the subtree T n

F depends on the number of non-apparent duplications induced by F
(i.e. dG,F − kG,F ) and S∗ (i.e. d(G,S∗) − kG).

The corollary below explains how the CLB d(G,F) can be computed with the same complexities
as for the traversal of Gx (see Proposition 2).

Corollary 1. If the duplication cost d(G,F) is given, then d(G,Fx) can be computed in time
Θ(|V (Gx)|) and space O(

∣

∣V (Gx)
∣

∣) + Θ(
∣

∣V (Fx)
∣

∣).

Proof. Let d(Gx) denotes the number of vertex u of G that is a duplication according to Sx and
such that its LCA-mapping is (resp. not) defined in Fx (resp. F), that is MFx

(u) = x, MF(u) = ∅

and d(u, Sx) = 1. Hence, according to Definition 9, u is in Gx. It is then immediate that d(G,Fx) =
d(G,F) + d(Gx), where d(Gx) is computed by the traversal of Gx, and the expected complexities
follow immediately from Proposition 2. To handle apparent duplications, detecting them can be
done during a preprocessing phase, which implies that updating kG,F when visiting a new forest
can be done in time linear in the number of apparent duplications whose mapping is defined.

Definition 11. The loss cost between a forest F of T n and a gene tree G is denoted l(G,F) and
is defined as follows: l(G,F) =

∑

u∈I′(G) l(u, S) +
∑

u∈I(G)\I′(G)(dF (u1) + dF (u2)). ⋄

From Definitions 3 and 5 and Property 2, Corollary 2 below is immediate.

Corollary 2. l(G,F) is a CLB for l(G,S).

Corollary 3. If the loss cost l(G,F) is given, then l(G,Fx) can be computed in time Θ(|V (Gx)|)
and space O(

∣

∣V (Gx)
∣

∣) + Θ(
∣

∣V (Fx)
∣

∣).



Proof. Let l(Gx) denotes the number of vertex u of Gx such that either l(u, Sx) corresponds to
the second case of Definition 3 or Fx is an incremental forest for u (see Definition 8). It is then
immediate that l(G,Fx) = l(G,F)+ l(Gx), where l(Gx) is computed by the traversal of Gx. Because
both cases above can be verified in constant time (Fx is an incremental forest for u if and only if u
is both a leaf and a root of Gx), the expected complexities follow immediately from Proposition 2.

Proposition 1, together with Corollaries 1, 2 and 3, gives the fundamental properties of the
complexity of our Branch-and-Bound algorithm: (1) the exploration of the visited species forests
requires a time linear in the number of these forests, (2) visiting a new species forest while updating
the appropriate CLB requires a time linear in the number of vertices of gene forest whose LCA-
mapping is updated and (3) the total space complexity is linear in the number of considered taxa.
We do not have theoretical properties of the two CLBs we introduced, and we will assess how
efficient they are to cut large subspaces of T n experimentally in Section 4.

Accounting for prior knowledge on the considered species tree. In the context of some prior knowl-
edge on the species tree for the considered n genomes, let S be a multifurcating (non-binary) species
tree that describes such prior and Kn(S) be the subset of Kn that contains each (binary) species
tree that is consistent with S. Such prior information can for example consists in well defined clades
of taxa. The question that we address here is how to define an architecture that allows to exhaus-
tively explore the subset Kn(S)? Note that it can lead to a species tree that is not globally optimal,
but is optimal among the species tree of Kn(S). The solution resides in the use of Definition 7 to
exhaustively enumerate all the binary species trees for the m children of an internal vertex x of
S that is not resolved. Formally, let {t1, t2, . . . , tm} be the set of the m subtrees, where m > 2,
rooted at the children of x. The original architecture T m (see Definition 7) is used to exhaustively
enumerate all the binary species trees for the unresolved vertex x of S as follows: T m is rooted at
the forest {t1, t2, . . . , tm}, and each leaf forest is composed of a single binary tree that contains one
and only one leaf labeled by the subtree ti, for each 1 ≤ i ≤ m.

By recursively applying this process on all the unresolved vertices of S, it is easy to see that
the induced architecture has Kn(S) as its leaf set. Moreover, given that all such unresolved vertices
of S are ordered according to the prefix traversal of S, the time and space complexities for the
exploration of this adapted architecture are the same as in Proposition 1.

4 Experimental results

We considered 1111 gene trees from the TreeFam database [11, 17], more specifically the ones of the
TreeFam-B families that have been manually corrected by experts and contain gene families from 29
eukaryotic genomes. Table 3 (Appendix) lists the considered species, together with their abbrevia-
tions, and Figure 5 (Appendix) describes the size distribution of the gene trees. The corresponding
reference species tree, denoted by S0, is depicted in Appendix (Figure 4) and corresponds to the
NCBI taxonomy tree [19], except that three nodes of the tree were considered as multifurcations
due to different phylogenetic hypothesis regarding the corresponding clades (see [11, 17]).

Study of a subset of 8 species. First, to gain some insight on the whole space of species trees
for a given dataset, we selected n = 8 species from the 29 considered genomes (see Figure 4),
removed from the gene trees all genes from other species, and performed an exhaustive exploration
of the 135135 species trees. The aim is to study the shape of the space Kn according to the three
combinatorial criteria we consider in order to evaluate their performance for phylogenetic inference.
For a species tree S of Kn, c(G,S) denotes the considered cost (either l, d, or m), Smin (resp. Smax)



a tree of Kn that minimizes (resp. maximizes) this cost and cnorm(G,S) the normalized cost over the
range of possible values and defined as follows: cnorm(G,S) = (c(G,S)− c(G,Smin))/(c(G,Smax)−
c(G,Smin)). The similarity between S and the species tree S0 is evaluated by the classical Robinson
and Foulds distance between phylogenetic trees [15, 16], denoted RF (S0, S). For the three costs,
Figures 3 (left) below depicts the distribution of each tree S ∈ Kn according to the normalized cost
lnorm(G,S).
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Fig. 3. (Left) The percentage of species tree S of Kn (y axis) such that 0.05 i ≤ cnorm(G, S) < 0.05(i+1) (x axis) and
(Right) the average, standard deviation, and minimum and maximum values of the Robinson and Foulds distance
with S0 for each such tree. Top: loss cost. Middle: duplication cost. Bottom: mutation cost.

It appears clearly from Table 1 that, on this dataset, the duplication cost seems to be slightly
better than the two other criteria, although in terms of normalized cost, the difference is relatively
marginal. We can also observe that for the loss and mutation cost, the loss cost distribution is
similar to a normal and almost symmetrical distribution with a mean located around 0.5, while the
distribution for the duplication cost is less smooth. Over each species tree S of Kn with the same
normalized cost cnorm(G,S), we also computed the average distance RF (S0, S), and according to
Figure 3 (right), the loss cost is clearly correlated with the R.F. distance to the tree S0, which is
not as clear with the duplication cost. Also note that, due to the fact that losses are more numerous
than duplications, the properties of the mutation cost are very similar to the loss cost. Finally, we



c(G, Smin) c(G, Smax) c(G, S0) RF (S0, Smin)

Loss 3577 35072 5226 (0.05) 3
Dup. 2229 6313 2425 (0.04) 1
Mut. 5812 41355 7651 (0.05) 3

Table 1. Minimum (col. 1) and maximum (col 2.) costs for the loss, duplication, and mutation criteria. Col. 3: costs
of S0, both absolute and normalized. Col. 4: R.F. distance between the optimal solution and S0.

can notice that S0 is close to the optimal species tree, both in terms of duplication and/or loss
events, and in the RF distance.

Study of the whole 29 taxa dataset. Next, we attacked the problem of computing a parsimonious
species tree for the 29 considered genomes. There are about 1036 possible species trees, and the
Branch-and-Bound starting from the root of T n was not completed after a few days of computation.
There are two reasons for this problem: first, during the traversal of T n, the CLB of the newly
visited forest is computed in linear time; second, the subtree of T n induced by the pruned forests
is not small enough for an exhaustive exploration.

We then decided to reduce the number of considered species trees by integrating prior informa-
tion on the seeked species tree. For our experiments, we defined such prior information from the
species tree S0 as follows. A species subset denoted π ⊆ Λ(S0) is said to be consistent with a given
gene tree G if and only if its intersection π′ with Λ(G) is consistent with each vertex u ∈ V (G),
that is either π′ ⊆ Λ(Gu), Λ(Gu) ⊆ π′, or Λ(Gu) ∩ π′ = ∅. Hence, the more a clade is respected
among the considered gene trees, the more probable it is present in an optimal solution of the GTP
problem. We found 19 clades, which can either be disjoint or included one into the other, that are
consistent with a majority of the 1111 gene trees, and defined four species trees, denoted Si for
i ∈ {1, 2, 3, 4}, as follows: S1 is consistent with all and only all the 19 clades, and for i = 2, 3, 4,
one clade is removed from Si−1 to define Si (see Appendix, Figures 6 and 7). Recall that Kn(Si)
denotes the subset of species trees that are consistent with a given tree Si (see Section 3), then the
five subsets of Kn are embedded as follows: Kn(Si) ⊂ Kn(Si+1), for 0 ≤ i ≤ 3. Hence, Kn(S0) (resp.
Kn(S4)) is the smallest (resp. largest) set of species trees, and similarly is the induced space tree
defined at the end of Section 3, which is used to solve the GTP problem on the considered reduced
set of species trees. For S1, S2, S3, and S4, the number of possible species trees is respectively
127575, 893025, 9823275 and 29469825. For the three usual criteria, we applied the Branch-and-
Bound to solve the GTP problem first on the smallest set Kn(S0), and then the optimal solution
for Kn(Si), with increasing index i from 0 to 3, was then used as the first upper bound for the
Branch-and-Bound applied on Kn(Si+1). For each criterion and each constrained species tree, the
result are summarized in Table 2 below.

For the duplication criterion, the best solution found in Kn(S1) and Kn(S2) is the same and
is depicted in Figure 8 (see Appendix A), and the Branch-and-Bound applied on Kn(S3) (resp.
Kn(S4)) was not completed after 4 days CPU time, and this is caused (as previously explained)
by the slow rise of the CLB for the number of duplications according to the one for the losses.
Moreover, among all the 20942 internal vertices, there is 3693 apparent duplications. For the loss
and mutation criteria and the four sets Kn(Si), the optimal solution is the same and is depicted in
Figure 8. For both criteria, this means that the optimal solution for the GTP applied on the largest
set Kn(S4) can be found solely by applying the Branch-and-Bound on the smallest set Kn(S1),
although that its optimality status requires the use of Kn(S4). The Robinson and Foulds distance
between the two optimal solutions for loss (i.e. and mutation) (in Kn(S4)) and duplication (in



Optimal cost in Kn(Si) CPU time (in seconds)

S0 S1 . . . S4 S0 S1 S2 S3 S4

Loss 22464 21257 54 3147 7897 26444 59997
Mut 27691 26328 49 3944 10697 39742 94429
Dup 5140 4941 50 7296 32117 ? ?

Table 2. For each criterion and each constrained species tree Si, the optimal cost for the GTP problem applied on
the set of allowed solutions Kn(Si) and the CPU time used by the Branch-and-bound. For each of the three criteria,
the optimal cost in Kn(Si), for i = 1, 2, 3, and 4, is the same. The ’?’ character indicates that the Branch-and-bound
process was not terminated after 4 days, where the optimal solution of Kn(S2) was the best solution found so far for
both process.

Kn(S2)) criteria is 4, while their distance with S0 (i.e. the reference species tree) respectively is 5
and 3.

We applied Duptree [21], which is based on a Randomized hill climbing heuristic, on our 1111
gene trees to solve the GTP problem for the duplication criterion. First, when the topological
constraints of S4 are used to reduce the search space (that is Kn(S4) as for our Branch-and-Bound),
duptree found the same solution as our approach applied on Kn(S2) (see Table 2) within solely 2
seconds and 6 rSPRs. Second, when the program is applied without prior knowledge on the species
phylogeny, the same solution is found within 3 seconds and 8 rSPRs.

5 Conclusion

In the current work, we described a Branch-and-Bound algorithm that seeks a parsimonious species
tree, given a set of gene trees, according to the number of duplications and/or losses. Up to now,
two (resp. one) Fixed-Parameter Tractable algorithms exists for the duplication (resp. mutation)
criterion [13, 20] (resp. [13]), and there is no exact approach for the loss criterion, which appears to be
relevant for phylogenetic inference according to [4]. Whereas these FPT algorithms are not suitable
for phylogenetic inference problems with several genomes, we demonstrated the applicability of our
Branch-and-Bound on a large dataset of 29 eukaryotic genomes to obtain the optimal species tree
given prior constraints on the species phylogeny. For both loss and mutation criteria, our approach
found the optimal species tree on a real and large dataset. Moreover, as Duptree does not consider
the number of duplications and losses, it can not be used to validate the optimal solution (for the
mutation criterion) proposed in this work.

Our results show that the species phylogeny in TreeFam is very close (but different) to the
optimal species tree. This suggests that near-optimal species trees are worth to be considered when
looking for a species tree from gene families, and that methods that explore the neighborhood of
a given species tree (here the optimal one) are pertinent. Local-search heuristics such as the ones
described in [1, 2] are natural candidates. However, it is important to recall that such approaches,
in order to assess the computational quality of the produced species trees, need to be complemented
by methods that compute an optimal species tree (or an optimal among a large set of considered
species tree), which we described here.

A possible direction for further research is to consider multiple gene duplication episodes, during
which a large portion of an organism’s genome is duplicated. Given a species tree S and a set of
gene trees, [3] proposed the first exact and efficient algorithm that locates in S gene duplication
events in such a way that the number of multiple gene duplication episodes is minimized. However,
when the species phylogeny is unknown, inferring the most parsimonious species tree according to
the multiple gene duplication criterion is still an open problem.
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A Appendix. Additional tables and figures

Arath Arabidopsis thaliana Orysa Oryza sativa
Schpo Schizosaccharomyces pombe Yeast Saccharomyces cerevisiae
Schma Schistosoma mansoni Caebr Caenorhabditis briggsae
Caeel Caenorhabditis elegans Caere Caenorhabditis remanei
Aedae Aedes aegypti Anoga Anopheles gambiae
Drome Drosophila melanogaster Drops Drosophila pseudoobscura
Cioin Ciona intestinalis Ciosa Ciona savignyi
Brare Danio rerio Fugru Fugu rubripes
Tetng Tetraodon nigroviridis Gasac Gasterosteus aculeatus
Oryla Oryzias latipes Xentr Xenopus tropicalis
Chick Gallus gallus Mondo Monodelphis domestica
Bovin Bos taurus Canfa Canis familiaris
Mouse Mus musculus Rat Rattus norvegicus
Macmu Macaca mulatta Human Homo sapiens
Pantr Pan troglodytes

Table 3. The list of the 29 considered species, with their names (second and fourth columns) and their abbreviations
(first and third columns).
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Fig. 4. The species tree for the 29 animals considered in the experiments. Species in boldface corresponds to the eight
species used for an exhaustive exploration of the space Kn, where n = 8 (See Section 4).
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Fig. 5. Distribution of the 1111 gene trees (y axis) according to their number of leaves (x axis).
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Fig. 6. Constrained species trees S1 (left) and S2 (right), where the integer beside each vertex indicates the number
of trees among the 1111 considered ones that are not consistents with the corresponding clade and the integer in
boldface in S1 (resp. S2) corresonds to the clade that is not present in S2 (resp. S3).
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Fig. 7. Constrained species trees S3 (left) and S4 (right).
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Fig. 8. Left (resp. right): optimal solution for the duplication (resp. loss and mutation) criterion. The character
’*’ indicates a clade that is misplaced according to the proposed phylogeny (Figure 4) and the taxa in boldface point
out the disagreements between the two optimal solutions.


