
HAL Id: lirmm-00485851
https://hal-lirmm.ccsd.cnrs.fr/lirmm-00485851v1

Submitted on 21 May 2010

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

An Introduction to Clique Minimal Separator
Decomposition

Anne Berry, Romain Pogorelcnik, Geneviève Simonet

To cite this version:
Anne Berry, Romain Pogorelcnik, Geneviève Simonet. An Introduction to Clique Minimal Separator
Decomposition. Algorithms, 2010, 3 (2), pp.197-215. �10.3390/a3020197�. �lirmm-00485851�

https://hal-lirmm.ccsd.cnrs.fr/lirmm-00485851v1
https://hal.archives-ouvertes.fr

Algorithms 2010, 3, 197-215; doi:10.3390/a3020197

OPEN ACCESS

algorithms
ISSN 1999-4893

www.mdpi.com/journal/algorithms
Review

An Introduction to Clique Minimal Separator Decomposition
Anne Berry 1,⋆, Romain Pogorelcnik 1 and Geneviève Simonet 2

1 LIMOS UMR CNRS 6158, Ensemble Scientifique des Cézeaux, F-63 173 Aubière, France;
E-Mail: pogorelc@isima.fr

2 LIRMM, 161 Rue Ada, F-34392 Montpellier, France; E-Mail: simonet@lirmm.fr

⋆ Author to whom correspondence should be addressed; E-Mail: berry@isima.fr;
Tel.: +033-4734-07769.

Received: 7 April 2010 / Accepted: 28 April 2010 / Published: 14 May 2010

Abstract: This paper is a review which presents and explains the decomposition of graphs by
clique minimal separators. The pace is leisurely, we give many examples and figures. Easy
algorithms are provided to implement this decomposition. The historical and theoretical
background is given, as well as sketches of proofs of the structural results involved.

Keywords: graph decomposition; clique minimal separator; minimal triangulation

1. Introduction

This paper is designed as a presentation for the not so well-known graph decomposition which we
call “clique minimal separator decomposition”. In view of recent applications, this decomposition is a
promising tool.

A separator is a set of vertices (of a connected graph), the removal of which disconnects the graph,
and a clique is a set of pairwise adjacent vertices, and of course a clique separator is a separator which is
a clique. Clique minimal separator decomposition is a process which breaks up an undirected graph into
a set of subgraphs by copying the clique minimal separators into the connected components they define,
as will be explained in detail further.

Historically, clique separator decomposition was studied by graph theorists because some hard graph
problems such as vertex coloring, maximum clique and testing for perfection can be solved by a
Divide-and-Conquer approach by first solving them on the subgraphs defined by a clique separator
decomposition, and then merging the obtained results.

Algorithms 2010, 3 198

There are two main drawbacks to this decomposition:

• First, not every graph has a clique separator.

• Second, the subgraphs obtained are not disjoint, which means that if the overlap is large, little is
to be gained by a Divide-and-Conquer approach.

However, recent research has modelized data by graphs (such as text mining data [1], biochip data [2],
or any data represented by a symmetric positive matrix such as distance data). In those graphs, a clique
is often an important locus, since it reflects maximum interaction between its elements. These graphs
almost always have clique separators. But in any case, when these graphs are obtained by choosing
a threshold in a distance matrix, one can choose a threshold which defines a graph which contains a
sufficient number of clique separators.

The fact that the subgraphs obtained overlap can be a desirable property in applications. For example,
when searching for clusters of genes, it is nice to be able to allow a gene to interact with different gene
groups, which is not the case with classical gene clustering.

The theory of clique decomposition and clique minimal separator decomposition has been studied by
several authors. The mathematical baggage necessary to prove the results we present here is somewhat
complicated, and the results are distributed between various papers, which is one of the reasons for which
this graph decomposition is not as well-known as it could be. We will describe the known results (while
citing the corresponding reference papers when possible). We also devote a section to giving the proof
(or at least a sketch of proof) of the main results we use.

Our aim in this paper is to explain this decomposition as simply as possible; the basic process is
not difficult to understand, and it is not difficult to implement. However, it does involve some not so
easy graph notions such as minimal separation. We have organized the results so that graph theorists
will find the theoretical background, and so that scientists from other areas can use and implement this
decomposition, by giving examples and explaining the implementations.

The paper is organized as follows:

• Section 2 gives some general graph notions, some particulars on minimal separation and minimal
triangulation.

• Section 3 provides a precise definition of clique minimal separator decomposition, as well as
examples; we also discuss how to find the clique minimal separators of a graph efficiently, and
give some properties of this decomposition.

• Section 4 gives an efficient process for computing the clique minimal separator decomposition of
a graph.

• Section 5 provides a brief history of clique decomposition, with the bibliographic background as
well as high-level proofs of the results we present in this paper.

• We conclude in Section 6.

Algorithms 2010, 3 199

2. Graph Notions

2.1. General notions

All graphs in this work are undirected and finite. A graph G = (V,E) is a set V of vertices, |V | = n,
and a set E of edges which are pairs of distinct vertices, |E| = m; an edge {x, y} is denoted xy. The
complement G = (V,E) of graph G = (V,E) is the graph where, for any pair of vertices {x, y}, x ̸= y,
edge xy ∈ E if and only if xy ̸∈ E. If X ⊂ V is a set of vertices of G = (V,E), G(X) denotes the
subgraph induced by X (which is a graph whose vertices are the elements of X and such that xy is an
edge of G(X) if x, y ∈ X and xy ∈ E).

Neighborhoods: The neighborhood of a vertex x in G is NG(x) = {y ̸= x | xy ∈ E}; we omit
subscript G when it is clear from the context which graph we work on. The extended neighborhood of
a vertex x is NG[x] = NG(x) ∪ {x}. We say that vertices x and y are adjacent if and only if xy ∈ E.
The neighborhood of a set of vertices A is NG(A) = ∪x∈ANG(x)−A, and its extended neighborhood is
NG[A] = NG(A) ∪ A.

Paths and cycles: A path is a sequence (x1, x2, . . . , xk) of different vertices such that for i < k, xi is
adjacent to xi+1. A chord in a path is an edge xixj where j > i and j ̸= i+1. A path is chordless if it has
no chord. A cycle is a “closed path”, i.e., a sequence x1, x2, . . . , xk, x1 of vertices, with x1, x2, . . . , xk

all different, such that for i < k, xi is adjacent to xi+1 and xk is adjacent to x1. A chordless cycle is a
cycle with no chord. A chordless cycle with 5 or more vertices is called a hole, the complement of such
a cycle is called an antihole.

Connexity: A graph is connected if there is a path connecting any pair of vertices, disconnected
otherwise ; when the graph is disconnected, the maximal connected subgraphs are called the connected
components of the graph.

Cliques: A clique is a set of vertices which are pairwise adjacent. An independent set is a set of vertices
with no edges.

Perfection: A graph is perfect if it contains no induced hole or antihole with an odd number of vertices.

Example 2.1 In Figure 1, (a, b, c, k) is a chordless cycle of length 4, {c, d, j, k} is a clique, N(c) =

{b, d, j, k}, N({a, b}) = {c, k}.

Figure 1. Graph G, our running example.

a

b
c e

j

hi

f

g

d

k

Algorithms 2010, 3 200

2.2. Minimal separation, chordal graphs, and minimal triangulation

Definition 2.2

• A subset S of vertices of a connected graph G is called a separator (or sometimes a cutset) if
G(V − S) is not connected.

• A separator S is called an ab-separator if a and b lie in different connected components of
G(V − S), a minimal ab-separator if S is an ab-separator and no proper subset of S is an
ab-separator.

• A separator S is a minimal separator, if there is some pair {a, b} such that S is a minimal
ab-separator.

Alternately, S is a minimal separator if and only if G(V −S) has at least 2 connected components C1

and C2 such that N(C1) = N(C2) = S; such components are called full components of S in G. S is a
minimal xy-separator for any {x, y} with x ∈ C1 and y ∈ C2.

A connected graph with no minimal separator is a clique.
When the graph is not connected, the set of minimal separators is the union of the sets of minimal

separators of the connected components.

Example 2.3 Let us illustrate these notions on a tree: a tree has two kinds of vertices: leaves and
articulation nodes (which are its minimal separators). Figure 2 shows how removing articulation node
{a} disconnects the graph into several connected components; {a} is a df -separator, as d and f lie in
two different components.

Figure 2. {a} is a df -separator.

a

b

e

c

d g
f

h i
j

k

b

e

c

d g
f

h i
j

k

Example 2.4 On the more complex graph G of Figure 1: {c, d, j, k} is a separator, but it is not minimal.
{d, j, k} is a minimal separator, with full components {a, b, c} and {e, f, g}. {j, k} is also a minimal
separator, with full components {h, i} and {a, b, c, d, e, f, g}. Note that minimal separator {j, k} is
included in minimal separator {d, j, k}.

Note that in an arbitrary graph, there can be an exponential number of minimal separators (O(2n)).
Figure 3 shows an example of this.

Algorithms 2010, 3 201

Figure 3. This graph has an exponential number of minimal separators, which are the
combinations from the Cartesian product {a1, b1} × {a2, b2} × . . .× {an, bn}.

a1

b1 b2

a2 an

bn

a

b

...

...

Chordal graphs: A graph is chordal if it has no chordless cycle of length strictly greater than 3; chordal
graphs are extensions of trees and have many similar properties. Dirac [3] originally defined the concept
of a minimal separator in order to characterize chordal graphs, by showing that a graph G is chordal if
and only if every minimal separator of G is a clique. In a chordal graph, there are less than n minimal
separators [4]. Figure 4 shows a chordal graph H .

Figure 4. Chordal graph H , with minimal separators: {b, k}, {c, k}, {d, j, k}, {j, k}, {i, j},
{d, g}.

a

b
c e

j

hi

f

g

d

k

Perfect elimination orderings: Another interesting characterization of chordal graphs is that they have
a simplicial ordering on the vertices: a vertex is said to be simplicial if its neighborhood is a clique.
A graph is chordal if and only if one can repeatedly find a simplicial vertex, and remove it, until no
vertex is left. Since at each step a vertex is removed, this defines a series of transitory graphs: at step
i + 1, the transitory graph is input graph G from which the first i vertices have been removed. This
process is called a simplicial elimination scheme, and defines an ordering on the vertices called a perfect
elimination ordering (peo).

Each minimal separator of a chordal graph H is the neighborhood of a vertex in the transitory graph
in the simplicial elimination scheme [4]. We will say that such a vertex generates a minimal separator
of H (w.r.t. a given peo of H):

Algorithms 2010, 3 202

Definition 2.5 Let H = (V,E) be a chordal graph, let α be a perfect elimination ordering of H . We say
that vertex x of number i by α generates minimal separator S w.r.t α if S is equal to the set of neighbors
of x of higher number.

Thus, to compute the set of minimal separators of H , it is sufficient to compute a peo α of H and
to select the vertices that generate a minimal separator of H w.r.t. α. This is easy to accomplish with a
special kind of peo defined by algorithms such as MCS [5], and will be used for our implementation in
Section 4.

Minimal triangulations: A triangulation is a chordal completion of a graph: a set F of edges (called
the fill edges)is added to the graph in order to obtain a chordal graph.

Definition 2.6 Let G = (V,E) be a graph. A chordal graph H = (V,E + F) is called a triangulation
of G, and F is called the fill. The triangulation is said to be:

• minimal if for no proper subset F ′ of F , H ′ = (V,E + F ′) is chordal.

• minimum if no other minimal triangulation has less fill edges.

Example 2.7 Graph H from Figure 4 is a minimal triangulation of Graph G from Figure 1
(see Figure 5).

Figure 5. H is a minimal triangulation of G. The fill edges are represented by dotted lines.

a

b
c e

j

hi

f

g

d

k
a

b
c e

j

hi

f

g

d

k

Computing a minimum triangulation is NP complete [6], but computing a minimal triangulation can
be done in O(nm) time (or a little less for dense graphs [7,8]). This problem has given rise to several
recent papers, so there are now many minimal triangulation algorithms (see e.g. [9–12]). We will use
one of them (MCS-M) in Section 4 where we describe an implementation.

Minimal elimination orderings: One way to compute a triangulation of a graph G = (V,E) is to force
the graph into having a perfect elimination ordering: define an ordering α on V , repeatedly pick the next
vertex by α, add any edges missing in its neighborhood (in the subgraph induced by the not yet removed
vertices), and remove it, until no vertex is left. This will yield a triangulation G+

α = (V,E + F) whose
fill F is the set of all edges added in this process.

Algorithms 2010, 3 203

An ordering α on the set of vertices of G is a minimal elimination ordering (meo) of G if the
triangulation G+

αof G obtained is a minimal triangulation of G.
Algorithm LEX M [13] was devised to compute an meo. In Section 4, we will use a simpler version

of LEX M, MCS-M [9]. Both these algorithms yield a minimal triangulation H of the input graph G and
an ordering α that is both a meo of G and a peo of H , and makes it easy to compute the set of vertices
generating the minimal separators of H .

3. Defining clique minimal separator decomposition

3.1. Definitions and examples

The decomposition by clique minimal separators can be defined by the following algorithmic process
on input graph G: define a collection of subgraphs (which at the beginning contains only G) by
repeatedly applying the following decomposition step on a subgraph which has a clique minimal
separator, until none of the subgraphs has a clique minimal separator.

Decomposition Step 3.1 Given a graph G′, find a clique minimal separator S of G′ and a full
component C of S; replace G′ with the following 2 subgraphs: G1 = G′(S ∪ C), G2 = G′(V − C).

The decomposition is the set of subgraphs obtained in the end, which are called atoms.
The decomposition is unique, the resulting set of atoms does not depend of the order in which the

decomposition steps are executed. This is because of the following property of clique minimal separator
decomposition:

Property 3.2 Let S be the set of minimal separators of a graph G′, let S be a clique minimal separator
of G′; after application of one decomposition Step 3.1, each other minimal separator is a minimal
separator of either G′

1 or of G′
2.

Thus in particular, any clique minimal separator will be a clique minimal separator of G1 or of G2.
Note that the clique minimal separator which was used, S, may or may not still be a minimal separator
of G2, depending on whether S had more than two or only two full components.

The atoms obtained are characterized as follows:

Characterization 3.3 An atom of graph G is a maximal connected subgraph containing no clique
minimal separator.

Example 3.4

• Figure 6 gives the decomposition of a tree.

• On any chordal graph, this decomposition yields the set of maximal cliques of the input graph.

• In a non-chordal graph, some of the atoms will not be cliques. Let us use our graph G from
Figure 1 as an example: The clique minimal separators of G are: {c, k}, {j,k}, {d, j, k}. Figure 7
shows a decomposition tree and the set of atoms.

Algorithms 2010, 3 204

Figure 6. (a) A decomposition step using minimal separator {a}. The minimal separators
(except for {a}) are partitioned into the two subtrees obtained. (b) Total decomposition.

a

b

e

c

d g
f

h i
j

k

a

b

ed

h i

a

c

g
f

j
k

(a)

g

j

c

g

a

b

e

c

d

h

a

b

e

c

g
f

i k

(b)

3.2. Properties of the atoms

• The number of atoms is at most n.

• The intersection between atoms is always a clique (which may be empty), and it is not necessarily
a minimal separator (even when it is not empty).

Example 3.5 In our example from Figure 7, atom {a, b, c, k}∩ atom {c, d, j, k} = {c, k}, which is not a
minimal separator; atom {a, b, c, k}∩ atom {i, j, k, h} = {j, k}, a minimal separator.

3.3. An equivalent process

Another way of doing the decomposition is using a clique minimal separator S and copying it in all
the components it defines. For a component C which is not a full component, we need to copy only the
neighborhood of C. This corresponds to a clique minimal separator which is properly included in S.

The property we use is the following:

Property 3.6 Let S be a minimal separator, let (Ci) be connected components of G(V − S). Then ∀i,
NG(Ci) is a minimal separator of G.

Algorithms 2010, 3 205

Figure 7. A decomposition tree for graph G from Figure 1 and the set of atoms of G.

S={c,k}

G({a,b,c,k}) G({c,d,e,f,g,h,i,j,k})

G({h,i,j,k}) G({c,d,e,f,g,j,k})

S={d,j,k}

G({c,d,j,k}) G({d,e,f,g,j,k})

(a) Decomposition tree

c

j

d

k

j

hi

k

e

j

f

g

d

k
a

b
c

k

(b) Set of atoms

This leads to the following decomposition step:

Decomposition Step 3.7 Given a graph G′ with a clique minimal separator S, let C1, . . . , Ck be the
connected components of G′(V − S). Replace G′ with the subgraphs G′(Ci ∪NG′(Ci)).

After such a decomposition step using clique minimal separator S, S and the clique minimal
separators subsets of S can no longer be a minimal separator in any of the subgraphs obtained, and
all the other minimal separators of G are partitioned into the subgraphs obtained.

Example 3.8 Figure 8 shows a decomposition step in graph G from Figure 1 using Decomposition
Step 3.7.

An application of Decomposition Step 3.7 corresponds to several applications of Decomposition
Step 3.1.

3.4. How to compute the clique minimal separators

To our knowledge, the only efficient known way to compute the clique minimal separators of a graph
is to extract them from a minimal triangulation.

Algorithms 2010, 3 206

Figure 8. A decomposition of G using Decomposition Step 3.7.

S={d,j,k}

G({h,i,j,k})G({a,b,c,d,j,k}) G({d,e,f,g,j,k})

S={c,k}

G({c,d,j,k})G({a,b,c,k})

This method is based on the following property:

Property 3.9 Let G = (V,E) be a graph, let H = (V,E + F) be a minimal triangulation of G. The
clique minimal separators of G are exactly the minimal separators of H that are cliques in G.

Thus in order to find the clique minimal separators of a graph, the general process is as follows:

• compute a minimal triangulation H of G.

• compute the minimal separators of H .

• check each minimal separator of H to see whether it is a clique in G.

Computing the minimal separators of a minimal triangulation of a graph can be done efficiently using
an ordering provided by a search algorithm such as MCS-M, and Steps 1 and 2 can be merged, as we
will see in Section 4.

Example 3.10 Graph H from Figure 4 is a minimal triangulation of Graph G from Figure 1. The
minimal separators of H are: {b, k}, {c, k}, {d, j, k}, {j, k}, {i, j}, {d, g}. Three of them are cliques in
G: {c, k}, {d, j, k}, {j, k}, so they are clique minimal separators of G.

3.5. Some problems which can be solved using the atoms

• Minimal and minimum triangulation: if a minimal triangulation is computed for each of the atoms
of the clique minimal separator decomposition of a graph, then the union of the set of fill edges
obtained defines a minimal triangulation for G. Thus if for each atom a minimum-sized fill is
computed, the resulting fill will be a minimum triangulation of G, since the sets of fill edges in the
atoms are pairwise disjoint.

• Treewidth: the treewidth is obtained by taking the largest treewidth over all the atoms.

• Perfection: Any chordless cycle of length 4 or more is preserved by a decomposition step, as well
as any antihole, so this decomposition preserves holes and antiholes. Thus a graph is perfect if and
only if all its atoms are perfect.

• Coloring: An optimal coloring is obtained by merging optimal colorings of the atoms.

Algorithms 2010, 3 207

• Maximum clique: Any maximal clique of the graph is preserved after a decomposition step, so
finding the size of the largest clique of each atom will yield the size of the largest clique of the
original graph.

4. Algorithms and implementations

There are several ways of computing the decomposition of a graph into atoms. The simplest is to
implement Decomposition Step 3.1. We will use Algorithm MCS-M [9], a search algorithm which
computes a minimal triangulation H = (V,E + F) of the input graph G = (V,E), represented by a set
F of fill edges, as well as an ordering α of the vertices. MCS-M numbers the vertices from n to 1, and
the ordering α obtained is a meo of the input graph G and a peo of the minimal triangulation H which is
computed [14].

Once this ordering and this triangulation are computed, we will use them in a second algorithm,
(Algorithm Atoms), which will generate the atoms by scanning the vertices from 1 to n.

We will start by giving the general MCS-M algorithm, then an expanded version, which we call
MCS-M+, as will be explained afterwards, and finally give the algorithm which yields the atoms.

G′ will be the transitory subgraph of G induced by the set of still unnumbered vertices.

Algorithm MCS-M

input : An undirected graph G = (V,E).
output: A minimal elimination ordering α on V and a minimal triangulation H = (V,E + F) of

G.

init: F ← ∅; G′ ← G; Initialize the labels of all vertices as 0 ;
for i =n downto 1 do

Choose a vertex x of G′ of maximal label ; Y ← NG′(x) ;
foreach vertex y of G′ not belonging to NG′ [x] do

if there is a path from x to y in G′ such that every internal vertex on the path has a label
strictly smaller than label(y) then

Y ← Y + {y};

foreach y in Y do
F ← F + {xy}; label(y)← label(y) + 1 ;

α(i)← x ; Remove x from G′ ;
H ← (V,E + F);

We will now expand this algorithm in two ways.
First, we will implement “if there is a path from x to y in G′ such that every internal vertex on the

path has a label strictly smaller than label(y)”.
We do this in a similar way as in the implementation of LEX M given in [13] by a single search in G′.

For each label value j, set reach(j) contains the reached vertices having label j, as well as the vertices
having a label strictly smaller than j reached from a vertex having label j.

Second, we will compute the set X of vertices that generate the minimal separators of the
triangulation H , as described in [5]. The idea behind this is that as long as the labels of the chosen

Algorithms 2010, 3 208

vertices keep getting larger, we are inside a clique of H; when suddenly the label of the chosen vertex
x stops getting larger, x generates a minimal separator of H . Each such vertex x is added to set X .

Algorithm MCS-M+

input : An undirected graph G = (V,E).
output: A minimal elimination ordering α on V , a minimal triangulation H = (V,E + F) of G,

and the set X of vertices which generate a minimal separator of H .

init: F ← ∅; G′ ← G ;
Initialize the labels of all vertices as 0 ; s← −1 ; X ← ∅ ;
for i =n downto 1 do

Choose a vertex x of G′ of maximal label ; Y ← NG′(x) ;
if label(x) ≤ s then

X ← X + {x} ;
s← label(x) ;
Mark x reached and mark all other vertices of G′ unreached ;
for j =0 to n− 1 do

reach(j)← ∅
foreach y in NG′(x) do

Mark y reached;
Add y to reach(label(y));

for j =0 to n− 1 do
while reach(j) ̸= ∅ do

Remove a vertex y from reach(j) ;
foreach z in NG′(y) do

if z is unreached then
Mark z reached;
if label(z) > j then

Y ← Y + {z};
Add z to reach(label(z));

else
Add z to reach(j);

foreach y in Y do
F ← F + {xy}; label(y)← label(y) + 1 ;

α(i)← x ; Remove x from G′;
H ← (V,E + F).

Once we have obtained an MCS-M ordering α, as well as the corresponding minimal triangulation
H of G and the set X of generators of the minimal separators of H , we run through the vertices from 1
to n. We use the transitory subgraphs G′ and H ′ of G and H , initialized as G and H , respectively. At
each step i processing vertex x = α(i), we check whether x is in the set X . If it is, the neighborhood
NH′(x) of x in H ′ is a minimal separator of H; we check whether it is a clique in G. If it is, then S is
a clique minimal separator of G. In that case we compute the connected component C of G(V − S)

Algorithms 2010, 3 209

which contains x; G′(S ∪ C) is an atom [15], and is stored as such; C is then removed from G′. In any
case, we then remove x from H ′.

Algorithm Atoms

input : A graph G = (V,E), a meo α of G, the corresponding minimal triangulation
H = (V,E + F) of G, the set X of vertices that generate a minimal separator of H .

output: The set A of atoms of G, the set SH of minimal separators of H , the set Sc of clique
minimal separators of G.

G′ ← G ; H ′ ← H ; A ← ∅ ; SH ← ∅ ; Sc ← ∅ ;
for i =1 to n do

x← α(i) ;
if x ∈ X then

S ← NH′(x) ; SH ← SH ∪ {S} ;
if S is a clique in G then

Sc ← Sc ∪ {S};
C ← the connected component of G′ − S containing x ;
A ← A + {G′(S ∪ C)}; G′ ← G′ − C ;

Remove x from H ′;
A ← A + {G′}.

5. Theoretical and bibliographical background

5.1. A brief history of clique minimal separator decomposition

In 1976, Gavril [16] described the class of “clique separable graphs” in the context of solving in
polynomial time the hard problems of minimum coloring and maximum clique.

In 1980, the problem of finding a clique separator in an arbitrary graph was addressed by Whitesides
[17], who presented an O(n3) algorithm to find one clique separator.

In 1983, Tarjan [15] addressed the problem of finding a decomposition of an arbitrary graph
using its clique separators. He noted that using Whitesides’ algorithm, this would require O(nm3)

time. He proposed an O(nm) time algorithm to do this, by showing that no fill edge of a minimal
triangulation can join two connected components defined by a clique separator. Computing an meo
required O(nm) time, as he showed in [13] (1976), and he proved that using an meo, a clique separator
decomposition can be computed in O(nm) time. Tarjan left open the question of defining a unique clique
separator decomposition.

In 1990, Dahlhaus, Karpinsky and Novick [18] proposed a parallel algorithm for clique
separator decomposition.

In 1990, concurrently, Leimer [19], in a paper sent out for publication in 1986, described in every
mathematical detail how to obtain an optimal and unique decomposition using the clique minimal
separators of the graph. Leimer also described how to use LEX M (also called the RTL algorithm)
to find a clique minimal separator decomposition in O(nm) time.

In 2001, Olesen and Madsen [20] applied clique minimal separator decomposition to Bayesian
networks, and presented an approach based on the clique tree of a minimal triangulation to compute

Algorithms 2010, 3 210

the atoms (which they call maximal prime subgraphs) by merging in the clique tree any two nodes
connected by an edge which represents a non-clique minimal separator (the reader is referred to [21] for
full details on clique trees).

5.2. Computing the clique minimal separators of a graph

We first prove that for any graph G and any minimal triangulation H of G, the clique minimal
separators of G are exactly the minimal separators of H that are cliques in G (property 3.9).

For this, it is sufficient to show that any clique of G has the same number of full components in G as
in H . This follows from the following property, which is an extension of Lemma 1 from [15].

Property 5.1 Let G = (V,E) be a graph, let H = (V,E + F) be a minimal triangulation of G and let
S be a clique of G. Then G(V −S) and H(V −S) have the same connected components, with the same
neighborhoods.

Proof: Let H ′ be the graph defined by H ′ = (V,E + F ′), where F ′ is the set of edges in F that are
contained in NG[C] for some connected component C of G(V −S). By definition of H ′, G(V −S) and
H ′(V − S) have the same connected components, with the same neighborhoods. Let us show that H ′ is
chordal. Let µ be a cycle in H ′ of length greater than 3, and let us show that µ has a chord in H ′. As
H is chordal, µ has a chord, say xy, in H . If xy is in H ′ then it is a chord of µ in H ′. Otherwise there
is a connected component C of G(V − S) such that x is in C and y is in V − NG[C], or conversely.
Hence there are two non-consecutive vertices w and z of µ that are both in NG(C), and therefore both in
clique S of H ′. It follows that wz is a chord of µ in H ′, which completes the proof that H ′ is chordal. As
G ⊆ H ′ ⊆ H , with H ′ chordal and H a minimal triangulation of G, H ′ = H , and therefore G(V − S)

and H(V − S) have the same connected components, with the same neighborhoods. 2

Corollary 5.2 (Property 3.9) Let G = (V,E) be a graph, let H = (V,E+F) be a minimal triangulation
of G. The clique minimal separators of G are exactly the minimal separators of H that are cliques in G.

The fact that each minimal separator of a chordal graph H is generated by a vertex of H w.r.t. a
peo of H [4] is well-known. A way of selecting the exact vertices that generate a minimal separator is
discussed in [5].

The following algorithm is based on the expanded version of MCS presented in [21] to generate the
maximal cliques and a clique tree.

This process is integrated in the implementation given in Section 4.

Algorithms 2010, 3 211

Algorithm MCS-Minseps

input : A chordal graph H = (V,E).
output: The set S of minimal separators of H .

init: VNUM ← ∅; HNUM ← H(VNUM); HELIM ← H; S ← ∅ ;
Initialize the labels of all vertices as 0 ; s← −1 ;
for i =n downto 1 do

Choose a vertex x of HELIM of maximum label ;
VNUM ← VNUM + {x}; HNUM ← H(VNUM);
if label(x) ≤ s then

S ← S ∪ {NHNUM
(x)} ;

s← label(x) ;
foreach y ∈ NHELIM

(x) do
label(y)← label(y) + 1;

Remove x from HELIM ;

5.3. Decomposing a graph into atoms

Decomposition Step 3.1 and Algorithm Atoms of Section 4 are largely inspired from the
decomposition of a graph by clique separators described by Tarjan [15]. Tarjan considers clique
separators instead of clique minimal separators, with the drawback that the set of atoms obtained is not
unique (see Subsection 5.4). He also computes a meo of G and the corresponding minimal triangulation
of G, but he selects the vertices that generate a clique separator instead of a clique minimal separator of
G. The proof of the clique separator decomposition algorithm given in [15] can easily be modified into
a proof of Algorithm Atoms. We will give an idea of this proof.

Theorem 5.3 Algorithm Atoms computes a clique minimal separator decomposition of input graph G.

Proof: (idea of the proof) The proof works by induction on k = |X ′|, where X ′ is the set of vertices
of X that generate a clique of G w.r.t. α, i.e., the set of vertices of G that generate a clique minimal
separator of G w.r.t. α. If k = 0 then the computed decomposition is {G}, which is correct since G has
no clique minimal separator. We suppose that the decomposition is correct if |X ′| ≤ k. Let us show that
it is still correct if |X ′| = k+1. Let x be the first vertex of X ′ in ordering α, let S be the clique minimal
separator of G generated by x w.r.t. α, let C be the connected component of G(V − S) containing x,
let G1 = G(S ∪ C) and G2 = G(V − C). For j in {1, 2}, let Vj be the vertex set of Gj , let αj be the
restriction of α to Vj , let Hj = H(Vj) and X ′

j = X ′∩Vj . It can be shown that for j in {1, 2}, αj is a meo
of Gj , with Hj as corresponding minimal triangulation of Gj . Moreover, each vertex of V2 generates the
same set in G2 w.r.t. α2 as in G w.r.t. α, which is a minimal separator of H2 if and only if it is a minimal
separator of H . Hence X ′

2 is exactly the set of vertices of G2 that generate a a clique minimal separator
of G2 w.r.t. α2, with |X ′

2| ≤ k since X ′
2 ⊆ X ′ − {x}. It follows by induction hypothesis that G2 is

correctly decomposed. It remains to show that G1 is an atom of G. It can be shown that each vertex of
C − {x} precedes x in ordering α, and generates the same set in G1 w.r.t. α1 as in G w.r.t. α, which is a
minimal separator of H1 if and only if it is a minimal separator of H . As no vertex of C −{x} generates

Algorithms 2010, 3 212

a clique minimal separator of G w.r.t. α (since x is the first vertex that does), no vertex of C − {x}
generates a clique minimal separator of G1 w.r.t. α1 either. Now each vertex of S ∪ {x} generates a
subset of S, which is not a separator of G1, w.r.t. α1. Hence G1 has no clique minimal separator, and is
therefore an atom of G. 2

5.4. The unicity of clique minimal separator decomposition

Tarjan [15] originally defined the decomposition step of a graph by a clique separator as follows:

Decomposition Step 5.4 Let S be a clique separator of G′ = (V ′, E ′), let (S,A,B) be a partition of V ′

such that no vertex in A is adjacent to a vertex in B. Replace G′ by G′
1 = G′(S∪A) and G′

2 = G′(S∪B).

He remarked that the set of atoms obtained by repeatedly applying this decomposition step is not
unique, giving a counterexample that is recalled in Figure 9, and left the problem of the unicity of the
decomposition open. Leimer [19] solved this problem, showing that using clique minimal separators
instead of clique separators ensures unicity of the decomposition (with the additional condition that each
one of A and B contains a full component of S in G′ in the case of Decomposition Step 5.4). We present
some elements of the proof of this result, which is associated in [19] with proofs of more complex results
which make it difficult for non-specialists to follow. We first recall some definitions given in [19].

Figure 9. A graph with different decompositions by clique separators. (a) Graph.
(b) One decomposition, which is the unique decomposition by clique minimal separators.
(c) Another decomposition.

b c

e

d

a {a,e}

{a,b,c,e} {a,d,e} {a,e}{a,e}{a,e}{a,b,c,e}

{a,d,e}{a,d,e}{a,c,e}

(a) (b) (c)

{a,c,e}

Definition 5.5 A graph is prime if it is connected and has no clique separator (or equivalently, no clique
minimal separator). A mp-subgraph of a graph G is a maximal prime subgraph of G.

Leimer proved that the clique minimal separator decomposition of a graph G is the set of
mp-subgraphs of G (Characterization 3.3). The proof of this characterization relies on the
following property.

Property 5.6 Let G = (V,E) be a graph, let S be a clique of G having at least one full component in
G. Then there is a subset A of V such that S ⊂ A and G(A) is prime.

Algorithms 2010, 3 213

Proof: (idea of the proof) The property holds if G is chordal since in that case, as S is a clique of G
having a full component, say C, in G, there is a vertex x of C such that S ⊆ NG(x) (this follows from
the results in [4]), and therefore S ∪ {x} is a clique and induces a prime graph.
Let us show that it holds for any graph G. Let G∗ be the graph obtained from G by making each
mp-subgraph of G into a clique. G∗ is chordal and has the same mp-subgraphs as G [19]. There is a
subset A of V such that S ⊂ A and G∗(A) is prime. Let B be a subset of V such that A ⊆ B and
G∗(B) is a mp-subgraph of G∗. Then S ⊂ B and G(B) is prime. 2 He also showed the following

characterization, which is Characterization 3.3:

Characterization 5.7 The clique minimal separator decomposition of graph G is the set of
mp-subgraphs of G.

Proof: We suppose that the decomposition step which is used is Decomposition Step 5.4 with the
additional condition that each one of A and B contains a full component of S in G′, which is more
general than Decomposition Step 3.1.
The proof goes by induction on the number n of vertices of the graph. The property trivially holds if
n = 1. Suppose that it holds for any graph with at most n vertices. Let us show that it holds for a graph
G = (V,E) with n+ 1 vertices.

The property trivially holds if G has no clique minimal separator. We suppose that G has a
clique minimal separator S. Let (S,A,B) be a partition of V such that no vertex in A is adjacent
to a vertex in B and each one of A and B contains a full component of S in G. Let G1 =

G(S ∪ A) and G2 = G(S ∪ B). Let us show that the set atoms(G) of atoms obtained by replacing
G by G1 and G2 and further decomposing G1 and G2 is equal to the set mp-subgraphs(G) of
mp-subgraphs of G. Clearly atom(G) = atoms(G1) ∪ atoms(G2). As by induction hypothesis
atoms(G1) = mp-subgraphs(G1) and atoms(G2) = mp-subgraphs(G2), it is sufficient to show that
mp-subgraphs(G) = mp-subgraphs(G1) ∪mp-subgraphs(G2).

Let us first show that mp-subgraphs(G) ⊆ mp-subgraphs(G1)∪mp-subgraphs(G2). Let G(M) be
in mp-subgraphs(G). Then M ⊆ S ∪ A or M ⊆ S ∪B (otherwise M ∩ S would be a clique separator
of G(M)) and therefore G(M) ∈ mp-subgraphs(G1) ∪mp-subgraphs(G2).
Let us show now that mp-subgraphs(G1) ∪ mp-subgraphs(G2) ⊆ mp-subgraphs(G). Let G(M) ∈
mp-subgraphs(G1) ∪ mp-subgraphs(G2), say G(M) ∈ mp-subgraphs(G1). By Property 5.6, as A

contains a full component of S in G, no subset of S induces a mp-subgraph of G1. Hence M ∩ A ̸= ∅.
Let G(M ′) be a mp-subgraph of G with M ⊆ M ′. As mp-subgraphs(G) ⊆ mp-subgraphs(G1) ∪
mp-subgraphs(G2), G(M ′) ∈ mp-subgraphs(G1)∪mp-subgraphs(G2), and as M ′∩A ̸= ∅ (since M∩
A ̸= ∅ and M ⊆ M ′), G(M ′) ∈ mp-subgraphs(G1). As G(M) and G(M ′) are both mp-subgraphs of
G1 with M ⊆ M ′, M = M ′. Hence G(M) ∈ mp-subgraphs(G). It follows that mp-subgraphs(G) =

mp-subgraphs(G1) ∪mp-subgraphs(G2), which completes the proof by induction. 2

Corollary 5.8 The decomposition by clique minimal separators is unique.

Algorithms 2010, 3 214

6. Conclusions

Clique minimal separator decomposition is simple to implement and particularly well-suited to
applications involving graphs chosen from a distance matrix. Though the theoretical background is
somewhat complicated, it is not necessary to master it in order to use this decomposition. Clique
minimum separator decomposition has also been used recently as a tool to solve the maximum weight
stable set problem for special graphs classes [22], and has been applied to treewidth by using separators
which are cliques or almost cliques [23].

One of the promising aspects of this decomposition is that once a threshold is chosen, the “clusters”
which are formed as atoms of the corresponding graph are uniquely defined, depending solely on the
structure of the data.

Regarding graph visualization, the set of atoms can be organized into a meta-graph where the vertices
are the atoms. For instance [2], there can be an edge between two atoms when their intersection is a
clique minimal separator. This yields a more global view of the graph, while displaying some of its
structural properties.

References

1. Didi Biha, M.; Kaba, B.; Meurs, M.J.; SanJuan, E. Graph decomposition approaches for
terminology graphs. Proc. MICAI 2007, 883–893.

2. Kaba, B.; Pinet, N.; Lelandais, G.; Sigayret, A.; Berry, A. Clustering gene expression data using
graph separators. In Silico Biol. 2007, 7, 433–452.

3. Dirac, G.A. On rigid circuit graphs. Abh. Math. Sem. Univ. Hamburg 1961, 25, 71–76.
4. Rose, D.J. Triangulated graphs and the elimination process. J. Math. Anal. Appl. 1970, 32,

597–609.
5. Berry A.; Pogorelcnik, R. A simple algorithm to generate the minimal separators of a chordal

graph. Research Report LIMOS RR-10-04. LIMOS UMR CNRS: Aubière, France, 2010.
6. Yannakakis, M. Computing the minimum fill-in is NP-complete. SIAM J. Algebr. Discrete Method

1981, 2, 77–79.
7. Kratsch, D.; Spinrad, J. Minimal fill in O(n2.69) time. Discrete Math. 2006, 306, 366–371.
8. Heggernes, P.; Telle, J.A.; Villanger, Y. Computing minimal triangulations in time

O(nαlogn) = o(n2.376). SIAM J. Discrete Math. 2005, 19, 900–913.
9. Berry, A.; Blair, J.R.S.; Heggernes, P. Maximum cardinality search for computing minimal

triangulations of graphs. Algorithmica 2004, 39, 287–298.
10. Berry, A.; Bordat, J.P.; Heggernes, P.; Simonet, G.; Villanger, Y. A wide-range algorithm for

minimal triangulation from an arbitrary ordering. J. Algor. 2006, 58, 33–66.
11. Berry, A.; Heggernes, P.; Villanger, Y. A vertex incremental approach for maintaining chordality.

Discrete Math. 2006, 306, 318–336.
12. Heggernes, P. Minimal triangulations of graphs: A survey. Discrete Math. 2006, 306, 297–317.
13. Rose, D.J.; Tarjan, R.E.; Lueker, G.S. Algorithmic aspects of vertex elimination on graphs. SIAM

J. Comput. 1976, 5, 266–283.

Algorithms 2010, 3 215

14. Berry, A.; Krueger, R.; Simonet, G. Maximal label search algorithms to compute perfect and
minimal elimination orderings. SIAM J. Discrete Math., 2009 23, 428–446.

15. Tarjan, R.E. Decomposition by clique separators. Discrete Math. 1985, 55, 221–232.
16. Gavril, F. Algorithms on clique separable graphs. Discrete Math. 1977, 19, 159–165.
17. Whitesides, S. An algorithm for finding clique cutsets. Inf. Process. Lett. 1981, 12, 31–32.
18. Dahlhaus, E.; Karpinski, M.; Novick, M.B. Fast parallel algorithms for the clique separator

decomposition. In Proceedings of the First Annual ACM-SIAM Symposium on Discrete Algorithms:
SODA ’90, Philadelphia, PA, USA, January 1990; pp. 244–251

19. Leimer, H.G. Optimal decomposition by clique separators. Discrete Math. 1993, 113, 99–123.
20. Olesen, K.G.; Madsen, A.L. Maximal prime subgraph decomposition of Bayesian networks. IEEE

Trans. Syst. Man Cybernet. B 2002, 32, 21–31.
21. Blair, J.R.S.; Peyton, B.W. An introduction to chordal graphs and clique trees. Graph Theory

Sparse Matrix Comput. 1993, 84, 1–29.
22. Brandstädt, A.; Hoàng, C.T. On clique separators, nearly chordal graphs, and the Maximum Weight

Stable Set Problem. Theor. Comput. Sci. 2007, 389, 295–306.
23. Bodlaender, H.L.; Koster, A.M.C.A. Safe separators for treewidth. Discret Math. 2006, 306,

337–350.

c⃝ 2010 by the authors; licensee MDPI, Basel, Switzerland. This article is an Open Access
article distributed under the terms and conditions of the Creative Commons Attribution license
http://creativecommons.org/licenses/by/3.0/.

	Introduction
	Graph Notions
	General notions
	Minimal separation, chordal graphs, and minimal triangulation

	Defining clique minimal separator decomposition
	Definitions and examples
	Properties of the atoms
	An equivalent process
	How to compute the clique minimal separators
	Some problems which can be solved using the atoms

	Algorithms and implementations
	Theoretical and bibliographical background
	A brief history of clique minimal separator decomposition
	Computing the clique minimal separators of a graph
	Decomposing a graph into atoms
	The unicity of clique minimal separator decomposition

	Conclusions

