N

N

An Early Evaluation Method for Social Interactive
Systems
Ines Di Loreto, Abdelkader Gouaich

» To cite this version:

Ines Di Loreto, Abdelkader Gouaich. An Early Evaluation Method for Social Interactive Systems.
RR-10016, 2010, pp.001-010. lirmm-00486932

HAL Id: lirmm-00486932
https://hal-lirmm.ccsd.cnrs.fr /lirmm-00486932
Submitted on 27 May 2010

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.

https://hal-lirmm.ccsd.cnrs.fr/lirmm-00486932
https://hal.archives-ouvertes.fr

AN EARLY EVALUATION METHOD FOR SOCIAL
INTERACTIVE SYSTEMS

Ines Di Loreto, Abdelkader Gouaich

LIRMM Research Report #RR-10016
ABSTRACT
Most evaluation methods address the perceived
effectiveness of social aspect after user usage. On the
contrary, the evaluation of ‘potential sociability’ in an
application can help designers to anticipate several
problems that can arise before starting the implementation.
For this reason, this paper proposes an evaluation
framework able to analyze social aspects and to give an
‘early evaluation’ of the designed application. In fact, the
four dimensions that compose the framework (identity,
space, persistence, and actions) can be used as ’indicators’
in order to evaluate whenever the social system is able to
facilitate the feeling of social presence. In particular, the
presented paper will analyze the easiness of use of the
method and its learnability.

Keywords
Social Web, Design Methods, Evaluation Methods, Social
Presence

INTRODUCTION

Looking at current era we can notice that social aspects
have to be considered as an essential component of the
“virtual’ life of most current users. Current digital users -
such as bloggers and gamers - take for granted social web
features and expect them to be available into any
application. For this reason, an application that fails in
presenting at least familiar social features would be
considered as a regression and may be rejected. Besides,
the evaluation of social aspects in current software is
performed a posteriori. On the contrary, we claim that an a
priori evaluation can be useful. In fact, while users are able
to evaluate the quality of their experience, for the most part
they are not able to understand which feature/characteristic
generates a poor performance. This does not mean that a
user centered design approach (see e.g., [15]) is not useful
when designing a social application. On the contrary, a
deep analysis of users’ needs is at the basis of any
application development. However, between user centered
design, and users’ satisfaction measurement we want to
add an intermediate layer. An early evaluation of the
application design, in fact, can help designers to anticipate

LEAVE BLANK THE LAST 2.5 cm (1’) OF THE LEFT
COLUMN ON THE FIRST PAGE FOR THE
COPYRIGHT NOTICE.

several problems that can arise before starting the
implementation. Consequently, the early evaluation allows
the designer to return on the phase of design to add missing
elements if needed. This approach can help for example in
restraining development cost. For the above-mentioned
reasons, the authors proposed a framework based on four
elements: identity, space, persistence, and actions. The
framework was proved useful in building better social
systems (see A2-A3. Missing citation for blind review-
PHD thesis and internal report). In addition, because of its
capability to analyze social aspects the framework can help
in giving an early evaluation of the ‘to be designed’
application (see Al-Missing citation for blind review-
paper accepted at the CSEDU 2010 conference). In fact,
the four elements (and the behaviors they let emerge) can
be used as markers’ (or ’indicators’) in order to evaluate if
or not the designed systems is able to facilitate the feeling
of social presence. This paper in particular, will focus on
the learnability and easiness of use of the proposed
method.

For this reason, following sections of this paper will be
devoted to (i) define the concept of social presence (ii)
present the framework and the method for early evaluation
based on the framework (iii) show the results of an
experiment where easiness of use and learnability were
tested.

PRESENCE AND SOCIAL PRESENCE IN SOCIAL
ENVIRONMENTS

In his paper "Measuring Presence in Virtual Environments:
A Presence Questionnaire’, Witmer [17] says that the
effectiveness of virtual environments (VEs) has often been
linked to the sense of presence reported by users of those
VEs. For the author, presence is defined as the subjective
experience of being in one place or environment, even
when one is physically situated in another. In addition,
presence is a normal awareness phenomenon that requires
directed attention and is based in the interaction between
sensory stimulation, environmental factors (that encourage
involvement and enable immersion) and internal
tendencies to become involved.

For example, in virtual worlds (such as Second Life) an
active exploitation of our senses can create a psychological
sense of presence, or, in other worlds, the illusion that ‘I’'m
in the virtual world and not in my house’ and, as a
consequence, that ‘I’m there with other people’[1].

What is interesting for this paper purpose is that we can
extend the concept of presence to the concept of social
presence. Social presence is, in fact, defined as the ‘degree
of salience of the other person in the interaction and the
consequent salience (and perceived intimacy and
immediacy) of the interpersonal relationships’ [14]. In
order to measure the potential presence awareness of our
application several ’indicators’ can be identified. Note that
we are talking about indicators of ‘potential sociability’
before the implementation starts, not about indicators of
sociability after system usage. The absence of these
indicators of ‘potential sociability’ in a virtual environment
is a signal of a not well-designed system, not able to
support social interactions. As already said, being able to
do such an evaluation at early stage (i.e., before starting
implementation) has major advantages: it can simplify the
work of designers (that can return on their design before
development) and help to build better applications while
reducing development costs. For example a designer can
fix, add or remove features before starting to develop them,
reducing in this case the development time.

DEFINING INDICATORS FOR SOCIAL PRESENCE

This section presents the core elements of the framework
that can be used to evaluate social presence ’potential’ in
an application at early stage. The framework is based on
four elements: identity, space, persistence, and actions.
These elements are motivated by an empirical analysis of
current and past social software and supported by major
findings from psychology and sociology. Actually, these
elements represent core features of any Social Interactive
Systems (SIS) targeted towards young generations (see
A2). Consequently, they represent interesting evaluation
criteria in order to capture at early stage the potential
presence awareness of the application being designed.
Hereafter, the semantics of each element of the framework
is described more in details.

Identity

Our point of view about Identity is the same as social
psychology’s approaches [7], which consider individual
and social identity not as stable characteristics, but rather
as a dynamic phenomenon [6]. In these approaches, the
choice about what possible self to show is driven by
strategic moves (e.g., what features are more relevant and
effective for self-presentation) which participants can
make within a particular situation. In describing everyday
interactions, Goffman [5] distinguished between two ways
of expressing information: information that is given and
information that is given off. Information that is given is
the conscious content of communication, the voluntary,
symbolic actions that are mutually understood. For
example, a person who describes their anger is giving

information about their emotional state. In talking about
their anger, however, the person also gives off information,
through para-verbal characteristics such as tone, volume,
the choice of words, and non-verbal cues. While
information that is given is considered to be within the
actor’s control, information that is given off is perceived
by the audience to be unintentionally communicated. A
classical example of ’identity announcement’ that has
intentionally and unintentionally elements is avatar
personalization. While we will not enter in detail here on
its implications the avatar is a visual claim for personal
expression that is constantly worked on. This continuous
work reinforces the concept of presence and thus social
presence. As another example of collateral information, we
can use the explicit specification of a social network of
acquaintance. While it is true that social networks are built
via a series of invitations, usually members also have some
control over the visibility of their network for others. This
means that, for impression management, a user will show
only networks he/she wants to show. For instance, some
members can decide to make their social networks visible
only to their direct acquaintances.

In this case, there is a ’given’ information (the user
chooses what to show about his/her identity), but also a
’given off’ information (derived e.g., from the kind of
groups a user showed/joined). From a design point of view,
we can say that allowing both the kinds of identity
representation becomes the starting point for a social
evolving identity.

Space

If we look carefully, the language we use to describe our
experience of the virtual environment is a reflection of an
underlying conceptual metaphor: ’Cyberspace as Place’
[10]. This means that we are transferring certain spatial
characteristics from our real world experience over the
virtual environment. The metaphor *Cyberspace as Place’
leads to a series of other metaphorical inferences:
cyberspace is like the physical world, it can be ’zoned’,
trespassed upon, interfered with, and divided up into a
series of small landholdings that are just like real world
property holdings.

In this little presentation the term space was joined with
the term place. In reality, for the good functioning of a SIS
it is important to distinguish between the two terms.
Actually, the literature about space and place is fairly
massive and diverse. A converging definition of the
difference between space and place does not exist,
however in his book about urban spaces and places,
Carmona [2] distinguishes among dimensions of an urban
space. While space is divisible, place is not. Place is
complex, inextricably multi-dimensional, lived,
experienced, meaningful (with of course multi - meanings).

This means that while space is a well-defined
topographical entity, place is the result of human
inhabitation, (social) interaction, and the like. We are
located in spaces, but we act and develop individual and
social experiences in places. We claim that in order to
design a social application, it is essential to allow by
design the creation of public (at different levels) places for
aggregation but also the creation of private places [16].
Besides, the lever of personalization can be used in order
to allow the shift from spaces to places. Only taking
possession of the space, and manipulating it to turn it in
something we like, we can transform it in a place.

Persistence

As we have seen, in order to create a social identity in an
online environment several elements are required. An
additional element is persistence (of personal identity in
the system). In a non-persistent world, it is not possible to
have a history of actions and thus allow, for example, the
creation of a reputation like in real life. Moreover, Danet
[3] argued that synchronicity is associated with ’flow
experiences’, a state of total absorption and a lack of
awareness of time passing. This idea of synchronicity is
linked to the idea of temporality, a linear procession of
past, present, future. This particular nuance (synchronicity
as process) is very interesting if we think that interaction
with media and media perception is changed. In fact,
advances in technology and the speed of network
connections are blurring distinctions between synchronous
and asynchronous communications [8]. Synchronous and
asynchronous communications are thus processes that
happen during time. The idea of communication as a
process is very consistent with the idea of persistence and
is another element supporting social awareness.

Actions

In this part, we discuss physical and psychological
mechanisms that regulate human actions in order to
understand why the action element has to be considered as
a pillar in the design of social software. The first theory we
want to describe is the so-called ‘thinking through doing’.
This theory describes how thought (mind) and action
(body) are deeply integrated and how they co-produce
learning and reasoning [9]. Jean Piaget [13] postulated that
cognitive structuring requires both physical and mental
activity. In a very basic sense, humans learn about the
world and its properties by interacting within it. As a
second support, we can cite embodied cognition. Theories
and research of embodied cognition regard bodily activity
as being essential to understanding human cognition [12].
While these theories address cognition through action in
physical environments, they also have important
implications for designing interactive systems. In fact,
body engagement with virtual environments constitutes an

important aspect of cognitive work. For example, one
might expect that the predominant task in Tetris is piece
movement with the pragmatic effect of aligning the piece
with the optimal available space. However, contrary to
intuitions, the proportion of shape rotations later undone by
backtracking increases (not decreases) with increasing
Tetris-playing skill level. In fact, players manipulate pieces
to understand how different options would work [11].

To summarize, because an action is always an action-over-
something, the kind of interaction spaces and objects we
create in a Social System will influence which cognitive
work the user will do over the system.

THE OVERALL FRAMEWORK

While we presented the four elements in a separate way,
their usefulness in the construction and evaluation of social
environments is mostly linked to the interaction between
these elements.

Actions

1 1 Social actions

Inaction
Identity 1 N 1) Space
Social presence Anonymity/i Space Place
Amnesya

Memory
1

L.

Persistence

Fig. 1 A graphical representation of the four elements
through axis.

In a way, each element can be thought of as a line (an axis)
that starts from the absence of the element to the
fulfillment of its presence for a Social Interactive System.
For example, for the concept of identity its total absence is
anonymity while its fulfillment is social presence (with
intermediate points such as personal identity construction).

For the concept of space its total absence is topographical
space while its fulfillment is social places (with
intermediate points such as third places and personal
places). For the concept of persistence its total absence is
system 'amnesia’ while its fulfillment is memory (with
intermediate points linked more or less to the concept of
persistence). Finally, for the concept of action its total
absence is the obstruction of action (i.e., my user can only
look at my application) while its fulfillment is social
actions (with intermediate points such as public personal
actions and the like). Fig.1 shows the above-described axis
graphically. This way a designer can create an ‘Expected
Profile’ for an application. For example, if he/she decides

1

that his to be developed application has to have a high
level of self-presentation elements (an avatar, a profile, and
so on) he/she will give a high value for the identity axis.
Same thing happens for the persistence axis. For example,
a social network based on micro actions such as Facebook,
does not require the same level of persistence as a virtual
world such as Second Life. In the first case the persistence
axis will have a medium value, in the second a high value.
And so on'.

Note that this explanation is an oversimplification. In
our work (A3-missing for blind review) we described a
very detailed set of elements each designer has to take
into account in order to design different social systems.

Identity Space Time Actions

Identity - Personalization (Self | Persistence Performance
expression)

Space Personalization (Self expression) - Persistence Personalization (Self expression)

Time Personalization (Memory of changes) Personalization (Memory of | -- Performances through time
changes)

Actions Reputation Environment appropriation | Persistence --
(personalization)

Tab.1 The relationship between the four factors

However, the total framework is not simply a list of
elements (i.e., its application does not mean to put one
after the other the four elements in your system) but it’s
created through the delicate balancing between them.
Table 1 shows in a simplified way the relationship between
the four elements of the framework. Actually, it is up to the
designer to choose which element of the framework to
stress or not during the creation of a dynamic experience
such as in a social application. Only once the ‘Expected
Profile’ of the application is decided, the designer chooses
which features add to the systems.

A METHOD FOR EVALUATING AN EXISTING DESIGN
While the above-described framework can also be used in
the phase of design of a social application, for this paper
we want to focus on its application for evaluation
purposes.

In fact, the framework can be helpful to evaluate the
'potential sociability' of an application. For this reason, in
this section we propose an 'Early Evaluation Method' (from
here on EEVa method) based on the framework. If the use
of all the four elements is fundamental to build 'good'
(successful from the social point of view) applications, a
way to measure their absence/presence at early stages can
help to avoid developing 'unsuccessful' systems (i.e.,
systems that are destined to have a negative impact on
sociability).

Normally, software development starts with a design
document. Using the design document, engineers decide a
set of software requirements. To accomplish this, they
employ use cases and other tools of analysis. After that,
they design the software (and finally someone develops it).

The major problem of this approach is that the starting
design document provides information about the
application from the perspective of the designer (who
could be a computer scientist but also a pedagogue, and the
like). Let's use a game design as an example. The game
designer seeks to create a game with a map editor, a
character editor, several levels, and a complex world. This
means that the game design document provides

information about the game as an artistic entity. However,
the requirements that are drawn from this document
constitute the first important step in transforming the
vision of the game into technical specifications.

The Idea of Stripes

For this reason, after the design phase each developer faces
the problem of 'how to translate the design in natural
language into software requirements'. In order to overcome
this difficulty, an interesting approach is the use of the
'stripes' concept.

In Flynt's definition, a stripe is 'a set of functionalities
embodied in a single component of the system.' [4]. More
specifically, a stripe embodies a subset of the
functionalities described in the requirements document (for
example the GUI - Graphical User Interface - can be a
stripe). Generally, the first stripe consists of the most
general system features only, such as the framework of the
application. With each successive stripe, the features
addressed become more refined. The level of detail and
complexity grows with each stripe, but because the detail
and complexity are layered, at no point does complexity
become overwhelming. While it's true that the stripes
approach calls for designing all stripes before beginning
software construction, it also involves an approach that is
iterative and incremental. In fact, after the creation of the
stripes, priorities are given to their development. In
addition, priorities can also be given to the setting of
features they embody. This kind of management creates an
incremental approach at both levels: the single stripe and
the whole system.

A Method for Translating Designs

The interesting part of this approach (i.e., the part that
suggested a possible link with the framework described in
this paper) is its incredible use of the concept of 'chains of
actions'. The problem with the same approach is that it
does not give any (more or less) formal' way to translate
the natural language design into stripes. For this reason, the
need arises to develop a method for 'translating' the design
into stripes. In order to make this 'translation’, an iterative
phase of pre-design was inserted between the concept

development and the classical computer scientist design
phase. The idea behind this insertion is to use the pre-

design phase to translate the design into requirements in
the

Sub-Stripe Stripe| Who (who makes| When (persistent?)| Interaction Non Issues| IdW| SpW| TimeW| ActW
N° (action)| description the action) Space| functional(adj
ectives)
When (stable effect (i.e. for the| What do you
Example: the =]
on the world or not; graphic| mean with??
player can| Who (the actor of . . What (on . IR
) . session duration, designer only, | Fill this field if
O(Example)| change his the action): the R . what): the . il 0 1 1
face: shape laver time duration): e for the sound you don't
e' o Ztc, piay stable (‘till next creator, and| understand
Y& change) the like) something

Fig. 2 The schema for the sub-stripes creation

following way. The designer takes the natural language
specifications; he/she analyzes them through a schema
based on the framework and finds the actions that
characterize the design. Each of these actions can be
defined as a 'sub-stripe' (i.e., a part of the total stripe). For
example, the path to follow in order to complete a quest in
a game can be seen as a stripe (find a better sword, find the
monster, kill the monster, acquire experience), while the
fact that it is possible, for example, to kill monsters in
order to fulfill your quest, is a sub-stripe. Once the
designer has defined all the sub-stripes for the design
he/she joins them into a set of chained actions that will
result in the stripes (for example the quest we mentioned
above). The analysis of each stripe will allow the designer
to de-construct them into features (note again that features
can be common to different stripes) and components. In
our previous example, the system that manages experience
every time you kill a monster can be seen as a feature.
Obviously, this feature can be shared by other stripes.

A path for the Translation

In order to follow the path described, a detailed list of
actions for helping the 'translator' in his deconstruction was
created (see also Fig. 2).

As a first step the 'translator' does a very simple thing:
he/she takes the design and highlights actions (i.e., verbs)
in natural language. For each action he/she then defines the
elements that impact on the framework using the field of
the table. The 'Who', ‘Interaction space’, and 'When'
elements, for example, help to define the persistence (or
not) of the action and if the action concerns identity or
space (who is acting: the user, the system and the like, and
‘over what' he is acting: the avatar, the system the
Graphical User Interface and the like). The application of
this method is linear (in fact the ‘translator’ analyzes the
document paragraph after paragraph). The result of the
application is a set of very detailed sub-stripes. Note that
the issue field was inserted in order to facilitate the
'feedback cycle' on the design. If something is not clear to
the translator, he/she simply opens an 'issue', i.e., he/she
ask designers to explain the element better. At the end of
the first analysis the translator sends all the issues to

designers and when he/she receives the answers he/she can
decide for example to modify actors, etc. for the related
sub-stripe.

At this point of the explanation the need arises to clarify
two subjects. Firstly, In Flynt's textbook there are other
described frameworks (i.e., function, object-oriented,
patterned). The decision to use the Stripes method is
linked, as said before, to the fact that this kind of
development is compliant with the concept of activity
(action) present in the framework. Secondly, Flynt does
not offer a method for translating the design into
requirements. The adoption of an iterative pre-design
phase, the creation of the translation method, and the early
evaluation method that will be described in following
sections are an addition made by the authors.

Evaluating the Design through the Framework

As said, the reason for this paper is to evaluate easiness of
use and learnability of an 'Early Evaluation Method' (EEVa
Method) based on the framework. This EEVa method
implies the possibility to evaluate the design before
starting the development. For example, it may happen that
a designer wants to create a design that is divided equally
between all the four elements. However, the application of
the EEVa method to his/her design could show that the
design is missing something (e.g., in identity features). At
this point the designer is still in time to add missing
features before implementation starts.

In particular, sub-stripes can be used in order to make the
'Early Evaluation' of the designed application. In fact,
filling in the schema for each sub-stripe implies 'explicit’
actors/agents (of the action) and objects.

First of all only the sub-stripes that fall under the label of
the four elements of our framework are analyzed. For
example, the fact that the system has a splash screen can be
counted as an action but not as an action that impact on the
system. Then, we can provide weights, ranging from 0 to 1
to each sub-stripe. The translator will give 1 to the ID field
if and only if the element impacts on the system, otherwise
he/she will give 0. The same will be done for the other
elements.

Once the weights are given, the final action is simply to
sum up all the weight present in the different columns.

(

Add missing parts

~ T 5- Analysis .
2-Schema ; obtained)
1-Nathural i filled for 3-Weights weights are and NO
language ’ i o . are given to . st . comparison
design highlighted each sub- and P with the

andlysis action BEpe graphically Txpected ‘

represented kratile’ Is th_e

\. J " J/ . J . S . vy reSUItlng
profile
satisfactory

?

8-Creation of
9-Development « UML diagrams

7-Definition of
features and
components

s

6- Sub-stripes
groupment

P

Fig. 3 The overall steps for the EEVa Method

The four obtained weights can then be graphically
represented through the four axes.

To summarize, the above-described process for the 'EEVa
Method' can be described as (see Fig. 3):

Step 1: The translator analyses the natural language design
in a linear way and underlines all the actions (verbs). If
something is not clear, the translator can pose questions
using the issue field.

Step 2: for each highlighted action, the translator fills in
the schema in Fig. 2. In particular for each action he/she
answers: Who makes the action? It's a persistent action?
What does the action impact on ?

Step 3: The translator gives weight to each sub-stripe,
based on his answers.

Step 4: The obtained weights are summed up and
graphically represented.

Step 5: The designer analyses the graphic and compares it
to the 'Expected Profile'. Note that if there is no 'Expected
Profile' this step of the process requires the presence of an
expert of the framework and its family resemblance.

If the analysis it's not compliant with the desired result, the
design has to be reworked and then the process re-applied
for the added/modified parts starting from Step 1. On the
contrary, if the analysis is considered suitable, the designer
can continue his work.

Step 6: Once all the sub-stripes have been obtained the
designer regroups them into stripes, using the Who and
What fields as guidelines.

Step 7: For each stripe the designer defines the linked
features, and then the derivatives of the components.

Step 8: Using the defined objects the designer creates
UML diagrams (dependencies, use-cases, etc.).

Step 9: Development starts.

Note that the part strictly linked to the framework is only
the first cycle (from Step 1 to Step 5). The other steps are a
consequence of the stripes approach.

THE EXPERIMENT

In order to: (i) check practicality of the proposed methods
when building an actual complex social system; (ii)
evaluate qualitatively the benefits of such methodology, an
experiment involving 'real world' designers and developers
was carried out. Results of the study are reported hereafter.

Subjects

The participants of the experiments were 26 computer
scientists from France and Italy. The gender distribution of
participants was 22 (85%) males and 4 (15%) females,
with an average age of 27 years. 15 of them were master
students in computer science, while the rest of the
participants were professionals working in the sector.

Procedure and Materials

Two 3h ad hoc sessions conducted by the same person
(one for the French native speakers, another for the Italian
ones) were held to introduce participants to the method.

At the end of the session each of the participants received a
file summarizing the framework, the method, and the
‘Expected Profile’ concept.

Participants were then asked to apply the method to a
particular natural language design (a social network for
friends use called MyMellon), and to follow a defined
procedure (see next paragraphs). At this moment they were
also given an ‘Expected Profile’ for this application.

At the end of the experiment participants were asked to fill
in a survey and another discussion session was held.

In particular, participants were given the following
guidelines:

1) Analyze the design in order to find actions:
1a) highlight each action in the design

2) Fill in the fields of the schema (sheet 1: Substripes)
FOR EACH action, answering:

2a) who does the action? (who field)
2b) is it a persistent action? (when field)
2c¢) the action impacts on what? (what field)

3) Is the action non functional? (is it for the coder? If yes,
it's a functional action, otherwise if it's for the sound
manager or the graphics man it's a non functional action)

N.B. If something it is not clear, use the issue field to pose
questions to designers.

4) Give weights (0/1) to each sub-stripe. Give 1 to the ID
field if and only if the element impacts on the system,
otherwise give 0. Do the same for all the other elements.

5) Evaluate the resulting graph: Do you think that the
result is compliant with the expected profile?

Do you think that the design has to be improved?

6) Regroup the sub-stripes into stripes using the who and
what field. (fill in sheet 2: stripes) For example, regroup all
the action that impacts on the Gui, on the avatar and so on.

7) For each regrouped stripe define first features, then
components

8) Create all the diagrams you think could be useful for
real development.

No time constraints were given and the participants were
not asked to develop the application. On the contrary,
participants were asked to deliver the final excel sheets
with the elaborated sub-stripes and stripes, as well as the
UML diagrams.

Results and Basic Discussion

Before starting an in depth analysis of the results it's worth
noting that each of the participants naturally performed the

translation process in two steps. Practically all of them (24
out of 26), in fact, sent issues to the designer via e-mail.
Only when they had their answers did they resume the
process.

After this introduction, from the collected data regarding
ease of wuse and perceived utility some general
considerations can be drawn:

Ease of use (based on the survey filled by participants)
rated 2,5 (scale 0-4). On average students rated it lower
than professionals. However, lower marks were given by
two professionals. The reason for this mark (in participants'
words) is that they are used to a non linear-analysis of the
design. This means that after reading specifics, they
immediately produce UML or E-R diagrams without
intermediate steps. For them the way they were asked to
think was too detached from the way they were used to
thinking.

Regarding perceived usefulness of the method, 75% (20)
of participants rated it as Very Useful, 25% Quite Useful.
In addition, the two people who rated it as very difficult to
use, rated it Quite Useful. One of the reasons for noting
this was the perceived importance of analyzing the design
as carefully as possible before programming in order to
avoid errors during the software development. One of the
more 'enthusiastic' stated: 'It allows you to clarify the
requirements of your application in your head before
committing to designing the architecture. If necessary you
could then fix, add or remove features depending on your
objectives.'

97% of participants considered the time used for applying
the EEVa Method the right amount of time for an early
evaluation. The same number of participants asserted that
the method forced them to look at the design more
carefully than in normal cases.

An interesting point to note (although not strictly linked
with the framework) is that while students regrouped the
sub-stripes practically in the same way, professionals were
very creative. While this is not relevant for the EEVa
method evaluation, this is an indicator that the remaining
part of the stripe method can also be applied in a flexible
way. However, as has been underlined by participants, the
method does not have any specific tool or guideline that
prevents one from creating a badly formed stripe. Thus a
complete understanding of the UML design process is
necessary in order to fully appreciate this method.

Strictly speaking about the evaluation of the EEVa
Method, all the participants found it very easy to evaluate
the application (results are the same for all the groups).

Finally, some words about the issue field. The' issue' field
was considered by everyone to be useful for interacting
with the people who worked on the conceptual phase. It
was also underlined that it opens up the method to a
collaborative approach.

GENERAL DISCUSSION

Different kinds of considerations are necessary after the
above reported data.

First of all the perceived ease of the EEVa was also due to
the semiautomatic process created through the excel file. In
fact, once the participants gave the weights, the excel file
automatically calculated the sum and generated the graph
for the evaluation. All the participants had to do was to
compare the result with the profile they were supplied
with.

Not surprisingly at all (for a computer scientist sample),
80% of the surveys had a comment asking for an automatic
language analyzer able to extract subjects, etc. from the
design, or at least a pre-filled pull down menu (avatar,
system, and the like).

While we are not against a pre-filled pull down menu (for
example the "'When' field caused questions like: 'Can I
write OnClick in here?'), we do not think that relying on an
automatic language analyzer can really be helpful. In fact,
a natural language phrase can be modified by the translator
during the process in order to fulfill his needs. For example
a phrase such as 'an animated intro shows..." can also be
interpreted by the translator as 'the system has an animated
intro that shows.... Moreover, a completely automated
process (i.e., a process that automatically gives weights
based on the terms used in the fields) takes away all the
translator control (i.e., all the human control). To
summarize, we think that providing an automatic 'finder'
for verbs can be useful (the experiment highlighted that not
all the participants had the same familiarity with language
analysis). In the same way, a drop down lists, maybe pre-
filled by the same translator, can aid to fill in in a
simplified way also the weight parts. On the contrary, we
are against a totally automated process.

More important than the automatic approach to the
analysis, is the knowledge about the consequence of the
absence of one element of the framework. In this
experiment, participants had to compare the resulting
profile with a given one and decide to improve the design
or not. In order to do this, most of them were not willingly
to 'extract' the information about the framework from the
supplied files and relied on their memory (i.e., on things
learned during the first ‘live’ session). It is our opinion that
this kind of approach can be a limitation. The expertise on
the framework for an 'evaluator' is very important. In fact,
only an 'expert' can answer questions such as: What
happens in the case of an application that is between a
general social network and a virtual world? Which profile
is the best? And so on. While detailed guidelines for
specific class of applications and fully structured examples
can surely reduce the steepness of the method's learning

curve, only an in depth knowledge of the framework can
create a good Social Interactive Systems analyzer.

From the practical point of view, one evident limitation of
this method is the fact that, while it can be applied to
whatever natural language design you want (from games,
to social networks, to accounting software), you need a
natural language design. Now, in real life most small
projects start with an idea that is re-worked while
developing (i.e., parts are added time to time). In this case
the EEVa delays the developing starting point too much. In
fact, the method schedules for cycling the EEVa each time
you add consistent parts to the natural language design. If
the added parts are too little the number of cycles become
overwhelming. To summarize, this method is better
applied to complex software development which requires
written requirements. Nevertheless, the need for an EEVa
able to analyze the 'social potentiality' of the application
still remains. Insofar as we know there are no methods on
this subject.

The last comment on this method regards the 'public'.
During the experiment we saw the emergence of three sub-
sets of population. One can be called 'the students'. They
had to be guided more during the application of the method
and they produced more uniform groups of stripes. The
other one can be called 'conservative professionals' — for
them applying the EEVa method was too far from the way
they are used to developing software. Note that they were
not the older professionals involved in the experiment, so
this is not a matter of age. Finally there is a population of
'flexible professionals' who added their own expertise to
the experiment. Actually, this is a 'method for everyone'
(especially if other levels of automation are added), but not
a method useful in the same way for everyone. ‘Flexible
professionals' are the best candidates for the 'position' of
'profile analyzers'. During the experiment they were
proactive (every single one of them read the written
guidelines on the framework) when analyzing the resulting
profile. Students, on the contrary, really need a set of
examples to rely on, and they were not able to explain why
the profile needed improvement. While this is also a way
to apply the method, it's certain that the other one leads to a
deeper understanding of the resulting profile consequences
in terms of 'potential sociability'. In fact, while this paper
has only shown the easiness of use and the learnability of
the method, the real purpose of the proposed ‘Early
Evaluation Method’ is to evaluate ‘potential sociability’ of
an application in order to avoid time (and money)
consuming developments. In order to be able to do this, the
EEVa Method is useful, but the knowledge of the
framework is essential.

CONCLUSIONS

This paper started from the assumption that an evaluation
of ‘potential sociability’ in an application can help
designers to anticipate several problems that can arise
before starting the implementation. For this reason, the
paper proposed an evaluation framework able to analyze
social aspects and to give an ‘early evaluation’ of the
designed application. In fact, the four elements that
compose the framework (identity, space, persistence, and
actions) can be used as ’indicators’ in order to evaluate if
or not the social systems is able to facilitate the feeling of
social presence.

In particular, this paper analyzed easiness of use and
learnability of the ‘Early Evaluation Method’ based on the
framework. The experiment carried out demonstrated that
the method is easy to apply and requires a perceived
normal amount of time for its application. The method has
also shown two possible ways of application: one more
‘passive’ and another more 'active'. In the first one, the
choice of whether or not to improve the application is
based on comparing the resulting profile with the
‘Expected Profile’ of the application. In the other the
choice is a mix between the knowledge of the framework
and the ‘Expected Profile’. This second attitude is very
important if the 'evaluator' also has to be a 'designer' of a
Social Interactive System.

REFERENCES
1. Biocca, F. The cyborg's dilemma: Progressive
embodiment in virtual environments. Journal of
Computer-Mediated Communication 3,2, (1997).

2. Carmona, M., Heath, T., Oc, T. and Tiesdell, S.
Public places-urban spaces: the dimensions of urban
design. Architectural Press, 2002.

3. Danet, B., Ruedenberg-Wright, L., and
Rosenbaum- Tamari, Y. Hmmm... where’s that
smoke coming from? writing, play and performance
on internet relay chat. Journal of Computer-
Mediated Communication, volume 2, (1997).

4. Flynt, J. P. Software Engineering for Game
Developers. Software Engineering Series. Thomson,
2004.

5. Goffman, E. The presentation of self in everyday
life. Doubleday, 1959.

6. Harré, R. and Langenhove, L. V. Varieties of
positioning. Journal for the Theory of Social
Behaviour, 21, 4, (1991), 393-407.

7. Hogg, M. Social identity and group cohesiveness,
in J. Turner, M. Hogg, P. Oakes., S. Reicher, & M.
Wetherell (eds.), Rediscovering the social group: A
self-categorization theory. Oxford: Blackwell, (1987)
89-116.

8. Joinson, A. N. Understanding the Psychology of
Internet Behaviour: Virtual Worlds, Real Lives.
Palgrave Macmillan, 2003.

9. Klemmer, S. R. and Hartmann, B. How bodies
matter: Five themes for interaction design. In

Proceedings of Design of Interactive Systems 74
(2006), 140-149.

10. Lakoff, G. and Turner, M. Categories and
Analogies 3, (1988). University Of Chicago Press.

11. Maglio, P., & Kirsh, D. Epistemic action
increases with skill. In LEA (ed.), Proceedings of
cognitive science society (1996).

12. Pecher, D. and Zwaan, R. A. Grounding
Cognition: The Role of Perception and Action in
Memory, Language, and Thinking. Cambridge
University Press, 2005.

13. Piaget, J. The origins of intelligence in children.
International University Press, 1952.

14. Short, J., Williams, E., and Christie, B. The Social
Psychology of Telecommunications. John Wiley and
Sons Ltd, 1976.

15. Vredenburg, K., Isensee, S., and Righi, C. User-
Centered Design: An Integrated Approach. Prentice
Hall PTR, 2001.

16. Wenger, E., Mcdermott, R., and Snyder, W. M.
Cultivating Communities of Practice. Harvard
Business School Press, Boston, 2002.

17. Witmer, B. G. and Singer, M. J. Measuring
presence in virtual environments: A presence
questionnaire. Presence, 7(1998), 225-240.

18. A1-Missing citation for blind review.

19. A2-Missing citation for blind review.

	ABSTRACT
	Keywords

	INTRODUCTION
	PRESENCE AND SOCIAL PRESENCE IN SOCIAL ENVIRONMENTS
	DEFINING INDICATORS FOR SOCIAL PRESENCE
	THE OVERALL FRAMEWORK
	A METHOD FOR EVALUATING AN EXISTING DESIGN
	REFERENCES

