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Abstract

We present an O(n) Breadth-First Search algorithm for trapezoid graphs, which takes as input a trapezoid model and
any priority order on the vertices. Our algorithm is the first able to produce any BFS-tree, and not only one specific
to the model given as input, within this complexity. Moreover, it produces all the shortest paths from the root of the
BFS-tree to the other vertices of the graph.
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1. Introduction

Breadth-First Search (BFS for short) is probably the
most famous graph algorithm, and also one of the most
basic ones. Nevertheless, it turns out to be useful in many
more sophisticated graph algorithms and in many con-
texts. One may think that there is nothing to do to lower
the O(n + m) time complexity of the BFS algorithm, as,
anyway, every edge of the graph should be traversed in
order to perform the search correctly. This is not required
for some well-structured graph classes that admit O(n)
space representations, such as trapezoid graphs.

This class is a proper generalization of both permu-
tation graphs and interval graphs, which are extensively
studied; the main reason being that they naturally appear
in many contexts such as scheduling, genomics, phylogeny
and archeology [6]. Moreover, because of their strong but
non-trivial structure, they also constitute a case worth
to be studied before generalizing results to wider graph
classes.

Here, we design the first algorithm able to produce any
Breadth-First Search of a trapezoid graph, regardless of
the model given as input, in O(n) time. This is achieved by
making part of the input a priority order σ on the vertices,
according to which the ties between neighbors of the vertex
currently examined by the BFS will be broken. Moreover,
our algorithm gives not only one but all possible shortest
paths between any vertex of the graph and the root of the
BFS-tree, which is a feature of high interest in practice for
many problems.
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Efficient implementations of BFS for these classes of
graphs have already been studied: [11] showed that BFS
can be implemented in O(n) time for permutation graphs,
but their algorithm can only produce a single BFS-tree,
which is not general at all and reflects the particular struc-
ture of their algorithm: it is always a caterpillar (a tree
with a unique internal node at each level) rooted at the ver-
tex whose upper endpoint is leftmost in the permutation
diagram. [7] improved this result by giving an algorithm,
having the same complexity, that is general to trapezoid
graphs and can produce a tree T rooted at any vertex r
of the graph. But again, the tree T produced is always
the same and is strongly constrained: it is the union of
four caterpillars having the same root r. [3] showed that
a parallel algorithm achieves a better complexity for the
problem, but the tree produced is exactly the same as in
[11]. Concerning Depth-First Search, the situation is sim-
ilar: [11, 4] give efficient implementations (O(n) time in
[4]) but can only produce a single tree whose structure is
very particular among all possible trees.

2. Preliminaries

Without loss of generality, we can make some restric-
tions and simplifications in the description of our algo-
rithm. First, unlike the standard BFS algorithm, the tree
first produced by our algorithm is unordered, that is, there
is no order on the children of a vertex in the tree, while, in
the standard BFS-tree, these children are ordered accord-
ing to their discovery time in the search. In order to get
the desired ordered tree, we can proceed as follows at the
end of the algorithm. We parse order σ from the first to
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the last vertex, and for each vertex, we remove it from the
list of children of its father and insert it again at the end
of this list. This takes O(n) time and orders the lists of
children with regard to σ, as desired. As a consequence,
in the following, we only consider the construction of the
unordered tree.

In addition, we focus on the case where the input graph
is connected. If it is not, our algorithm performs the BFS
of the connected component of the first vertex in σ, with-
out any modification of its description. Then, the algo-
rithm can go on starting from the first non-visited vertex
of σ. Finding this vertex can be done in constant time
by maintaining along the algorithm the list of non-visited
vertices, ordered with regard to σ.

Definitions and Notations. All graphs considered here are
finite, undirected, loopless and simple. V is the vertex
set of graph G and E is its edge set, which we denote by
G = (V,E). Throughout the paper, n stands for |V |. An
edge between vertices x and y will be arbitrarily denoted
xy or yx. The neighborhood of x is denoted N(x). T
denotes the BFS-tree to be produced. The depth of node
u in T is its distance from the root. The set of vertices at
depth i in T will be denoted T i (T 0 contains only the root
of T ). For a linear ordering σ on a set S, we denote min(σ)
(resp. max(σ)) for the first (resp. last) element of σ. For
s ∈ S, s− (resp. s+) denotes for the predecessor (resp.
successor) of s in σ. The interval of σ made of vertices
between a and b, with a ≤σ b, is denoted Ja, bK. The list L
containing elements x1, . . . , xk is denoted L = [x1, . . . , xk].
The concatenation of two lists L1, L2 is denoted L1.L2.

A trapezoid model of a graph G is a set of trapezoids
between two horizontal lines (two endpoints on the upper
line and two endpoints on the lower line) together with
a one to one mapping onto the set of vertices of G, such
that there is an edge between vertices x and y in G iff their
corresponding trapezoids intersect. A trapezoid graph is
a graph admitting such a model. Note that a trapezoid
model can be computed from the graph in time O(n2) us-
ing the algorithm of [9]. The class remains the same if
the trapezoids are required to be closed and to have dis-
tinct integer endpoints between 1 and 2n on both lines.
All models considered here satisfy this restriction. More
precisely, in the following, a trapezoid model will be con-
sidered as a couple (π1, π2) of orders on some subsets of
trapezoid endpoints of the model: π1 is the left to right
order of the endpoints on the upper line, and π2 is the left
to right order of the endpoints on the bottom line. Each
vertex v is associated with the four endpoints of its corre-
sponding trapezoid, which are denoted vl1, vr1, vl2 and vr2 for
the top-left, top-right, bottom-left and bottom-right end-
point respectively. This provides an efficient encoding of
the graph that takes O(n) space and allows to answer adja-
cency queries between any pair of vertices in O(1) time. In
the sequel, we often identify vertices and their associated
trapezoids.

BuildTree(π1, π2, σ)
1. x← min(σ); ord(x)← 1; color x in gray

2. initialize I and Γ with (xl1, x
r
1, x

l
2, x

r
2)

3. For all y ∈ N(x) Do
4. parent(y)← x; color y in gray; update(Γ, y)
5. While I 6= Γ Do
6. Γnew ← Γ; Ex← ∅
7. If αl1 <π1 a

l
1 Then PutInTree(αl1, a

l−
1 , π1, l, Q

l
1)

8. If βr1 >π1 b
r
1 Then PutInTree(βr1 , b

r+
1 , π1, r,Q

r
1)

9. If γl2 <π2 c
l
2 Then PutInTree(γl2, c

l−
2 , π2, l, Q

l
2)

10. If δr2 >π2 d
r
2 Then PutInTree(δr2 , d

r+
2 , π2, r,Q

r
2)

11. AssignOrd(Ql1, Q
r
1, Q

l
2, Q

r
2); color Ex in gray

12. I ← Γ; Γ← Γnew

Figure 1: Routine BuildTree. Lists Ql1, Qr1, Ql2, Qr2 and Ex are
global variables, as well as I = (al1, b

r
1, c

l
2, d

r
2), Γ = (αl1, β

r
1 , γ

l
2, δ

r
2)

and Γnew which contain quadruplets of endpoints.

PutInTree(usidek , vtk, πk, side,Q)
1. p← u; Q← [p]

2. For ysk from usidek to vtk in πk Do
3. If y white & s 6= side & p <prior parent(y) Then
4. parent(y)← p; Ex← Ex.[y]; update(Γnew, y)
5. If y gray & s = side & y <prior p Then
6. p← y; Q← [p].Q

Figure 2: Routine PutInTree. side and t belongs to {l, r}, usidek
and vtk are two endpoints, and Q is a list. Γnew and Ex are global
variables initialized in Routine BuildTree. Note that according to
our previously introduced notation u is the vertex corresponding to
endpoint usidek and y is the vertex corresponding to endpoint ysk.

3. Breadth-First Search of Trapezoid Graphs

The input of our algorithm is a trapezoid graph G (as-
sumed to be connected w.l.o.g.) given by its model (π1, π2)
and a linear order σ on V . The first vertices of σ are those
having highest priority, in particular, the first visited ver-
tex is the minimum of σ. We first focus our attention on
the algorithm building the unordered BFS-tree T . The
structure computing and storing all shortest paths from
the root of T to the other vertices of the graph is easy to
design afterwards. This is done in Section 3.3.

3.1. Overview of the algorithm
Our algorithm computes the unordered BFS-tree T of

G level by level: iteration number i of the main loop of
Routine BuildTree (Line 5, cf. Fig. 1) builds level T i+1.
To that purpose, we parse the model of the graph pieces
by pieces as explained below. We maintain along the algo-
rithm two intervals in each of the two orders of the model:
Γ1 is the minimal interval of π1 containing the upper end-
points of the vertices placed in the tree so far, namely
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⋃
0≤j≤i T

j , and I1 is the interval containing the upper end-
points of the vertices of

⋃
0≤j≤i−1 T

j ; intervals Γ2 and I2
are similarly defined in π2 for lower endpoints.

Each level of the tree is built by parsing the endpoints
in Γ1\I1 and Γ2\I2, which are split in four intervals, thanks
to the four calls to Routine PutInTree (Lines 7 to 10 of
BuildTree). The new vertices encountered during this
parse are exactly those of T i+1, which are then assigned
their parent in T . It is important to note that our algo-
rithm does not discover the vertices in the same order as
the standard BFS would do. Despite of this, we are able
to determine, for each vertex, its correct parent in the
BFS-tree, thanks to function ord. ord numbers a subset
of vertices in each level of the tree computed so far, except
in the last one T i. Its essential property is that, at the
beginning of the ith iteration of the main loop, every ver-
tex of level T i−1 having children in T is numbered and the
order induced by ord on these vertices is exactly the order
in which the standard BFS discovers them. Together with
order σ, it allows to determine the parent of the vertices
of level T i+1 and to assign their ord value to vertices of
T i (at least to those having children in T ). Note that a
vertex may be assigned a parent twice by our algorithm:
in this case, the second one is the correct one.

Before the algorithm starts, for every vertex y, parent(y)
is initialized with ⊥, and y is colored white. During the
algorithm, vertices are colored gray once they have been
assigned their correct parent in the tree. This is done at
the end of the main loop of Routine BuildTree (Line 11).
We denote by (al1, b

r
1) (resp. (αl1, β

r
1), (cl2, d

r
2), (γl2, δ

r
2)) the

left and right endpoint of I1 (resp. Γ1, I2, Γ2). Remark
that this notation is coherent, since it is a straightforward
property of our algorithm that the left (resp. right) end-
point of any of these four intervals is always the left (resp.
right) endpoint of some trapezoid of the model. For y ∈ V
and a quadruplet X = (l1, r1, l2, r2) of endpoints such
that l1, r1 ∈ π1 and l2, r2 ∈ π2, procedure update(X, y)
executes the instructions lj ← minπj

(lj , ylj) and rj ←
maxπj

(rj , yrj ), for j ∈ {1, 2}. Function ord takes inte-
ger values which are assigned by Procedure AssignOrd.
Order <prior is defined by u <prior v iff ord(parent(u)) <
ord(parent(v)) or

(
ord(parent(u)) = ord(parent(v)) and

u <σ v
)
. By convention, element ⊥ is the greatest for

order <prior.
The arguments of AssignOrd are four lists (not neces-

sarily disjoint), which are merged by the procedure into a
single one Qglob, without repetition and sorted according
to order <prior (defined above), the first element of the list
being the least one for <prior. Once list Qglob is obtained,
for each vertex x contained in it, the procedure assigns
ord(x) with the rank of x in Qglob.

3.2. Correctness
Our proof of correctness is based on two invariants.

The first one below shows that the set of new vertices
discovered during an iteration of the main loop of Rou-
tine BuildTree is exactly the next level of the BFS-tree

(i) (ii)

(iii) (iv)

Figure 3: A trapezoid graph (i), its trapezoid model (ii) labeled as in
the beginning of the second iteration of the main loop of Algorithm 1,
and two BFS trees: one respecting priority order (xβδdbeaα) (iii) and
the other respecting priority order (xβδbdeaα) (iv).

T . The second one implies that those vertices are assigned
their correct parent in T by the algorithm.

Invariant 1. For any i ≥ 2, at the beginning of the ith

iteration of the main loop, the following properties hold.

1. I1 (resp. I2) is the minimal interval of π1 (resp. π2)
containing both upper endpoints (resp. lower end-
points) of the vertices of

⋃
0≤j≤i−1 T

j; and
2. Γ1 (resp. Γ2) is the minimal interval of π1 (resp. π2)

containing both upper endpoints (resp. lower end-
points) of the vertices of

⋃
0≤j≤i T

j; and
3. set

⋃
0≤j≤i T

j is equal to the set of vertices with at
least one endpoint in I1 ∪ I2, and is exactly the set
of gray vertices.

Remark: For i = 1, the first two properties of Invariant 1
are satisfied, but even though

⋃
0≤j≤i T

j is the set of gray
vertices, Property 3 is not satisfied.

Nevertheless, for any i ≥ 2 the three properties hold.
In order to prove it, we will need the following lemma.

Lemma 1. Let i ≥ 1. At the beginning of the ith iteration
of the main loop of Routine BuildTree, if the conditions of
Invariant 1 are satisfied or if i = 1, then the set of white
vertices with at least one endpoint in Γ1 ∪ Γ2 is exactly
T i+1.

Proof. Let y be a white vertex with at least one endpoint
ysk in Γ1 ∪ Γ2. If Invariant 1 is satisfied, then from Prop-
erty 3, vertices having at least one endpoint in I1 ∪ I2 are
gray. This is still true for i = 1 since those vertices belong
to N(x). It follows that the endpoint ysk of y belonging to
Γ1 ∪ Γ2 is in (Γ1 \ I1)∪ (Γ2 \ I2). Let us examine the case
where k = 1 and ys1 is such that br1 <π1 y

s
1 <π1 β

r
1 (illus-

trated in Figure 3(ii) with ysk = el1), the other cases are
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similar. Since y is white, y 6∈ T i and therefore is not ad-
jacent to any vertex of T i−1, which implies that yl1 >π1 b

r
1

and yl2 >π2 d
r
2. Moreover, since br1 6= βr1 , Property 1 and 2

of the invariant ensures that β ∈ T i. If i 6= 1, from Prop-
erty 3 of the invariant, β has at least one endpoint in I1∪I2.
It follows that βl1 <π1 b

r
1 or βl2 <π2 d

r
2. In the former case,

since βl1 <π1 y
l
1 <π1 β

r
1 , y is adjacent to β. In the latter

case, since yl1 <π1 β
r
1 and βl2 <π2 d

r
2 <π2 y

l
2, y is again

adjacent to β. If i = 1, β ∈ T1 is adjacent to x, which
implies that βl1 <π1 x

r
1 or βl2 <π1 x

r
2. As above, it follows

that β is adjacent to y. Thus, in every case, y ∈ T i+1.
Conversely, let y ∈ T i+1. From Property 3 of the in-

variant, y is white, which is also clearly the case if i = 1,
since y 6∈ N(x). Suppose for contradiction that y has no
endpoint in Γ1 ∪ Γ2. Since y is not adjacent to x, the two
endpoints of y are on the same side of Γ1 (resp. Γ2) in π1

(resp. π2). Moreover, the endpoints of y cannot lie on one
side of Γ1 in π1 and on the other side of Γ2 in π2. Since,
from Property 2 of the invariant, vertices of T i have both
upper endpoints in Γ1 and both lower endpoints in Γ2, it
follows that y is not adjacent to any vertex of T i. This is
a contradiction with the fact that y ∈ T i+1. Thus, y has
at least one endpoint in Γ1 ∪ Γ2. 2

Let us now prove that Invariant 1 holds for any i ≥ 2.
Let i ≥ 1 such that either i = 1 or the invariant holds, we
show that the invariant holds for i + 1. Since Property 2
holds at the beginning of the ith iteration of the loop and
since I is set to the old value of Γ at the end of the loop, it
follows that Property 1 holds at the end of the ith iteration.
¿From Lemma 1, the white vertices encountered during
the ith iteration of the loop are exactly the vertices of
T i+1. Moreover, at the end of the loop, Γ is assigned
the value of Γnew that has been computed by the calls to
update(Γnew, y) at Line 4 of PutInTree when the endpoint
of a new white vertex is encountered. Consequently, at the
end of the ith iteration, Γ1 and Γ2 are the least intervals
containing both endpoints of vertices of T i+1, respectively
in π1 and π2. Thus, Property 2 holds. Lemma 1 ensures
that, at the beginning of the ith iteration, the set of vertices
with at least one endpoint in Γ1∪Γ2 is

⋃
0≤j≤i+1 T

j . Since,
at the end of the loop, I is set to the old value of Γ and
vertices of T i+1 are colored in gray, then Property 3 holds
at the end of the ith iteration. And so does the invariant
at the beginning of the i+ 1th iteration, which proves that
it holds for any i ≥ 2.

Invariant 2 claims that function ord gives the order in
which the standard BFS algorithm discovers vertices of the
graph. In order to prove it, we need the following lemma,
which characterizes the neighborhood in T i of the vertices
of T i+1 during the ith execution of the main loop.

Lemma 2. Let i ≥ 1, let y be a vertex of T i+1 and z be a
vertex of T i. y and z are adjacent iff there exists some call
to PutInTree(usidek , vtk, πk, side,Q) occurred during the ith

iteration of the main loop such that the non-side endpoint

of y and the side endpoint of z both lie between usidek and
vtk in πk, and z’s endpoint is visited before y’s.

Before proving Lemma 2, it is worth to emphasize on
the fact that during a call to PutInTree(usidek , vtk, πk, side,
Q), we examine only the side endpoints of gray vertices
(Line 5) and the non-side endpoints of white vertices (Line 3).
All nodes encountered, white or gray, can be correctly han-
dled regardless of their other endpoint. This is possible
because the non-examined endpoint appears only in calls
where the examined endpoint does as well, as stated by
the following remark.

Remark: During any execution of PutInTree(usidek , vtk, πk,
side,Q), if the non-side (resp. side) endpoint of a gray
(resp. white) vertex is encountered, then its side (resp.
non-side) endpoint is encountered too during the same
execution of PutInTree.

Indeed, consider, without loss of generality, the case of
the first call to PutInTree (Line 7 of BuildTree) between
αl1 and al−1 . If the right endpoint zr1 of a gray vertex
z is encountered, since all the endpoints of gray vertices
in π1 lie within Γ1 (see Invariant 1), then necessarily the
left endpoint zl1 of z is such that αl1 ≤π1 z

l
1 <π1 z

r
1 and

therefore has been encountered before during the current
execution of PutInTree. Similarly, let y be a white vertex
whose left endpoint yl1 is encountered. We have αl1 <π1

yl1 <π1 a
l
1. Since y is white, y ∈ T i+1 and y is not adjacent

to x. Consequently, if i = 1, since al1 = xl1, we have yr1 <π1

al1. If i ≥ 2, since y has no endpoint in I1 (see Invariant 1)
and is not adjacent to x, we have again yr1 <π1 a

l
1. Thus,

in every case, the right endpoint yr1 of y is encountered
later in the current execution of PutInTree.

Proof of Lemma 2: For any i ≥ 1, vertices having
an endpoint in I1 ∪ I2 are gray at the beginning of the
ith iteration of the loop. Since y ∈ T i+1 is white, y has
no endpoints in I1 ∪ I2. Moreover, since y ∈ T i+1 and
i + 1 ≥ 2, y is not adjacent to x. It follows that either
br1 <π1 y

l
1 and dr2 <π2 y

l
2, or yr1 <π1 a

l
1 and yr2 <π2 c

l
2. Let

us consider the first case, the second one is symmetric.
If y and z are adjacent, then clearly yl1 <π1 z

r
1 or yl2 <π2

zr2 . Without loss of generality, assume that yl1 <π1 zr1 .
Since z ∈ T i, from Property 2 of Invariant 1, zr1 ∈ Γ1, and
so yl1 ∈ Γ1. Then, the endpoints of y and z are encountered
in a same execution of PutInTree, and z is visited first
within this execution.

Conversely, if y and z are not adjacent, the trapezoid
of z lies either entirely to the right of the trapezoid of
y, or entirely to its left. The former case is impossible as
z ∈ T i is adjacent to some vertex of T i−1, whose trapezoid,
which is included in I1∪I2 from Property 1 of Invariant 1,
lies entirely to the left of y. In the latter case, where the
trapezoid of z lies entirely to the left of the trapezoid of y,
no endpoint of z is visited before an endpoint of y in any
execution of Routine PutInTree, which ends the proof of
the lemma. �
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Invariant 2. For any i ≥ 1, at the beginning of the ith

iteration of the main loop, the subset Oi−1 of vertices of
T i−1 for which ord is defined contains all the vertices of
T i−1 that have children in T . And the order induced by
ord on vertices of Oi−1 is exactly the order of visit of those
vertices by the standard BFS algorithm.

Proof. Since ord(x) is initialized to 1 at Line 1 of Routine
BuildTree, the invariant clearly holds for i = 1. Suppose
it holds for some i ≥ 1. Then, since ord is defined for
every parent of the vertices of T i, order <prior is defined
for all vertices of T i and is precisely the BFS order of visit
of those vertices. And since, during the ith iteration of
the loop, AssignOrd assigns the values of ord to a subset,
denoted Oi, of vertices of T i by increasing <prior, it follows
that the order induced by ord on Oi is the order of visit
by the standard BFS algorithm.

Now, let z ∈ T i\Oi, we will show that z has no children
in T . In other words, we want to prove that z is not the
parent of any of its neighbors y ∈ T i+1. From Lemma 2,
since y and z are adjacent, they are encountered in a same
execution of PutInTree occurred during the ith iteration
of the main loop. Assume without loss of generality that it
was in the first call to PutInTree (Line 7 of BuildTree),
between αl1 and al−1 , the other cases are similar. By defini-
tion, since z 6∈ Oi, it is not assigned a value for ord in the
ith iteration of the main loop. Then, necessarily, z is not
placed in Q at Line 6 of PutInTree, which implies that
the test of Line 5 is negative. Since z ∈ T i, z is already
gray when this test is performed. It follows that the test is
negative because there exists some gray vertex u ∈ T i such
that αl1 ≤π1 u

l
1 <π1 z

l
1 and u <prior z. Lemma 2 states

that the side endpoint of z is visited before the non-side
endpoint of y in the considered execution of PutInTree.
That is, in the present case, zl1 <π1 y

r
1. This implies that

ul1 <π1 y
r
1, and Lemma 2 concludes that y is also adjacent

to u. Finally, since u <prior z, z is not the parent of y. 2

We can now prove the correctness of our algorithm.
Clearly, the first two levels of the tree (T 0 and T 1) are
properly built by the initialization phase of Routine Build-
Tree (Line 1 to 4). Lemma 1 shows that, for all i ≥
1, the vertices discovered during the ith iteration of the
main loop of BuildTree are exactly those of T i+1. In
order to complete the proof of correctness, we have to
show that these vertices are assigned their correct par-
ent in T . Parent assignments occur at Line 4 of Rou-
tine PutInTree(usidek , vtk, πk, side,Q). Every vertex of T i+1

(white vertices) is assigned a parent. Indeed, when the
non-side endpoint of a white vertex y is encountered, the
test of Line 3 is true iff p <prior parent(y); and in partic-
ular, this is true if y has no parent (i.e. parent(y) = ⊥),
since, by definition, ⊥ is the greatest element for <prior.

The parent assigned to vertex y is p, which is initialized
with u at Line 1 and is maintained to be the least gray
node for order <prior among the gray nodes whose side
endpoint has been visited so far during the current execu-

tion of PutInTree (Lines 5 and 6). From its definition, and
from Invariant 2, order <prior is exactly the order in which
the standard BFS algorithm discovers the vertices of T i.
Then, from Lemma 2, p is the first vertex visited by the
standard BFS algorithm among the vertices of T i ∩ J ad-
jacent to x, where J is the set of vertices with an endpoint
lying between usidek and vtk in πk. The non-side endpoint
of a white vertex y may be encountered in two different
executions of Routine PutInTree, once in each of the two
orders π1 and π2. The test p <prior parent(y) of Line 3 of
PutInTree guarantees that it is assigned a new parent p
iff p has been visited by the standard BFS algorithm be-
fore the previously assigned parent of y in T . Since from
Lemma 2, every neighbor z ∈ T i of y is encountered in
some call to PutInTree where y is encountered too, it fol-
lows that y is assigned as parent the first vertex visited by
the standard BFS algorithm among vertices of T i ∩N(y).
Thus, the tree T produced by our algorithm is the correct
BFS-tree.

3.3. Computing all shortest paths
In the standard algorithm, it is possible to obtain,

within O(n + m) time complexity, a data-structure en-
coding all the shortest paths from the root x of T to the
other vertices of the graph. This is done by storing, for
each vertex y, the subset Sy of its neighbors that belong
to a shortest path from y to x. This set Sy is nothing but
the set of vertices of level T i−1, with T i being the level of
y, that are adjacent to y. In the standard BFS algorithm,
set Sy is stored in a list, and the total space needed to do
so for all vertices of the graph is O(n+m).

In our case, due to the structure of the intersection
model, sets Sy can be stored more efficiently, within a to-
tal O(n) space. Moreover, this data-structure can be com-
puted without penalizing the complexity of our algorithm.

Indeed, from Lemma 2, set Sy is exactly the set of
vertices of T i−1 whose side endpoint is encountered be-
fore the non-side endpoint of y in each of the executions
of PutInTree where y is encountered, during the i − 1th

iteration of the main loop. Thus, we can store Sy in the fol-
lowing way. For each level T i, we build four lists Lic, with
c ∈ J1, 4K, corresponding to the four calls to PutInTree
occurred during the i − 1th iteration. We build Lic by
pushing on a stack (different for each call) each vertex of
T i−1 whose side endpoint is encountered during execution
number c of PutInTree. When we find the non-side end-
point of some vertex y of T i, y is assigned a pointer to the
cell of list Lic (under construction) which is the current top
of the stack. Doing so, we are able to know which are the
vertices of T i−1 whose side endpoint has been encountered
before the non-side endpoint of y in the present execution
of PutInTree. In this way, at the end of the computa-
tion, we can get set Sy in O(|Sy|) time by merging the at
most two partial lists given by the pointers assigned to y
towards lists Lic, c ∈ J1, 4K.

It is worth to note that set Sy can be handled by a
constant space description consisting of the mentioned (at
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most) two pointers. The total size of the four lists assigned
to level T i is dominated by the number of vertices in T i−1.
Thus the size of the additional space needed to store the
whole data structure is O(n).

In practice, it may be desirable to follow the shortest
paths in the other way: from the root of T to the other
vertices of G. To this purpose one must store, for each ver-
tex at level i, its set of neighbors at level i+1. This can be
done very similarly to what precedes. During the ith iter-
ation of the loop, for each execution of PutInTree, build
the list of white vertices encountered by pushing them on
a stack. When a gray vertex z is encountered, assign to
it a pointer to the top of the stack: the neighbors of z at
level i+1 are the white vertices that are above this pointer
in the stack (Lemma 2).

3.4. Complexity
First of all, note that the computation of the lists stor-

ing all shortest paths from nodes of the graphs to the root
x of T only requires constant additive extra-time in the
treatment of an endpoint. This does not change the over-
all complexity of the algorithm and, for sake of simplicity,
we do not take it into account anymore in the complexity
analysis.

The complexity of Routine BuildTree is O(n). Let B
denote (Γ1 \ I1)∪ (Γ2 \ I2). At Line 3, we can get N(x) in
O(n) time, by scanning π1 and π2, and the running time of
the initialization loop (Lines 3 and 4) is O(|N(x)|) = O(n).
In Routine PutInTree(usidek , vtk, πk, side,Q), all instruc-
tions takeO(1) time, and the routine runs inO(|Jusidek , vtkK|)
time. This gives an O(|B|) time bound for the four calls
of Lines 7 to 10 of BuildTree. Coloring list Ex also takes
O(|B|) time. The complexity of procedure AssignOrd
is a crucial point. It is important to note that any list
Q′ ∈ {Ql1, Qr1, Ql2, Qr2} being one of its arguments is al-
ready sorted according to order <prior. This is a property
of PutInTree, which produces Q′, guaranteed by the test
y <prior p at Line 5 and the affectations of Line 6. It
follows that AssignOrd can be implemented to merge the
four lists in a single one, sorted according to <prior, in
O(|Ql1| + |Qr1| + |Ql2| + |Qr2|) = O(|B|) time, using classic
technique for union of sorted lists. Finally, the running
time of an iteration of the main loop is O(|B|), and since
all the B’s considered until the end of the loop are pairwise
disjoint, it follows that the main loop, as well as Routine
BuildTree, runs in O(n) time.

4. Conclusion and Perspectives

We showed that it is possible to achieve a complete
and unrestricted BFS of a trapezoid graph in O(n) time. It
opens the way to improvement and simplification of several
problems on this class of graphs, which make use of a BFS
step in their solutions. Let us cite as example All Pairs
Shortest Paths [10] and its variations (Next-to-Shortest [1],
Almost Shortest [5]), biconnected components [8] and be-
tweeness [2].

Another perspective is to generalize these results to
other graph classes such as circular-arc graphs and circle
graphs for example, which are the circular generalizations
of respectively interval graphs and permutation graphs.
We believe that only few work is left to be done for solv-
ing the problem in O(n) time for circular-arc graphs, using
the fact that deleting a vertex and its neighborhood from
a circular-arc graph results in an interval graph. On the
other hand, the case of circle graphs seems to be challeng-
ing, and solving it would certainly lead to new insight on
the structure of this class of graphs.
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