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Abstract

Conditional preference networks (CP-nets) have recently emerged as a popular language capable

of representing ordinal preference relations in a compact and structured manner. In this paper,

we investigate the problem of learning CP-nets in the well-known model of exact identification

with equivalence and membership queries. The goal is to identify a target preference ordering

with a binary-valued CP-net by interacting with the user through a small number of queries. Each

example supplied by the user or the learner is a preference statement on a pair of outcomes.

In this model, we show that acyclic CP-nets are not learnable with equivalence queries alone,

even if the examples are restricted to swaps for which dominance testing takes linear time. By

contrast, acyclic CP-nets are what is called attribute-efficiently learnable when both equivalence

queries and membership queries are available: we indeed provide a learning algorithm whose

query complexity is linear in the description size of the target concept, but only logarithmic in

the total number of attributes. Interestingly, similar properties are derived for tree-structured CP-

nets in the presence of arbitrary examples. Our learning algorithms are shown to be quasi-optimal

by deriving lower bounds on the VC-dimension of CP-nets. In a nutshell, our results reveal that

active queries are required for efficiently learning CP-nets in large multi-attribute domains.

Key words: preference elicitation, conditional preference network (CP-net), query-directed

learning, attribute-efficient learning

1. Introduction

The spectrum of AI applications that resort on the ability to reason about preferences is

extremely wide, ranging from configuration software and recommender systems to autonomous

agents and group decision-making. Since many, if not most, of these applications are defined over

large, multi-attribute domains, a key challenge in preference research is to develop representation

languages and elicitation techniques that cope with the exponential size of the outcome space.

Among the different languages that have been devised in the literature for representing and

reasoning about preferences, conditional preference networks (CP-nets) have received a great

deal of attention by providing a compact and natural representation of ordinal preferences in
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multi-attribute domains [8–12, 17–19, 22]. Briefly, a CP-net is a graph in which each node is

labeled with a table describing the user’s preference over alternative values of this node given

different values of the parent nodes. For example, the entry Jb ∧ Pb : S r ≻ S b might state that,

all other things being equal, I prefer a red shirt to a black one if the color for both the jacket and

the pants is black. The semantics of a CP-net is defined by a dominance ordering on the outcome

space, derived from such reading of entries in the tables. Based on this relation, a key reasoning

task is dominance testing: given a CP-net N and a pair of outcomes (o, o′), determine whether o

dominates o′, according to the dominance ordering induced by N.

Ideally, in preference elicitation with CP-nets, the learner should simply “fill the tables” by

asking the user how her preference over the values of one node depends on the values of its

parents. Yet, in practice, eliciting preferences is far from being easy because the dependency

graph is generally not known in advance: the learner must therefore seek the interdependencies

between attributes and identify a minimal set of parents for each target node. The problem is

exacerbated still further by the fact that real-world applications typically involve many irrelevant

attributes. For instance, it is not uncommon in recommender systems to describe products using

thousands of variables, with the expectation that only a small fraction of these are crucial for

specifying preferences [6, 34]. The learner is thus required to select, within a large collection of

attributes, a relatively small subset over which the network will be specified.

Such considerations bring into sharp focus the need for query learning algorithms that aim at

extracting CP-nets under the guidance of the user through an appropriate sequence of queries. A

widely adopted framework for studying this issue is the model of exact learning with equivalence

and membership queries, introduced by Angluin [1]. Briefly, a membership query allows the

learner to ask the classification of any example, while an equivalence query allows the learner to

ask whether its hypothesized concept is the correct one; in case of mistake, the learner is given a

counterexample, that is, an instance for which the hypothesis and the target concept give different

classifications. The utility of this model lies in the fact that rich concept classes, including Horn

theories [3], decision trees [13], some description logics [21], and several fragments of first-order

logic [4, 25], have been shown to be learnable with both equivalence queries and membership

queries, while in weaker versions one can prove superpolynomial lower bounds.

In the setting of preference elicitation, the target concept is a dominance ordering on the

outcome space. Each example is a preference statement on some pair of outcomes. For a mem-

bership query, the learner supplies an example (o, o′) to the user and is told whether o dominates

o′ (is a member of the target preference relation), or not. For an equivalence query, the learner

presents a CP-net N, and either is told that N correctly identifies the target concept, or it is given

a counterexample (o, o′). The goal is to identify the target concept using as few resources as

possible, where resources refer both to the runtime and the number of queries.

In essence, equivalence queries capture a form of passive elicitation which can be simulated

in several ways. For instance, in a batch or offline scenario, each equivalence query can be

simulated by cycling through a given set of examples supplied by the user until we find a coun-

terexample to our current CP-net. If no counterexamples are found, then the elicitation process

terminates. In an online scenario, each equivalence query can be simulated by observing the

user behavior: a prediction mistake occurs if she makes a choice among several outcomes that

contradicts our current CP-net. Importantly, these simulations can never require more cycles, or

make more prediction mistakes, than the worst-case number of equivalence queries in the learn-

ing algorithm. By contrast, membership queries capture a form of active elicitation by allowing

us to ask about examples of our own choice. In both scenarios, membership queries can be used

to revise the current CP-net in light of the observed counterexample.
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From a practical perspective, one must take into account the fact that outcomes are typically

not comparable with an equivalent cost. Indeed, as observed by Green and Srinivasan [23], users

can meaningfully compare outcomes if they differ only on very few attributes. Similarly, for

the learner, this task can be arduous because dominance testing is generally NP-hard, even for

acyclic CP-nets. Based on these considerations, our learnability results are defined in terms of a

concept class in which the target concept is chosen, and an instance class that circumscribes the

set of examples used by equivalence and membership queries.

The key message to be gleaned from this paper is that active learning is required for cor-

rect and efficient extraction of preference networks in binary-valued domains. On the one hand,

acyclic CP-nets are not learnable with equivalence queries alone, while on the other, they are

learnable with equivalence and membership queries, provided that the instance class is restricted

to simple outcome pairs for which dominance testing takes linear time, namely, pairs of outcomes

which differ over only one attribute. Interestingly, a similar property holds for tree-structured

CP-nets by extending the instance class to arbitrary examples. When membership queries are

available, we provide attribute-efficient learning algorithms for which the query complexity is

linear in the size of the minimal CP-net that identifies the target concept, and logarithmic in the

total number of attributes. By establishing lower bounds on the Vapnik-Chervonenkis (VC) di-

mension of acyclic CP-nets and tree-structured CP-nets, our query learning algorithm are shown

to be optimal up to a logarithmic number of queries. In a nutshell, such encouraging results pave

the way for fast elicitation techniques capable of extracting “small” CP-nets in “large” domains.

This paper is organized as follows. After introducing the necessary background in CP-nets in

Section 2 and query-directed learning in Section 3, we examine the learnability issue of acyclic

CP-nets and tree CP-nets in Section 4 and 5, respectively. The quasi-optimality of our query

learning algorithms is shown in Section 6, where we derive lower bounds on the VC-dimension

of preference networks. We conclude in Section 7 by discussing related work and mentioning

some further results and open problems.

2. Conditional Preference Networks

Throughout this study, we shall concentrate on preference learning problems where the user’s

domain is described by a set of Boolean variables Xn = {x1, · · · , xn}, with n > 0.

As usual, we refer to xi and xi as literals. Given a literal p, we denote by p the opposite of p.

For example, if pi is xi, then pi is xi. A term t is a conjunction of literals. By var(t) we denote the

set of variables occurring in t. We say that a term t is maximal for a subset of variables Y ⊆ Xn if

var(t) = Y . For example, the term x1x2 is maximal for {x1, x2}, but not for {x1, x2, x3}.

2.1. Syntax of CP-nets

A conditional preference rule (CP-rule) on a variable x is an expression of the form t : p ≻ p,

where p is a literal of x and t is a term such that x < var(t). Such a rule captures the statement

“given that t holds, the value p is preferred to the value p for the variable x, all other things being

equal”. Borrowing the usual terminology of production rule systems, the preference p ≻ p and

the term t are respectively called the head and the body of the CP-rule t : p ≻ p.

A conditional preference table (CP-table) on a variable x with respect to a set Y ⊆ Xn \ {x}

is a set of CP-rules on x that associates at most one rule t : p ≻ p to each maximal term t for Y .

The CP-table is complete if exactly one rule t : p ≻ p is associated to each maximal term t for Y .

For example, the set {x1 : x2≻ x2} is an incomplete CP-table on x2 with respect to {x1}, while the

extended set {x1 : x2≻ x2, x1 : x2≻ x2} is a complete CP-table on x2 with respect to {x1}.
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Variable Literals

Coat trench (x1) and parka (x1)

Hat large (x2) and small (x2)

Jacket black (x3) and white (x3)

Pants black (x4) and white (x4)

Shirt red (x5) and white (x5)

Shoes heels (x6) and flats (x6)

Jacket Pants

Shirt

x3 ≻ x3 x4 ≻ x4

x3 ∧ x4 : x5 ≻ x5

x3 ∧ x4 : x5 ≻ x5

x3 ∧ x4 : x5 ≻ x5

x3 ∧ x4 : x5 ≻ x5

Figure 1: The domain and CP-net of “evening dress”

A conditional preference network (CP-net) over Xn is a labeled digraph N in which the set

var(N) of nodes is a subset of Xn, and such that each node x ∈ var(N) is annotated with a CP-

table cpt(x) on x with respect to the set par(x) of parents of x in the graph. The variables in

var(N) are called relevant, and the variables in Xn \ var(N) are called irrelevant. The CP-net is

complete if every relevant variable is annotated with a complete CP-table.

A CP-net is acyclic if its digraph is acyclic, and tree-structured if its digraph forms a forest,

that is, a disjoint union of trees. Note that a tree-structured CP-net is an acyclic preference

network where each node has at most one parent.

Recall that the size of a graph is defined by the number e of its edges. By extension, we

define the size |N | of a CP-net N to be r + e, where r is the total number of rules occurring in N,

and e is the number of edges in the graph of N.

These different notions are illustrated in the following examples.

Example 1. Let us consider a variant of the evening dress domain [9]. Susan is a robopsychol-

ogist who spends most of her time at the robot manufactory. Occasionally, she is invited to

evening ceremonies, but she is always late at work and must quickly change her outfits at home

before getting to the ceremony. Fortunately, her domestic robot can help her to choose, among

the available clean clothes, a combination that she would like the most. The robot does not know

a priori which are Susan’s outfit preferences, but it is equipped with a learning module that can

extract these preferences by observing her behavior and asking simple questions.

The variables standing for the different clothes are described in the left part of Figure 1. Only

three of them are relevant to Susan’s preferences: they are associated to the jacket, pants, and

shirt. Susan unconditionally prefers black to white as the color of both the jacket (x3 ≻ x3)

and the pants (x4 ≻ x4), while her preference for a red shirt versus a white one depends on the

combination of jacket and pants. Namely, a red shirt (x5) brings a touch of color if the jacket and

pants are the same colour, but a white shirt (x5) appears to be more sober if they are different.

The target CP-net N is depicted on the right part of Figure 1. N is defined on 3 relevant

variables, and it is acyclic and complete. Since it contains 2 edges and 6 rules, its size is |N | = 8.

Example 2. Let us turn to a variant of the flight reservation domain [12] using our favorite

character. As a research scientist, Susan often assists to conferences in different countries, by

taking a flight from the USA. In this context, Susan’s domestic robot can select a travel that
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Variable Literals

Airline British Airways (x1) and Delta (x1)

Ticket class business (x2) vs economy (x2) class

Departure day one day (x3) vs two days (x3) before

Seat window (x4) and aisle (x4)

Stop-over direct (x5) vs indirect (x5) flight

Departure time day (x6) vs night (x6) flight

Day

Time

Class Stop

x3 ≻ x3

x3 : x6 ≻ x6

x3 : x6 ≻ x6

x6 : x2 ≻ x2

x6 : x2 ≻ x2

x6 : x5 ≻ x5

Figure 2: The domain and CP-net of “flight reservation”

optimizes her preference over the flight options, given the available resources at the reservation

moment. Again, the robot does not know a priori which are Susan’s preferences, but it can learn

them by observing previous flight reservations and asking few questions.

The attributes standing for the different flight options are described in the left part of Figure 2.

The relevant variables are the ticket class, departure day, departure time, and stop-over. Susan

unconditionally prefers to take a flight leaving one day, instead of two days, before the conference

(x3 ≻ x3). If Susan leaves two days before the conference, then she prefers an evening flight (x6)

because she can work longer during the departure day. On the other hand, if she leaves one day

before the conference, then she prefers a day flight (x6) because she would like to rest few hours

in the hotel before the conference opening. On a night flight, Susan prefers a business class (x2)

and a direct flight (x5) because she expects to sleep uninterruptedly in a comfortable seat. Yet, on

a day flight, Susan prefers an economy class (x2) because she is awake and does not need a large

seat to read papers, but she doesn’t have strict preferences on the stop-over: sometimes she likes

to stretch her legs a bit in a transit airport during long travels, while at other times she prefers a

direct flight in order to minimize the overall travel time.

The resulting CP-net N is depicted on the right part of Figure 2. N is defined on |var(N)| = 4

relevant variables, and it is tree-structured and incomplete. Because it contains 3 edges and 6

rules, the size of the network is |N | = 9.

2.2. Semantics of CP-nets

An outcome o is a maximal term for Xn = {x1, · · · , xn} or, equivalently, a map that assigns a

Boolean value to each variable xi in Xn. The space of all outcomes generated from Xn is denoted

by On, and we write 0 (resp. 1) for the outcome in On that assigns 0 (resp. 1) to every variable in

Xn. Given a variable xi and an outcome o, we write o(i) for the value which o assigns to xi.

Given an outcome o and a term t, we write o[t] for the outcome obtained by making o agree

with t, that is, for all i, o[t](i) = t(i) if xi ∈ var(t), and o[t](i) = o(i) otherwise. For example, if

o = x1x2x3 and t = x1x2, then o[t] = x1x2x3. An outcome o satisfies a term t if o = o[t].
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A preference relation ≻ is an irreflexive and transitive binary relation on On. Based on these

notions, the expression o ≻ o′ states that o is preferred to o′ according to ≻.

The ceteris paribus semantics of a CP-rule t : p ≻ p on a variable x can be described

as follows: if an outcome o satisfies t and assigns the value p to x, then it is preferred to the

outcome o′ which differs from o only in that is assigns the value p to x. In formal terms, we say

that o is preferred to o′ for t : p ≻ p if o = o[t ∧ p] and o′ = o[p]. In this case, the pair (o, o′) is

called a model of the rule t : p ≻ p.

By extending this semantics to preference networks, we say that o dominates o′ for a given

CP-net N if there is a sequence (o1, . . . , om) such that o1 = o′, om = o and for each i : 1 ≤ i < m,

(oi+1, oi) is a model of some CP-rule of N. In this case, (o, o′) is called a model of N, and

(o1, . . . , om) an improving sequence from o′ to o.

For example, in the “evening dress” scenario, we observe that if Susan is wearing black pants

(x4) then she prefers a black jacket (x3) and a white shirt (x5) to a white jacket (x3) and a red shirt

(x5), all other things being equal. In particular, we can infer the improving sequence:

(x1x2x3x4x5x6, x1x2x3x4x5x6, x1x2x3x4x5x6)

The set of all models of N is denoted by ≻N . A CP-net N is consistent if there is no outcome

o which dominates itself, i.e. o ≻N o. If N is consistent, then ≻N is a preference relation over the

outcome space On. In general, preference networks are not always consistent because they can

induce cycles in improving sequences. However, as observed by Boutilier et al. [9], any acyclic

CP-net is guaranteed to be consistent.

Finally, given two CP-nets N and N′, we say that N subsumes N′ if for any CP-rule t′ : p ≻ p

in N′, there is a CP-rule t : p ≻ p in N such that t′ ⊆ t. Clearly, if N subsumes N′ then we must

have both var(N′) ⊆ var(N) and |N′| ≤ |N |. Yet, it is not generally the case that ≻N′ is included

in ≻N (or vice-versa) when N subsumes N′, because missing rules remove some models, while

shorter rules add some. A CP-net N is minimal if there is no distinct CP-net N′ subsumed by N

and for which ≻N = ≻N′ . For example, the CP-nets specified in Figures 1 and 2 are minimal.

3. Exact Learning with Queries

The learning criterion expected in this study is that of exact identification, which is achieved

if the learner can infer a CP-net that correctly represents the target concept. In this setting, the

learning problems under consideration are specified by an instance class and a concept class.

An example of size n > 0 is a couple of outcomes (o, o′) ∈ On × On. An instance class is a

subset In of On × On. By I =
⋃

n>0 In, we denote the instance class graded by example size n.

For example, the instance class of swaps (also known as flips) is the family of all outcome pairs

that differ in the value of exactly one variable. In other words, (o, o′) is a swap if o′ = o[p] and

o = o′[p] for some literal p.

A concept is a preference relation ≻ over the outcome space On. A representation class is a

set Nn of CP-nets over Xn. A concept ≻ is representable by Nn if there is a CP-net N ∈ Nn such

that ≻N = ≻. The concept class of Nn is the set Cn
N

of all concepts that are representable by Nn.

The description size of a concept ≻ in Cn
N

is the minimum of |N | over all representations N of ≻

in Nn. By CN =
⋃

n>0 C
n
N

, we denote the concept class graded by example size n. For example,

the class C of acyclic CP-nets is the family of all preference relations that are representable by

an acyclic CP-net.
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Now, let CN be a concept class, I be an instance class, and ≻ be a target concept in Cn
N

.

The learner may extract information about ≻ using two types of queries. A membership query

MQ over I takes an example (o, o′) ∈ In and returns ❨❡s if o ≻ o′, and ◆♦ otherwise1. An

equivalence query EQ over I takes a CP-net N ∈ Nn, and returns ❨❡s if N is a representation of

≻, or returns a counterexample (o, o′) ∈ In otherwise. The counterexample (o, o′) is positive if

o ≻ o′ (and hence o ⊁N o′), and negative if o ⊁ o′ (and hence o ≻N o′). It is important to note

that in general, o ⊁ o′ does not imply o′ ≻ o (o and o′ may be incomparable).

A minimal requirement for a learning algorithm is to identify the target concept using a

polynomial number of queries.

Definition 1 (query learning). An algorithm A is a query learning algorithm for a concept class

CN with respect to an instance class I if, for any input dimension n > 0, there are two polynomi-

als p and q such that, for any target concept ≻ in Cn
N

, after p(n, s) membership and equivalence

queries over In, and total running time in q(n, s), A outputs a representation N ∈ Nn of ≻, where

s is the description size of ≻ in Cn
N

. The polynomial p is called the query complexity of A.

A more selective requirement, which arises naturally when the number of irrelevant attributes

is large, is that the number of queries be polynomial in the description size of the target concept

rather than in the total number of attributes [14].

Definition 2 (attribute efficiency). A query-learning algorithm is attribute-efficient if its query

complexity depends polynomially on the description size s of the target concept ≻, but only

polylogarithmically on the input dimension n.

We say that a concept class CN is attribute-efficiently learnable with respect to an instance

class I, if there is an attribute-efficient query learning algorithm for CN with respect to I.

Clearly, the strength of query-directed learning lies in membership queries, which model not

only the interaction with a user, but also the careful crafting of experiments by a learner in order

to observe the response of the user.

In order to show that a concept class of CP-nets is not learnable with equivalence queries

only, we use the technique of approximate fingerprints introduced by Angluin [2].

Intuitively, a concept class C has approximate fingerprints if it includes a set Γ such that for

each hypothesis N in C supplied by the learner, the user can choose a counterexample for N that

eliminates only a superpolynomially small fraction of candidate concepts in Γ. By repeating this

process, the learner cannot be certain of the target concept in Γ after only polynomially many

equivalence queries.

Formally, let CN be a concept class, I be an instance class, and ≻ be a target concept in Cn
N

.

Additionally, let Γn
N

be a nonempty subset of Cn
N

. Then an example (o, o′) in In is called an

α-fingerprint of Γn
N

according to ≻ if the proportion of hypotheses in Γn
N

which agree with ≻ on

(o, o′) is less than α, i.e.

|{≻′∈ Γn
N

: o ≻′ o′ iff o ≻ o′}|

|Γn
N
|

< α

Intuitively, an adversary will use α-fingerprints as poorly informative counterexamples to equiv-

alence queries.

1We follow the literature on learning in using the term “membership queries”, asking whether the couple (o, o′) is in

the target preference relation, but they can also be seen as “dominance queries”.
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We can now apply the notion of approximate fingerprints to the setting of CP-nets.2

Definition 3 (approximate fingerprints). A concept class CN has approximate fingerprints with

respect to an instance class I if, for any polynomial p(n), Cn
N

includes a subset Γn
N

such that

for any sufficiently large n, Γn
N

contains at least two concepts, and for all concepts ≻ in Cn
N

of

description size bounded by p(n), there is an example in In which is a 1
p(n)

-fingerprint of Γn
N

according to ≻.

4. Learning Acyclic CP-nets with Queries

Acyclic CP-nets take a central part in preference research by providing the right level of

expressivity for many real-world applications, while remaining tractable for certain reasoning

tasks such as outcome optimization [9, 18]. We write C (resp. C) for the class of concepts

which are representable by an acyclic CP-net (resp. a complete acyclic CP-net).

Before exploring the learnability issue of acyclic CP-nets, we introduce two useful properties

related to their structure. Recall that two outcomes form a swap if they differ in the value of

exactly one variable. Such examples correspond to simple situations of the form “I prefer this

car red than white”, where the color is one of the multiple attributes describing cars.

The first property states that, in acyclic CP-nets, the preference on swaps can be retrieved in

linear time by simple rule matching.

Lemma 1. Let N be an acyclic CP-net and (o, o′) be a swap. Then o ≻N o′ if and only if there is

a CP-rule r in N such that (o, o′) is a model of r.

Proof. The if direction is immediate. Conversely, suppose o ≻N o′. Then, by definition of ≻N ,

there is an improving sequence from o′ to o in N. Assume without loss of generality that o

satisfies x1 and o′ = o[x1]. Using the suffix fixing rule [9, Section 5.1], we can also assume

that the sequence affects only x1 and its ascendants in N. By acyclicity, one of those ascendants,

say xk, is modified but has none of its parents modified in the sequence. However, xk cannot

be modified back to its original value, because otherwise this would imply the existence of two

opposite rules t : xk ≻ xk and t : xk ≻ xk in the CP-table of xk. By applying the same strategy to

all remaining ascendants of x1, it follows that only x1 is modified, which implies that N includes

a rule of the form t : x1 ≻ x1, as desired.

The second property states that acyclic CP-nets have a canonical representation, which is

minimal with respect to size.

Lemma 2. Let ≻ be a concept in C. Then there is a unique acyclic CP-net N that represents ≻

and has minimal size |N |.

Proof. Let N be a representation of ≻ satisfying the following condition: for any variables x and

y, if y is a parent of x in N, then there is a literal p of x and an example (o, o′) such that exactly

one of (o[y ∧ p], o′[y ∧ p]) and (o[y ∧ p], o′[y ∧ p]) is not a model of N. This amounts to say

that y is a relevant parent of x. Clearly, such a representation exists: take any representation and

remove all irrelevant parents.

2In the original definition [2], approximate fingerprints are defined according to two polynomials p1 and p2, which

respectively bound the size of target concepts and the size of examples. So here p1(n) = p(n) and p2(n) = n.
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We now show that any representation N′ of ≻ subsumes N, from what the claim will follow

since |N | is monotonic with respect to subsumption. So, let r ∈ N be a rule of the form t : p ≻ p.

Any pair (o, o′) for which o = o[t ∧ p] and o′ = o[p] is a model of r. Since ≻N = ≻N′ , by

Lemma 1, (o, o′) must be a model of some rule r′ in N′ of the form t′ : p ≻ p. If t * t′, then

there is a variable y ∈ var(t) \ var(t′) such that (o[y], o′[y]) and (o[y], o′[y]) are both models of r′,

hence of N′. But by definition of N, exactly one of these pairs is not a model of N, contradicting

the fact that ≻N = ≻N′ . Therefore t ⊆ t′, and hence, N′ subsumes N.

4.1. Learning Acyclic CP-nets with Equivalence Queries Alone

Based on the above properties, we show that complete acyclic CP-nets have approximate

fingerprints, even if the supplied examples are restricted to swaps.

Theorem 1. The class C has approximate fingerprints with respect to swap examples.

Proof. For n > 0, let Γn


be the class of all concepts represented by a CP-net N∗ with3 log n root

nodes x j pointing to the same fixed child node x1. Each table cpt(x j) has the rule x j ≻ x j. The

table cpt(x1) includes one rule s : x1 ≻ x1, where s is the conjunction of all positive literals in

par(x1), and n − 1 rules s′ : x1 ≻ x1, where s′ is any maximal term of par(x1) with at least one

negative literal. Clearly N∗ is acyclic and complete. Furthermore, |Γn

| =

(

n−1
log n

)

.

Now, let p(n) = nk for some constant k, and consider any concept ≻N in Cn


for which the

size of the minimal representation N is at most p(n) (in particular, N has at most p(n) rules). The

fingerprint (o, o′) is defined as follows.

First, if N does not include any rule of the form t : x1 ≻ x1, then o is the outcome 1 and o′

is set to o[x1]. Clearly, o ⊁N o′ but o ≻ o′ for any concept ≻ in Γn


. Therefore, (o, o′) is an

α-fingerprint of Γn


for any α > 0.

Now, if N includes a rule of the form t : x1 ≻ x1, then o is any outcome satisfying t ∧ x1

and containing k log n positive literals excluding x1, and o′ is set to o[x1]. Note that |t| ≤ k log n.

Indeed, we know that |N| ≤ nk, and because N is complete, its CP-table on x1 contains 2|t| entries.

Thus, o can be constructed by satisfying t first and filling the rest as necessary (for n large enough

to ensure n − k log n ≥ k log n in case t is, say, all 0). Clearly, o ≻N o′ and o has k log n positive

literals (excluding x1). Hence, the number of concepts ≻ in Γn


which agree with N on (o, o′) is
(

k log n

log n

)

. Using the fact that a−i
b−i
≤ a

b
for b ≥ a, i ≥ 0,

|{≻∈ Γn


: o ≻ o′}|

|Γn

|

=

(

k log n

log n

)/(

n − 1

log n

)

=
(k log n)!

(k log n − log n)!

(n − 1 − log n)!

(n − 1)!

=

log n−1
∏

i=0

k log n − i

n − 1 − i

≤
(k log n)log n

(n − 1)log n

Taking logarithms, this proportion is less than 1
nk if and only if n−1

log n
> k2k, which is true for

sufficiently large n.

3Notation log with always refer to base 2.
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Thus, by applying Angluin’s result [2, Theorem 1], we derive the following corollary.

Corollary 1. Complete acyclic CP-nets are not learnable with equivalence queries only.

4.2. Learning Acyclic CP-nets with Equivalence and Membership Queries

When membership queries are available, we can provide an attribute-efficient algorithm for

learning acyclic, and possibly incomplete, CP-nets, provided that the supplied counterexamples

are restricted to swaps. Importantly, observe that when there is a counterexample, there is always

a swap counterexample (this follows from the semantics of CP-nets).

As specified in Algorithm 1, the learner starts from the empty CP-net N = ∅, and iteratively

updates N by asking equivalence queries. On seeing a counterexample (o, o′), the learner first

checks whether N includes a rule that covers (o, o′). If this is indeed the case, then (o, o′) is

negative, and the body of that rule is refined using membership queries. In all other cases, (o, o′)

must be positive, and a new rule is added to the table of xi in order to cover this example. If, in

addition, the swap (o, o′) “violates” some rule r in N, that is, (o′, o) is a model of r, then again a

new parent of xi is found using membership queries.

In our algorithm, each rule r of the form t : pi ≻ pi in N is associated with an outcome or,

called the support of r, and such that (or[pi], or[pi]) is a model of r. This support keeps in cache

the positive counterexample from which the rule was built.

The key routine SP finds a new parent of some misclassifying rule r, using only

a logarithmic number of membership queries. Using the support or of r and the last counterex-

ample (o, o′), it operates a binary search on the sequence (o1, · · · , on) where o j is formed by the

first j literals occurring in or and the last n − j literals occurring in o. The invariant maintained

by the algorithm is that oa[pi] ⊁ oa[pi] but ob[pi] ≻ ob[pi] in the target concept. So, when the

search has been narrowed to a = b − 1, flipping the value of xb in oa is enough for changing the

preference, from what it follows that xb is a parent of the variable of pi.

Interestingly, we observe that membership queries are restricted to swap examples, so as to

minimize the cognitive effort spent by the user in comparing outcomes. These considerations are

illustrated in the following example.

Example 3. Let us carry on with the “evening dress” scenario introduced above. Suppose that

each time Susan is invited to a ceremony, she informs her domestic robot to choose a suitable

outfit. As a helpful assistant, the robot selects an “optimal” combination given (1) the CP-net

that it has learnt so far, and (2) the fact that for some categories of clothing, only one option is

available because the other is not clean enough.

When Susan gets home, she cannot afford the time to inspect every aspect of the combination

before going to the ceremony. Notably, if the combination is not suitable, Susan changes only

one item of clothing and wears the resulting outfit. Notice that in this case, the swap (o, o′)

formed by the initial combination o′ and the resulting outfit o is a counterexample to the robot’s

hypothesis N. Then, during the following morning, the robot is allowed to ask a few membership

queries in order to refine its hypothesis.

Digressing momentarily from the problem of learning Susan’s preferences, it is important

to keep in mind that the task of constructing an optimal extension o′ of a set of predetermined

literals t given an acyclic CP-net N can be performed in linear time [9, Section 3.1]: start from t

and extend it by sweeping through the network N from top to bottom, setting each variable to its

preferred value given the instantiation of its parents, and choosing arbitrarily if the rule is absent;

finally, for each remaining (irrelevant) attribute, take an arbitrary value of the variable.

10



Algorithm 1: Learning Acyclic CP-nets

N ← ∅1

while EQ(N) , ❨❡s do2

let (o, o′) be the counterexample returned by EQ(N)3

let xi be the variable such that pi ∈ o and pi ∈ o′4

if (o, o′) is a model of some rule 〈r, or〉 in N then5

/∗ The counterexample is negative ∗/

x j ← SP(xi, pi, o, or, 0, n)6

par(xi)← par(xi) ∪ {x j}7

expand the body of each rule 〈r′, or′〉 in cpt(xi) with the literal of x j in or′8

else

/∗ The counterexample is positive ∗/

add the rule 〈t : pi ≻ pi, o〉 to N where t is the projection of o onto par(xi)9

if (o′, o) is a model of some rule 〈r, or〉 in N then10

x j ← SP(xi, pi, o
′, or, 0, n)11

par(xi)← par(xi) ∪ {x j}12

expand the body of each rule 〈r′, or′〉 in cpt(xi) with the literal of x j in or′13

return N14

Procedure SP(xi, pi, o, o
′, a, b)

if a = b − 1 then return xb15

j← ⌊(a + b)/2⌋16

o j ← o[t j] where t j is the term formed by the first j literals occurring in o′17

if MQ(o j[pi], o j[pi]) = ❨❡s then18

return SP(xi, pi, o, o
′, a, j)19

else

return SP(xi, pi, o, o
′, j, b)20

We now return to our learning problem: suppose that the current hypothesis N consists in a

single rule x3 ≻ x3 stating that a black jacket is preferred to a white one (Figure 3a). In addition,

suppose that during the day of the ceremony all clothes are clean, except the white pants (x4).

An optimal extension o′ of t = x4 with respect to N is x1x2x3x4x5x6. Clearly, o′ does not match

Susan’s preferences because a red shirt (x5) is preferred to a white one (x5) when the colors

of the jacket and the pants are identical. The modified outcome o is thus x1x2x3x4x5x6. The

resulting swap (o, o′) is therefore a positive counterexample to N, and hence, the robot expands

its hypothesis with the rule x5 ≻ x5 (Figure 3b), and stores the support or = x1x2x3x4x5x6.

Suppose that during the day of the next ceremony, all clothes are clean, except the black

pants (x4). Here, an optimal extension o′ of x4 with respect to N is x1x2x3x4x5x6. Again, o′ is

not suitable because a white shirt (x5) is preferred to a red one (x5) when the colors of the jacket

and the pants are different. The modified outcome o is therefore x1x2x3x4x5x6. We remark here

11



Jacket

x3 ≻ x3

(a)

Jacket

x3 ≻ x3

Shirt

x5 ≻ x5

(b)

Jacket Pants

Shirt

x3 ≻ x3

x4 : x5 ≻ x5

x4 : x5 ≻ x5

(c)

Figure 3: Learning the CP-net of “evening dress”

that the pair (o, o′) is a positive counterexample to N, but the reverse pair (o′, o) is a model of

x5 ≻ x5. Thus, the robot must refine the body of this rule. In doing so, it can identify the parent

x4 of x5 using only two membership queries. Indeed, a first call of the routine SP

with the outcomes o′ and or, the literal x5, and the bounds a = 0 and b = 6, gives j = 3,

t j = x1 ∧ x2 ∧ x3, o j = o′[t j] = x1x2x3x4x5x6, hence a membership query is asked on the swap:

(x1x2x3x4x5x6, x1x2x3x4x5x6)

After receiving a negative answer, the routine SP is called again with the bounds

a = 3 and b = 6, yielding a membership query on the swap

(x1x2x3x4x5x6, x1x2x3x4x5x6)

Since the answer is positive, a last call to SP takes place, with the bounds a = 3

and b = 4, and leaves us with the variable x4. Based on this new parent of x5, the robot can refine

its rule x5 ≻ x5 into x4 : x5 ≻ x5, using the support or, and add the rule x4 : x5 ≻ x5 using the

example (o, o′) (Figure 3c).

As shown in the lemma below, the routine SP is guaranteed to find a new parent

in the rule r, by maintaining the invariant that for each explored subsequence (oa, · · · , ob), we

have both oa[pi]⊁oa[pi] and ob[pi]≻ob[pi] in the target concept.

Lemma 3. Let ≻ be a concept of C, oa, ob be two outcomes, and pi, pi be a pair of opposite

literals for some variable xi. If we have oa[pi] ⊁ oa[pi] and ob[pi] ≻ ob[pi], then there is a parent

x j of xi in the minimal representation N∗ of ≻ whose value is different in oa and ob.

Proof. Consider the sequence of outcomes (o0, · · · , on) such that o j = oa[t j], and where t j is

the conjunction of the first j literals in ob. Since o0 = oa and on = ob, there is some j > 0 such

that o j−1[pi] ⊁ o j−1[pi] and o j[pi] ≻ o j[pi]. Consequently, there is a rule t : pi ≻ pi in N∗ such

that o j satisfies t but o j−1 does not. Since they differ only on x j, it follows that x j ∈ var(t).

We now prove that our query learning algorithm is correct, by showing that it maintains the

invariant that the learned hypothesis is subsumed by the target representation.

12



Lemma 4. Let ≻ be a target concept in the class C. Then Algorithm 1 maintains an acyclic

CP-net N which is always subsumed by the minimal representation N∗ of ≻.

Proof. Initially, N = ∅, so the property holds. Now, consider an iteration of the main loop and

suppose by the inductive hypothesis that N is subsumed by N∗ before calling EQ.

If N includes a rule r of the form t : pi ≻ pi for which o = o[t ∧ pi] and o′ = o[pi], then by

Lemma 1 o ≻N o′ holds, so the counterexample is negative (o ⊁ o′). By construction, for the

support or of r we also have or = or[t ∧ pi], and or ≻ or[pi]. So by Lemma 3, SP

returns a parent x j of xi in N∗. Now, let r′ be any rule of the form t′ : p′
i
≻ p

′
i in N. Since the

support or′ of r′ satisfies or′ [p′
i
] ≻ or′ [p

′
i], by the inductive hypothesis, there is a rule t∗ : p′

i
≻ p

′
i

in N∗ such that t′ ⊆ t∗ and or′ satisfies t∗. This together with the fact that x j is a parent of xi in

N∗ ensures t′ ∪ {or′ ( j)} ⊆ t∗, so the invariant is preserved.

Conversely, if N includes no rule as above, then by Lemma 1 o ≻N o′ does not hold, so

the counterexample is positive. Consider the rule t : pi ≻ pi added to N. Since (o, o′) is a

positive counterexample, by Lemma 1, it follows that N∗ includes a rule t∗ : pi ≻ pi for which

o = o[t∗ ∧ pi] and o′ = o[pi]. So t ⊆ t∗, and the invariant is preserved.

Finally, if o satisfies t for some rule t : pi ≻ pi in N, then (o′, o) is a negative counterexample

for this rule, so SP returns a parent x j of xi in N∗ just as in the first case, and again

the invariant is preserved.

With these properties in hand, we can now turn to the complexity of Algorithm 1. Concerning

equivalence queries, each counterexample allows us to find a new rule t : pi ≻ pi or a new

parent x j of some variable in the minimal representation N∗ of the target concept. Because the

hypothesis N is always subsumed by N∗, this can happen at most |N∗| times. For membership

queries, at most ⌈log n⌉ of these are used in each call of SP, which always uncovers a

new parent of some variable. So the number of these queries is at most e⌈log n⌉.

Finally, because the running time of our algorithm is essentially linear in the number of

queries and the number of variables, we can derive the following result.

Theorem 2. Acyclic CP-nets are attribute-efficiently learnable from equivalence and member-

ship queries over swaps: for any n > 0, any target concept ≻ in Cn


can be identified in polyno-

mial time using at most |N∗| + 1 equivalence queries and e⌈log n⌉ membership queries, where e

is the number of edges in the minimal representation N∗ of ≻.

5. Learning Tree CP-nets with Queries

Binary-valued tree-structured CP-nets constitute a restricted, yet important, class of pref-

erence networks for which dominance testing on arbitrary pairs of outcomes is solvable in

quadratic time using a backtrack-free search technique [9]. It is therefore legitimate to study

the learnability issues of this class in the general setting where the examples supplied to the

learner are arbitrary preference situations.

In the following, we write C for the class of all concepts representable by a tree-structured

CP-net (or tree CP-net for short) .

5.1. Learning Tree CP-nets with Equivalence Queries Alone

We first show that in the presence of arbitrary examples, tree CP-nets have approximate

fingerprints, even if they are restricted to a single chain.
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Theorem 3. The class C has approximate fingerprints with respect to arbitrary outcome pairs.

Proof. We assume without loss of generality that n is even to avoid floors and ceilings. To

each permutation π of (x1, · · · , xn) we associate the smallest set of rules Nπ defined as follows:

xπ(1) ≻ xπ(1) is in Nπ, and for each i > 1, xπ(i−1) : xπ(i) ≻ xπ(i) is in Nπ. Let Γn


be the class of all

concepts represented by some Nπ specified as above. Clearly, |Γn

| = n!.

Now, let p(n) = nk for some constant k and let N ∈ C of size at most p(n).4 The fingerprint

(o, o′) is defined in the following way.

First, suppose that there is an outcome o1 containing at least n/2 ones and such that (o1, 0)

is a model of N. Then, there is an improving sequence from 0 to o1 in N, and since variables

are flipped one by one, it must contain an outcome o with exactly n/2 ones. Moreover, by

construction o ≻N 0 holds. Let o′ = 0. We claim that (o, o′) is an 1
nk -fingerprint of Γn


with

respect to ≻N . Indeed, a concept Nπ in Γn


has (o, o′) as a model if and only if the first n/2

variables according to π are exactly those assigned 1 by o. Otherwise, any improving sequence in

Nπ should flip at least one variable assigned 0 by both o and o′, with no way back, a contradiction.

It follows that there are (n/2)!(n/2)! concepts in Γn


with (o, o′) as a model, and hence

|{≻∈ Γn


: o ≻ o′}|

|Γn

|

=

(

n
2
!
)2

n!
=

(

n
n
2

)−1

Using the binomial theorem, we know that 2n =
∑n

i=0

(

n

i

)

. This, together with the fact that the

largest term in the sum is given for i = n
2
, we have 2n ≤ (n + 1)

(

n
n
2

)

. Therefore,

|{≻∈ Γn


: o ≻ o′}|

|Γn

|

≤
n + 1

2n

This ratio is clearly less than 1
nk for sufficiently large n.

Now, assume that there is no o1 as above. Let o = 1 and o′ = 0. So o ⊁N o′, but o ≻ o′ holds

for every concept ≻ in Γn


. Therefore, (o, o′) is an α-fingerprint of Γn


for any α > 0.

Corollary 2. Tree CP-nets are not learnable with equivalence queries alone.

5.2. Learning Tree CP-nets with Equivalence and Membership Queries

As further evidence for the utility of membership queries, we now give an attribute-efficient

algorithm for eliciting tree CP-nets in the presence of arbitrary examples. Let △(o, o′) be the set

of all variables whose value differ in two outcomes o and o′. For example, if o = x1x2x3x4 and

o′ = x1x2x3x4, then △(o, o′) = {x1, x4}.

Algorithm 2 uses the fact that considering only variables in △(o, o′) and their ascendants is

enough for finding an improving sequence from o′ to o (suffix fixing rule). Thus, on seeing

a counterexample (o, o′), the learner computes the tables for each such variable. Because any

variable has at most one parent, its table can be found using few membership queries.

From a practical perspective, it is important to emphasize that the examples used in mem-

bership queries are restricted to swaps in order to minimize the cognitive effort spent by the user

in comparing outcomes. Furthermore, the outcomes 1 and 0 used in the routine P can

naturally be replaced by any suitable pair (o, o) for which o = {p : p ∈ o}.

4For a tree-structured CP-net N, |N| ≤ 3n always holds (at most two rules and one parent per variable), so as soon as

p(n) ≥ 3n, N can be any tree-structured CP-net.
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Algorithm 2: Learning tree CP-nets

N ← ∅1

while EQ(N) , ❨❡s do2

let (o, o′) be the (positive) counterexample returned by EQ(N)3

for each x ∈ △(o, o′) do P(x)4

return N5

Procedure P(x)

if x ∈ var(N) then return6

var(N)← var(N) ∪ {x}7

foreach o ∈ {0, 1} and p ∈ {x, x} do pref (o, p)← MQ(o[p], o[p])8

if pref (0, p) = pref (1, p) = ❨❡s for some p ∈ {x, x} then9

par(x)← ∅10

else if pref (0, p) = ❨❡s for some p ∈ {x, x} then11

par(x)← {SP(x, p, 1, 0, 0, n)}12

else if pref (1, p) = ❨❡s for some p ∈ {x, x} then13

par(x)← {SP(x, p, 0, 1, 0, n)}14

else

par(x)← ∅15

add to N a table for x w.r.t. par(x) and with the rules validating the answers pref (o, p)16

if par(x) = {y} then P(y)17

Example 4. Let us consider again the flight reservation domain introduced in Example 2. Sup-

pose that when Susan is invited to a conference, her domestic robot first contacts several travel

agencies through the Web, next collects the available flights, and then presents these options to

Susan in some order that is consistent with the flight preferences that it has learnt so far.

In the setting suggested by this scenario, we say that an ordering (o1, . . . , om) of outcomes

is consistent with a CP-net N if there is no pair (oi, o j) for which 1 ≤ i < j ≤ m and o j ≻N

oi. The task of finding a consistent ordering for a set of m outcomes can be accomplished in

O
(

|var(N)|m2
)

time, provided that N is acyclic [9, Section 4.1]. Indeed, for each outcome pair

(oi, o j) it suffices to check whether there exists a variable x such that oi and o j assign the same

values to all ancestors of x in N, and oi assigns a more preferred value to x than that assigned by

o j; if this is the case, then we know that o j ⊁N oi, and hence oi is consistently orderable over o j.

Returning to our scenario, when Susan is presented an ordering (o1, . . . , om) of the available

flights, she selects the best compromise oi and makes the reservation. If i , 1, then (oi, o1) is a

positive counterexample to the robot’s hypothesis N because oi ≻ o1 but oi ⊁N o1. In this case,

the robot is allowed to ask membership queries when Susan comes back from the conference.

Let us take an instance of this scenario by assuming that the robot has already learnt the rule:

“Susan prefers to take a flight one day (x3), instead of two days (x3), before the conference”.

The corresponding CP-net N is depicted in Figure 4a. Now, suppose that after contacting the

agencies, the robot has collected three possible reservations:

o1 = x1x2x3x4x5x6

o2 = x1x2x3x4x5x6

o3 = x1x2x3x4x5x6
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Day

x3 ≻ x3

(a)

Day

x3 ≻ x3

Time

Class

x6 : x2 ≻ x2

x6 : x2 ≻ x2

(b)

Day

Time

Class

x3 ≻ x3

x3 : x6 ≻ x6

x3 : x6 ≻ x6

x6 : x2 ≻ x2

x6 : x2 ≻ x2

(c)

Figure 4: Learning the CP-net of “flight reservation”

The first two options suggest to take a British Airways (x1) direct flight (x5) with window

seat (x4) by leaving one day before the conference (x3). The first option is a night flight (x6) in

economy class (x2), while the second option is a day flight (x6) in business class (x2). The third

option differs from the second one by taking a Delta flight (x1) with aisle seat (x4), and leaving

two days before the conference (x3).

Now, assume that the robot presents these options in the order (o1, o2, o3), which is consistent

with N. However, because o2 dominates o1 according to the target CP-net presented in Exam-

ple 2, Susan chooses o2 and so, (o2, o1) is a positive counterexample. Based on the fact that

△(o2, o1) = {x2, x6}, the robot picks the first variable x2 and calls the routine P on it,

according to Algorithm 2. Thus, the robot makes four membership queries, which give rise to

the corresponding answers:

pref (0, x2)← MQ(x1x2x3x4x5x6, x1x2x3x4x5x6) = ❨❡s

pref (0, x2)← MQ(x1x2x3x4x5x6, x1x2x3x4x5x6) = ◆♦

pref (1, x2)← MQ(x1x2x3x4x5x6, x1x2x3x4x5x6) = ◆♦

pref (1, x2)← MQ(x1x2x3x4x5x6, x1x2x3x4x5x6) = ❨❡s

Based on this information, the robot can find the parent of x2 and fill its CP-table using only

three additional membership queries. Indeed, because pref (0, x2) = ❨❡s and pref (1, x2) = ◆♦, a

first call of the routine SP yields:

(x1x2x3x4x5x6, x1x2x3x4x5x6)

Making a membership query with this swap and finding that this is a negative example, a

second call of SP (with a = 3 and b = 6) gives:

(x1x2x3x4x5x6, x1x2x3x4x5x6)

A membership query with this swap shows that this is also a negative example, hence S-

P is called with a = 4 and b = 6, resulting in the following membership query:

(x1x2x3x4x5x6, x1x2x3x4x5x6)
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Again this is a negative example, implying that x6 is the parent of x2. The resulting table

emerges from the fact that (0[x2], 0[x2]) is a model of the rule x6 : x2 ≻ x2, and (1[x2], 1[x2]) is

a model of the rule x6 : x2 ≻ x2. The intermediate hypothesis is depicted in Figure 4b.

Now, because x6 is a parent of x2, the routine P is recursively called on x6. Based

on a similar strategy, the robot can fill the table of x6 using only seven membership queries: four

queries are required for revealing that x6 has a parent, and three additional queries are sufficient to

identify that parent: x3. Since the table of x3 has already been filled, the propagation is stopped,

and the robot picks x6 in △(o2, o1). Yet, because x6 has already been processed, the robot is left

with the hypothesis displayed in Figure 4c.

Lemma 5. Let N∗ be a minimal representation of the target concept in C. Then P is

called only on variables x in var(N∗), and always extracts the table of x in N∗.

Proof. By construction, when P(xi) is called by Algorithm 2, we must have x ∈ △(o, o′)

and o ≻ o′. So x ∈ var(N∗), because otherwise it would have no table in N∗ and hence, its value

could not change along any improving sequence from o′ to o.

Now, given x ∈ var(N∗), we show that P computes the right set of parents for x.

First, suppose that MQ(0[p], 0[p])=MQ(1[p], 1[p])=❨❡s. By Lemma 1 there is a rule t : p ≻ p

in N∗ such that both 0 and 1 satisfy t. So t is empty, and hence, x has no parent in N∗. Second,

suppose that MQ(0[p], 0[p]) = ❨❡s and MQ(1[p], 1[p]) = ◆♦. By Lemma 3 there is a parent y

of x in N∗, which is found by SP. The third case is symmetric. In the last case, all

queries answer ◆♦, so there is no rule on x in N∗, implying that x has no parent in N∗.

Consequently, in all cases P computes the right set of (at most one) parents. Because

each possible rule is validated by one of the queries MQ(o[p], o[p]), the table computed for x is

the correct one. Furthermore, since each recursive call of P is on a variable y which is

the parent of some variable in var(N∗), we have y ∈ var(N∗).

By Lemma 5, it follows that all counterexamples supplied to the learner are positive. More-

over, from the structure of the algorithm it follows that after treating (o, o′), the hypothesis N

contains the correct tables for all ascendants of all variables in △(o, o′). This, together with the

suffix fixing principle [9, Section 5.1] ensures that N now agrees with o ≻ o′, and hence, the

algorithm is guaranteed to converge.

Concerning the complexity of our learning algorithm, the number of equivalence queries

is at most |var(N∗)| + 1, because each counterexample allows the learner to treat at least one

new variable in N∗. Likewise, the routine P treats each variable in var(N∗) exactly

once, using at most 4 membership queries for collecting the answers pref (o, p) plus ⌈log n⌉ for

identifying a parent. Finally, the hypothesis maintained by the learner is always a subtree of N∗,

and hence, dominance testing can be evaluated in quadratic time.

Theorem 4. Tree CP-nets are attribute-efficiently learnable from equivalence and membership

queries over arbitrary outcome pairs: for any n > 0, any ≻ in Cn


can be identified in polynomial

time using at most |var(N∗)|+1 equivalence queries and 4|var(N∗)|+e⌈log n⌉membership queries,

where N∗ is the minimal representation of ≻, and e is the number of edges in N∗.

We mention in passing that our algorithm uses O(n log n) membership queries for making its

hypothesis cover a positive example (o, o′), while the length of a shortest improving sequence

from o′ to o may be in Θ(n2) [9, Theorem 13]. Thus, in essence, the learner does not need to

reconstruct a proof that (o, o′) is positive, neither is the user required to supply one.
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6. Lower bounds

In this section, we show that our learning algorithms are quasi-optimal, by deriving lower

bounds on the query complexity of their target concept classes. To this point, it is well-known that

the Vapnik-Chervonenkis (VC) dimension of a concept class provides a lower bound on the query

complexity of that class [5, 28]. Based on this key result, we shall assess the quasi-optimality

of our learning algorithms by identifying lower bounds on the VC-dimension of acyclic CP-nets

and tree-structured CP-nets.

Intuitively, the VC-dimension of a concept class C is a measure of the “richness” of C: it

captures the maximum number d of examples that can be labeled as either positive or negative in

all the 2d ways using the concepts in C.

In the setting of preference networks, let CN be the concept class induced by some represen-

tation class N , and let I be an instance class. Given a set of examples O ⊆ I, a labeling of O is

a map f from O to {0, 1}. Any outcome pair (o, o′) ∈ O for which f (o, o′) = 1 is called a positive

example, and dually, any pair (o, o′) ∈ O for which f (o, o′) = 0 is called a negative example.

Clearly, there are 2|O| distinct labelings of O.

Borrowing the terminology of concept learning, we say that a CP-net N is consistent with a

labeling f of O if o ≻N o′ for every example (o, o′) such that f (o, o′) = 1, and o ⊁N o′ for every

example (o, o′) such that f (o, o′) = 0. In addition, we say that O is shattered by CN if for each

distinct labeling f of O, there is a representation N ∈ N that is consistent with f . Based on these

notions, the VC-dimension of CN with respect to I, denoted VCdim(CN ,I), is defined to be the

maximum size of any subset O of I that is shattered by CN .

6.1. VC-dimension of single CP-tables

Given two integers n and k such that 0 ≤ k < n, we denote by Cn,k


the class of preference

orderings over n-dimensional outcomes that are representable by a single CP-table with 2k en-

tries. In other words, each concept in Cn,k


can be represented by a CP-net involving k+1 vertices

chosen among the n possible variables; the first k vertices are root nodes, each with an empty

CP-table, that are pointing to the (k + 1)th vertex with a complete CP-table. Our prime concern

in this section is to examine the VC-dimension of this class, from which we can easily derive

lower bounds on the VC-dimension of more expressive classes.

Because our learning algorithms use swap examples as membership queries, we are looking

for a set of swaps (as large as possible) which is shattered by Cn,k


. In brief, we construct a set of

swaps O over 1+ kq variables: the first variable is the one over which the outcomes in each swap

differ, and the kq remaining variables are the candidate parents. The set O will be shattered by

C
n,k


because for each possible labeling of O, our construction will ensure that there is a set of k

parents for the first variable, among the kq candidates, over which there is a CP-table consistent

with the labeling. The key idea is to duplicate each parent variable q times, and to build examples

so that the learner necessarily hesitates about at least one parent (i.e., between the true parent and

one of its copies) until it has seen the labeling of all examples in O.

Formally, let Y ⊆ Xn be a subset of variables of size q ≤ n, and T = {t1, · · · , tm} a set of terms

that are maximal for Y . By taking each term ti = ti1 · · · tiq as a “row” vector of Boolean entries ti j,

T can be viewed as an mq-Boolean matrix, where m and q are respectively the number of rows

and the number of columns in the matrix. Based on this observation, we say that T is a shattered

block if any m-dimensional Boolean vector is a column of T , that is, for every u ∈ {0, 1}m, there

is an index j ∈ [1, q] such that u = t1 j · · · tm j.
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Y1 Y2 Y3

O1

00010111 11111111 1

00101011 11111111 1

01001101 11111111 1

O2

11111111 00010111 1

11111111 00101011 1

11111111 01001101 1

O3 00000000 00000000 1

(a)

f Y1 Y2 Y3

O1

1 · · · · · 1 · · · · 1 · · · · · ·

0 · · · · · 0 · · · · 1 · · · · · ·

1 · · · · · 1 · · · · 1 · · · · · ·

O2

0 · · · · · 1 · · · · 0 · · · · · ·

1 · · · · · 1 · · · · 1 · · · · · ·

0 · · · · · 1 · · · · 0 · · · · · ·

O3 1 · · · · · 0 · · · · 0 · · · · · ·

(b)

Figure 5: Construction (a) and labeling (b) of O for k = 2

Clearly, if T is a shattered block with m rows, then the numbers of columns in T is at least

2m. For example, the following set is a shattered block with m = 3 rows and q = 9 columns:

x1x2x3x4x5x6x7x8x9

x1x2x3x4x5x6x7x8x9

x1x2x3x4x5x6x7x8x9

Let O be a set of swaps of the form (o[x], o[x]) for some variable x ∈ Xn, and let Y ⊆ Xn \ {x}.

Then, the projection of O onto Y , denoted O(Y) is the set of terms {o(Y) : (o, o′) ∈ O} where

o(Y) is the projection of o onto Y . For example, if O consists of two swaps (x1x2x3x, x1x2x3x)

and (x1x2x3x, x1x2x3x), then the projection of O onto {x1, x2} is {x1x2, x1x2}.

We are now in position to construct the target sample for the class Cn,k


. The key idea is to

select an arbitrary variable x in Xn, and to build k + 1 sets of swaps on x. The first k sets are

shattered blocks, each associated with a parent of x, and the last set is used to instantiate the

variables in Xn which do not occur in the shattered blocks.

Definition 4. Let k, n be integers such that 0 ≤ k < n. Let Xn be a set of Boolean variables, x

be an arbitrary variable in Xn and {Y1, ...,Yk+1, {x}} be a partition of Xn with Yk+1 possibly empty.

Then, any set O of examples is said to be generated by {Y1, ...,Yk+1, {x}} if O = O1 ∪ · · · ∪ Ok+1,

where each Oi is a set of swaps of the form (o[x], o[x]) satisfying the following conditions:

1. if i ∈ [1, k], then

(a) Oi(Yi) is a shattered block with ⌊log |Yi|⌋ rows,

(b) Oi(Y j) = {1} for every j ∈ [1, i − 1] ∪ [i + 1, k],

(c) Oi(Yk+1) = {1};

2. if i = k + 1, then for each swap (oi[x], oi[x]) ∈ Oi

(a) for every j ∈ [1, k], oi(Y j) = {0} or oi(Y j) = {1}, and the number of indices j in [1, k]

for which oi(Y j) = {0} is at least min(k, 2),

(b) oi(Yk+1) = {1}.

The construction is illustrated in Figure 5a for k = 2 and n = 18. Let Xn = {x1, · · · , x17, x}.

The set O of examples encoded in the Boolean matrix is generated by a partition {Y1,Y2,Y3, {x}}

of Xn, where |Y1| = |Y2| = 8 and |Y3| = 1. Any projection Oi(Y j) is depicted by a corresponding

block in the Boolean matrix. Each row in the matrix encodes a swap (o[x], o[x]) in O, where o is

formed by simply expanding the row with x.
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x6 x11

x

x6 ∧ x11 : x ≻ x

x6 ∧ x11 : x ≻ x

x6 ∧ x11 : x ≻ x

x6 ∧ x11 : x ≻ x

Figure 6: A CP-net in Cn,k


consistent with the labeling of O

A labeling of O is given by the second column of the table in Figure 5b. As a key property

of our construction, f is guaranteed to match at least one column of each shattered block Oi(Yi).

Here, f matches the sixth column of O1(Y1) and the third column of O2(Y2). Thus, by taking x6

and x11 as parents of x, we can easily build a CP-net (Figure 6) that is consistent with f .

In a nutshell, any labeling of O is captured by at most one parent for x in each Yi for i ≤ k,

while Yk+1 plays no other role than gathering together the variables not in other Yi’s.

Lemma 6. Let O = O1∪· · ·∪Ok+1 be a set of examples generated by a partition {Y1, ...,Yk+1, {x}}

of Xn, where 0 ≤ k < n. Then O1, · · · ,Ok and Ok+1 are mutually disjoint.

Proof. By construction, we know that any row in a shattered block must include at least one

variable valued to 1, and at least one variable valued to 0. Based on this observation, let i be an

index in [1, k]. We know that Oi(Yi) is a shattered block with m rows, and O j(Yi) = {1} for all

j ∈ [1, i−1]∪[i+1, k]. Since Oi(Yi) does not include the term 1, it follows that Oi is disjoint from

O1 ∪ · · · ∪ Oi−1 ∪ Oi+1 ∪ · · · ∪ Ok. Furthermore, we know that Ok+1(Yi) = {1} or Ok+1(Yi) = {0}.

Therefore, Oi is disjoint from Ok+1 because Oi(Yi) contains neither 0 nor 1. By applying the same

strategy for all indexes i ∈ [i, k], the result follows.

Lemma 7. Let O = O1∪· · ·∪Ok+1 be a set of examples generated by a partition {Y1, ...,Yk+1, {x}}

of Xn, where 0 ≤ k < n. Then O is shattered by Cn,k


.

Proof. We successively examine the cases where k = 0, k = 1, and k > 1.

Case k = 0. Observe here that O is reduced to {(1[x], 1[x])}. So, there are only two possible

labelings f of O. Namely, if f (1[x], 1[x]) = 0 then x ≻ x is consistent with f , and dually, if

f (1[x], 1[x]) = 1 then x ≻ x is consistent with f . Therefore, O is shattered by Cn,0


.

Case k = 1. By construction, O = O1∪O2, where O1(Y1) is a shattered block and O2(Y1) = {o2},

with o2(Y1) = 0 and o2(Y2) = 1. Consider any labeling f of O. If f (o2[x], o2[x]) = 0, then

let x j be a variable in Y1 for which the column (x1 j · · · xm j) in O1(Y1) matches f (O1), that is,

xi j = f (o[x], o[x]) for all swaps (o[x], o[x]) in O1. Then, the CP-table on x defined by the entries

x j : x ≻ x and x j : x ≻ x is consistent with f on O. Dually, if f (o2[x], o2[x]) = 1, then let x j be

a variable in Y1 for which the column (x1 j · · · xm j) in O1(Y1) matches the bitwise complement of

f (O1). Then, the CP-table {x j : x ≻ x, x j : x ≻ x} is consistent with f on O. By combining both

results, it follows that O is shattered by Cn,1


.

Case k > 1. Consider any labeling f of O. We start by showing by induction on i ∈ [1, k] that

there is a CP-table Ni, containing i + 1 rules on x with at most one negative literal per condition,

which is consistent with f on O1 ∪ · · · ∪ Oi. First, consider the base case i = 1. Let x j1 be a
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variable in Y1 for which the column in O1(Y1) matches f (O1). Then, the CP-table N1 defined by

the entries x j1 : x ≻ x and x j1 : x ≻ x is consistent with f on O1.

Now, suppose by induction hypothesis that there exists a CP-table Ni−1, containing i rules

on x with at most one negative literal per condition, which is consistent with O1 ∪ · · · ∪ Oi−1.

Then, the CP-table Ni is constructed as follows. First, for each of the i rules r occurring in Ni−1,

expand the condition of r with x ji (defined as x j1 above) and add the resulting rule in Ni. Then,

add x j1 · · · x ji−1
x j : x ≻ x to Ni. By the inductive hypothesis, the first i rules ensure that Ni is

consistent with f on O1 ∪ · · · ∪ Oi−1. Moreover, one of these rules must be x j1 · · · x ji : x ≻ x.

This, together with x j1 · · · x ji−1
x j : x ≻ x, ensures that Ni is consistent with f on Oi. Notice that

Ni includes i + 1 rules with at most one negative literal per condition.

After constructing the table Nk, we build the final CP-table N by conjoining Nk with the new

table Nk+1 defined as follows: for each swap (o[x], o[x]) in Ok+1 add the rule p j1 · · · p jk : p ≻ p,

where p ji is the projection of o on the variable x ji , and p = f (o[x], o[x]). By construction, Nk+1 is

consistent with Ok+1, and includes 2k−k−1 rules with at least two negative literals per condition.

Therefore, Nk and Nk+1 have disjoint entries, and hence, N is consistent with O.

By applying the same strategy to all labelings f of O, it follows that O is shattered by Cn,k


,

as desired.

We are now in position to derive a lower bound on the VC-dimension of CP-tables.

Theorem 5. The VC-dimension of Cn,k


with respect to swaps is at least:

• 1 if k = 0,

• m + 1 if k = 1, and

• 2k + k(m − 1) − 1 if k > 1,

where m =
⌊

log n−1
k

⌋

.

Proof. Let q = 1 if k = 0, and m =
⌊

log n−1
k

⌋

, q = 2m if k > 0.Let x be a variable in X, let

{Y1, · · · ,Yk+1, {x}} be a partition of X, where |Yi| = q for i ∈ [1, k], and let O = O1 ∪ · · · ∪Ok+1 be

a set of examples generated by {Y1, · · · ,Yk+1, {x}}. By Lemma 6, we know that O1, · · · ,Ok and

Ok+1 are mutually disjoint. Based on this property, let us examine the size of O.

• If k = 0, then the partition of X is reduced to {Y1} = {X \ {x}}, and hence, O is reduced to

O1 = {(1[x], 1[x])}. So |O| = 1.

• If k = 1, then O is given by O1 ∪ O2 where |O1| is a shattered block with m rows and

O2(Y1) = {0}. So |O| = m + 1.

• If k > 1, then O is formed by the union of the disjoint sets O1, · · · ,Ok and Ok+1, where

|O1| = · · · |Ok | = m, and |Ok+1| =
∑k

i=2

(

i

k

)

= 2k − k − 1. So O = 2k + k(m − 1) − 1.

Since by application of Lemma 7, we know that O is shattered by Cn,k


, the result follows.

6.2. VC dimension of CP-nets

We now turn to the VC-dimension of acyclic CP-nets. Given n, k, e ∈ N where 0 ≤ k < n and

k ≤ e ≤
(

n

2

)

, let Cn,k,e


be the class of concepts which are representable by an acyclic CP-net for

which the in-degree is at most k and the number of edges is at most e. We derive a lower-bound

on the VC-dimension of this class from that of single CP-tables, by considering a collection of

such tables organized in a special acyclic graph.
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Theorem 6. The VC-dimension of Cn,k,e


with respect to swaps is at least:

• 1 if k = 0,

• v(m + 1) if k = 1, and

• v
(

2k + k(m − 1) − 1)
)

if k > 1,

where v =
⌊

e
k

⌋

and m =
⌊

log n−v
k

⌋

.

Proof. For k = 0 (and hence, e = 0), the result is a direct application of Theorem 5. For k ≥ 1, let

V be a subset of X containing v variables, and for each variable x in V , let Ox be a set of examples

generated by {Y1, ...,Yk+1, {x}}, where Yk+1 includes V \ {x} and |Y1| = · · · = |Yk | =
⌊

n−v
k

⌋

. Here,

the intuition behind the construction of Yk+1 is that x cannot have any parent in V because all Yi’s

for which i ∈ [1, k] exclude V . Finally, let O =
⋃

x∈V Ox.

Now, consider any labeling f of O. By Lemma 7, we know that for each Ox (x ∈ V) there is

a CP-net Nx consistent with f on Ox, where Nx is formed by k root nodes with an empty table

pointing to the same child node with a complete table. Let N =
⋃

x∈V Nx. By construction, the

sets Ox (x ∈ V) are mutually disjoint. Furthermore, we know that N is acyclic because for any

variable x in V , there is no other variable in V which can occur as a parent node of x in Nx.

It follows that N is consistent with f on O, and hence, O is shattered by Cn,k,e


. Thus, using

Theorem 5 to calculate the size of each Ox , we can derive the lower bound on the VC-dimension

of Cn,k,e


by simply summing over all x’s.

We now have all ingredients in hand to assess the optimality of our algorithms. Based on

Auer and Long’s result [5, Theorem 2.2], we know that the query complexity of any concept

class C with respect to any instance class I is at least log
(

4
3

)

VCdim(C,I), which is a constant

factor of the VC dimension of C with respect to I. Therefore, by applying Theorem 6, there is

at least one acyclic CP-net N for which the number of queries needed to identify N is at least

log

(

4

3

) (

r + e

(

log
n − e/k

k
− 1

)

− e/k

)

where k is the in-degree of the graph of N, e is the graph size (number of edges) of N, and

r = e 2k/k is the number of rules occurring in N. By comparing this lower bound to the number

r+e log n+e+1 of queries used by Algorithm 1, it follows that our learning algorithm is optimal

up to a term of order e log k.

In the specific case where k = 1, there is at least one tree-structured CP-net N with e relevant

variables such that the number of queries needed to identify N is at least e log(n − e) + e. This is

now to be compared with the maximum number e log n + 5e + 1 of queries spent by Algorithm 2

in order to identify N.

In a nutshell, both our algorithms are quasi-optimal, even though they do not know in advance

the degree k and the graph size e of the target network, and even if Algorithm 2 is able to use

arbitrary counterexamples to equivalence queries.

7. Discussion

Along the lines of making query-directed learning applicable to preference elicitation, we

have provided a model for learning preference networks from equivalence and membership
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queries, together with significant learnability results. Taking into account the cognitive effort

required by human users to answer queries, our model is distinguished by the close way in which

it integrates learning and dominance testing, and the insistence on having convergence bounds

that are polynomial in the minimal description size of the target concept, but only polylogarith-

mic in the total number of attributes. In essence, our results reveal that membership queries are

essential for extracting both acyclic CP-nets from restricted outcome pairs, and tree-structured

CP-nets from arbitrary outcome pairs. Importantly, the examples used by these queries can be

limited to “swaps” in order to facilitate their comparison by the user.

Our results have interesting consequences in other learning models, including the probably

approximately correct (PAC) learning model [32], and the mistake-bound learning model [27].

As follows from a generic conversion method from query-directed learning to PAC learning [1],

acyclic CP-nets are attribute-efficiently PAC learnable with respect to swap examples, and tree-

structured CP-nets are attribute-efficiently PAC learnable with respect to arbitrary examples, if

in both cases membership queries are available. Furthermore, it is well-known that the model of

mistake-bound learning and the model of learning with equivalence queries alone are essentially

equivalent [27]. Therefore, one corollary of our results is that acyclic CP-nets are not learnable

with a polynomial number of mistakes even if the instances to be predicted are restricted to swaps,

and tree-structured CP-nets are not mistake-bound learnable if the instances to be predicted are

arbitrary outcome pairs. On the other hand, if membership queries (excluding the elements to be

predicted) are available, then acyclic CP-nets are attribute-efficiently mistake-bound learnable

with respect to swaps, and tree CP-nets are attribute-efficiently mistake-bound learnable with

respect to arbitrary instances.

7.1. Related Work

To the best of our knowledge, this work provides the first connection between active learning

and graphical preference languages. Some authors, though, have recently focused on passive

learning, where the goal is to extract a CP-net from a set of examples.

Notably, Lang and Mengin [26] consider the special case of separable CP-nets, that is, pref-

erence networks in which all variables have an empty set of parents. As a key result, they show

that the problem of finding a separable CP-net that is consistent with some labeling of an arbitrary

set of examples can be solved in time polynomial in the number n of input variables. Because

the VC-dimension of separable CP-nets is also polynomial in the input dimension, it follows that

separable CP-nets are PAC-learnable.

In a different direction, Dimopoulos et al. [16] investigate the learnability issue of acyclic and

complete CP-nets under specific distributions. Recall that in the PAC learning model, the learner

uses an example oracle (N,D) as its source of labeled examples: when invoked, the oracle

returns an example (o, o′) chosen randomly according to an arbitrary distribution D, together

with the label 1 if o ≻N o′ and the label 0 otherwise. In Dimopoulos et al.’s framework, the

oracle uses a distributionDwhich guarantees that the example chosen at random is transparently

entailed by the target network N (we refer the reader to the paper for this definition). Under this

distribution specific PAC learning model, they demonstrate that acyclic CP-nets are identifiable

with a time complexity ofΘ(nk), where k is the in-degree of N. In particular, since swap examples

are always transparently entailed by acyclic and complete CP-nets, it follows that the class of

acyclic and complete CP-nets with bounded in-degree k is PAC-learnable with respect to swap

examples. This is to be compared with our results which state that, if membership queries are

available, then acyclic and possibly incomplete CP-nets with arbitrary in-degree are attribute-

efficiently PAC-learnable with respect to swap examples.
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Perhaps the closest framework to ours is due to Sachdev [31], who investigates the general

issue of learning preference logics [20] with equivalence and membership queries. Although

encouraging, his results do not take into account the computational cost of dominance testing,

and the query complexity grows exponentially with the size of rules.

7.2. Extensions and Open Problems

Clearly, there are many directions in which one might attempt extensions of this study. We

shall concentrate on four of them.

Multiple values. Since we have restricted this study to binary-valued CP-nets, a natural direction

of research is to explore the broader class of networks in which any variable x has an arbitrary

finite domain Dx.

If we stick to the definition of multi-valued CP-nets suggested by Boutilier et al. [9], our

learning algorithms can easily be extended to this setting. Here, any rule on some variable x is

an expression of the form t : v1 ≻ v2 ≻ · · · ≻ vd, where the body is an assignment of values

to the parents of x in the network, and the head is a linear ordering of Dx. For acyclic CP-nets,

we simply need to refine Line 9 of Algorithm 1, in which the head of a new rule is constructed,

by the linear ordering with a dichotomic search procedure that uses d log d membership queries.

For tree CP-nets, a simple approach is to replace, in Line 8 of Algorithm 2, the computation of

pref (o, p) for each o ∈ {0, 1} and p ∈ {x, x} by that of pref (o, vi, v j) for each constant outcome5

o ∈ {v1, · · · , vd} and for each pair of values vi, v j in Dx. The query complexity is increased here

by a factor of d3, but more sophisticated algorithms could be conceived to reduce it.

However, we should take into account the evidence that under certain circumstances some

values in the domain are irrelevant, and some pairs of values are incomparable. For example,

suppose that in the evening dress scenario, Susan has shirts of many different colors. As in

Example 1, her preference for the color of the shirt depends on the combination of jacket and

pants. Some colors are clearly too flashy for a ceremony, and Susan would never use them with a

jacket. So they are irrelevant for the occasion. The remaining colors are not necessarily pairwise

comparable: if the jacket and pants are of the same tint, Susan might prefer a blue shirt or green

shirt to a white one in order to bring a touch of color, but she would not necessarily have a

preference between blue and green.

In this setting, each entry of a CP-table for a relevant variable x would be a rule of the form

t : {(vi, v j)} where the condition is an assignment of values to the parents of x, and the head is

a partial ordering on some subset of Dx. In addition to the requirement of attribute efficiency,

we should here consider the requirement of value efficiency. As an interesting open issue, the

problem is to determine whether there exist learning algorithms capable of identifying acyclic

CP-nets with swap counterexamples and tree CP-nets with arbitrary counterexamples, and for

which the query complexity is only polylogarithmic in the total number of variables and the size

of the largest domain of these variables.

Indifference. Another direction of research that naturally emerges from our study is to include

indifference rules of the form t : x ∼ x. Such a rule expresses the statement “given that t

holds and all other things being equal, the values x and x are equally preferred”. Importantly,

5We assume for simplicity of exposition that all variables have the same domain, but the refinement would be similar

without this assumption.
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indifference must be distinguished from incompleteness, since the latter would be interpreted

as “x is not comparable to x, given that t holds and all other things being equal”. Besides the

technical issue of extending the semantics of membership and equivalence queries in the presence

of indifference, the learnability issue of acyclic CP-nets with indifference is far from being easy,

because they are not always guaranteed to be satisfiable.

Compactness. As suggested by Goldsmith et al. [22], a natural way to reduce the size of CP-

tables within a potentially exponential factor is to use a compact representation.

Specifically, if a table contains two rules of the form t∧ p j : pi ≻ pi and t∧ p j : pi ≻ pi, then

they are compactly represented as the single rule t : pi ≻ pi, even if x j is a parent of xi in the

network. In this setting, for any relevant variable x in the network, the CP-table of x with respect

to par(x) can be viewed as pair (ϕx, ϕx) of DNF formulas over par(x) which have no model in

common. The interpretation of the CP-table is that o[x] ≻ o[x] (resp. o[x] ≻ o[x]) holds if and

only if o |= ϕx (resp. o |= ϕx).

When learning such a compact representation, efficiency is typically evaluated with respect

to the size of the smallest compact representation of the target CP-net. Unfortunately, when

considering possibly incomplete, binary-valued CP-nets, the learning problem turns out to be

at least as hard as the problem of learning a DNF formula with the same queries, which is a

long-standing open question in machine learning [15, 24, 29].

Theorem 7. The problem of learning a single and possibly incomplete CP-table from equivalence

and membership queries over swaps is at least as hard as the problem of learning a DNF formula

with equivalence and membership queries.

Proof. Given an algorithm A for learning a compact CP-table (ϕ∗x, ϕ
∗
x
) for some variable x, we

derive an algorithm B for learning the DNF ϕ∗ using the following transformation. Given an

initial hypothesis (ϕx, ϕx) of Algorithm A, the formula ϕx is used as the first equivalence query of

Algorithm B. If B receives a positive counterexample o |= ϕx, then it forwards to A the positive

counterexample o[x] ≻ o[x]. Dually, if B receives a negative counterexample o 6|= ϕx, then

it forwards to A the negative counterexample o[x] ⊁ o[x]. In both cases, Algorithm B takes

the part ϕx of the new hypothesis (ϕx, ϕx) of Algorithm A and uses it as the next equivalence

query, continuing in this fashion until it receives the answer ❨❡s. If during the update of (ϕx, ϕx),

Algorithm A must ask a membership query on (o[x], o[x]), then B simply asks a membership

query on o[x] and forwards the answer to A. Since the number of queries and running time are

preserved by the transformation, the result follows.

Cyclicity. Finally, the literature on CP-nets has rapidly flourished in the last years by providing

graphical preference languages of increasing expressiveness [7, 10, 12, 22, 30, 33]. In particular,

Goldsmith et al. [22] argue that acyclic CP-nets are not sufficiently expressive to capture human

preferences even in some simple domains. Returning to the evening dress scenario, suppose that

Susan prefers white pants given a black jacket, and conversely, she prefers a black jacket given

white pants. On the other hand, Susan prefers black pants given a white jacket, and conversely,

she prefers a white jacket given black pants. The resulting CP-net defined over only two variables

is consistent, and there is no acyclic CP-net giving rise to the same preferences on outcomes.

However, it is easy to see that in this generalized setting our lemmas 1 and 2 do not hold

anymore. So, the learnability issue of cyclic CP-nets looks challenging, even in the presence of

swap examples.

25



Acknowledgements

This work was supported by the French ANR grant CANAR (ANR-06-BLAN-0383-02).

References

[1] D. Angluin. Queries and concept learning. Machine Learning, 2(4):319–342, 1988.

[2] D. Angluin. Negative results for equivalence queries. Machine Learning, 5:121–150, 1990.

[3] D. Angluin, M. Frazier, and L. Pitt. Learning conjunctions of Horn clauses. Machine Learning, 9:147–164, 1992.

[4] M. Arias and R. Khardon. Learning closed Horn expressions. Information and Computation, 178(1):214–240,

2002.

[5] P. Auer and P. M. Long. Structural results about on-line learning models with and without queries. Machine

Learning, 36(3):147–181, 1999.

[6] J. Basilico and T. Hofmann. Unifying collaborative and content-based filtering. In Proceedings of the Twenty-first

International Conference (ICML’04), Banff, Alberta, Canada, pages 9–17. ACM, 2004.

[7] M. Binshtok, R. Brafman, C. Domshlak, and S. Shimony. Generic preferences over subsets of structured objects.

Journal of Artificial Intelligence Research, 34:133–164, 2009.

[8] C. Boutilier, R. Brafman, H. Hoos, and D. Poole. Reasoning with conditional ceteris paribus preference statements.

In Proceedings of the Fifteenth Conference on Uncertainty in Artificial Intelligence (UAI’99), Stockholm, Sweden,

pages 71–80. Morgan Kauffmann, 1999.

[9] C. Boutilier, R. Brafman, C. Domshlak, H. Hoos, and D. Poole. CP-nets: A tool for representing and reasoning

with conditional ceteris paribus preference statements. Journal of Artificial Intelligence Research, 21:135–191,

2004.

[10] R. Brafman and C. Domshlak. Graphically structured value-function compilation. Artificial Intelligence, 172(2-3):

325–349, 2008.

[11] R. Brafman and C. Domshlak. Introducing variable importance tradeoffs into CP-nets. In Proceedings of the

Eighteenth Conference in Uncertainty in Artificial Intelligence (UAI’02), Alberta, Canada, pages 69–76. Morgan

Kaufmann, 2002.

[12] R. Brafman, C. Domshlak, and S. Shimony. On graphical modeling of preference and importance. Journal of

Artificial Intelligence Research, 25:389–424, 2006.

[13] N. Bshouty. Exact learning Boolean functions via the monotone theory. Information and Computation, 123(1):

146–153, 1995.

[14] N. Bshouty and L. Hellerstein. Attribute-efficient learning in query and mistake-bound models. Journal of Com-

puter and System Sciences, 56:310–319, 1998.

[15] N. Bshouty, S. Goldman, T. Hancock, and S. Matar. Asking questions to minimize errors. Journal of Computer

and System Sciences, 52(2):268–286, 1996.

[16] Y. Dimopoulos, L. Michael, and F. Athienitou. Ceteris paribus preference elicitation with predictive guarantees.

In Craig Boutilier, editor, Proc. 21st International Joint Conference on Artificial Intelligence (IJCAI’09), pages

1890–1895. IJCAI, 2009.

[17] C. Domshlak and R. Brafman. CP-nets: Reasoning and consistency testing. In Proceedings of the Eights Interna-

tional Conference on Principles and Knowledge Representation and Reasoning (KR’02), Toulouse, France, pages

121–132. Morgan Kaufmann, 2002.

[18] C. Domshlak, R. Brafman, and S. Shimony. Preference-based configuration of web page content. In Proceedings

of the Seventeenth International Joint Conference on Artificial Intelligence (IJCAI’01), Seattle, Washington, pages

1451–1456. Morgan Kaufmann, 2001.

[19] C. Domshlak, S. Prestwich, F. Rossi, K. B. Venable, and T. Walsh. Hard and soft constraints for reasoning about

qualitative conditional preferences. Journal of Heuristics, 12(4–5):263–285, 2006.

[20] J. Doyle, Y. Shoham, and M. Wellman. A logic of relative desire (preliminary report). In Proceedings of the Sixth

International Symposium on Methodologies for Intelligent Systems (ISMIS’91), Charlotte, North Carolina, pages

16–31. Springer, 1991.

[21] M. Frazier and L. Pitt. Classic learning. Machine Learning, 25(2-3):151–193, 1996.

[22] J. Goldsmith, J. Lang, M. Truszczynski, and N. Wilson. The computational complexity of dominance and consis-

tency in CP-nets. Journal of Artificial Intelligence Research, 33:403–432, 2008.

[23] P. Green and V. Srinivasan. Conjoint analysis in consumer research: Issues and outlook. Journal of Consumer

Research, 5(2):103–123, 1978.

[24] L. Hellerstein and V. Raghavan. Exact learning of DNF formulas using DNF hypotheses. Journal of Computer and

System Sciences, 70(4):435–470, 2005.

[25] R. Khardon. Learning function-free Horn expressions. Machine Learning, 37(3):241–275, 1999.

26



[26] J. Lang and J. Mengin. The complexity of learning separable ceteris paribus preferences. In Craig Boutilier, editor,

Proc. 21st International Joint Conference on Artificial Intelligence (IJCAI’09), pages 848–853. IJCAI, 2009.

[27] N. Littlestone. Learning quickly when irrelevant attributes abound: A new linear-threshold algorithm. Machine

Learning, 2(4):285–318, 1988.

[28] W. Maass and G. Turán. Lower bounds methods and separation results for online-learning models. Machine

Learning, 9:107–145, 1992.

[29] K. Pillaipakkamnatt and V. Raghavan. On the limits of proper learnability of subclasses of DNF formulas. Machine

Learning, 25(2-3):237–263, 1996.

[30] F. Rossi, K. Venable, and T. Walsh. mCP nets: Representing and reasoning with preferences of multiple agents. In

Proceedings of the Nineteenth National Conference on Artificial Intelligence, San Jose, California, pages 729–734.

AAAI Press / The MIT Press, 2004.

[31] M. Sachdev. On learning of ceteris paribus preference theories. Master’s thesis, Graduate Faculty of North Carolina

State University, 2007.

[32] L. Valiant. A theory of the learnable. Communications of the ACM, 27(11):1134–1142, 1984.

[33] N. Wilson. Extending CP-nets with stronger conditional preference statements. In Proceedings of the Nineteenth

National Conference on Artificial Intelligence, San Jose, California, pages 735–741. AAAI Press / The MIT Press,

2004.

[34] C. Ziegler, G. Lausen, and J. Konstan. On exploiting classification taxonomies in recommender systems. AI

Communications, 21(2-3):97–125, 2008.

27


	Introduction
	Conditional Preference Networks
	Syntax of CP-nets
	Semantics of CP-nets

	Exact Learning with Queries
	Learning Acyclic CP-nets with Queries
	Learning Acyclic CP-nets with Equivalence Queries Alone
	Learning Acyclic CP-nets with Equivalence and Membership Queries

	Learning Tree CP-nets with Queries
	Learning Tree CP-nets with Equivalence Queries Alone
	Learning Tree CP-nets with Equivalence and Membership Queries

	Lower bounds
	VC-dimension of single CP-tables
	VC dimension of CP-nets

	Discussion
	Related Work
	Extensions and Open Problems


