
HAL Id: lirmm-00487824
https://hal-lirmm.ccsd.cnrs.fr/lirmm-00487824

Submitted on 28 Apr 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Engineering Concern-Sensitive Navigation Structures.
Concepts, Tools and Examples

Sergio Firmenich, Gustavo Rossi, Matias Urbieta, Silvia Gordillo, Cecilia
Challiol, Jocelyne Nanard, Marc Nanard, Joao Araujo

To cite this version:
Sergio Firmenich, Gustavo Rossi, Matias Urbieta, Silvia Gordillo, Cecilia Challiol, et al.. Engineering
Concern-Sensitive Navigation Structures. Concepts, Tools and Examples. Journal of Web Engineer-
ing, 2010, 9 (2), pp.157-185. �lirmm-00487824�

https://hal-lirmm.ccsd.cnrs.fr/lirmm-00487824
https://hal.archives-ouvertes.fr

Engineering Concern-Sensitive Navigation Structures.

Concepts, Tools and Examples

Gustavo Rossi
1
, Sergio Firmenich

1
, Matias Urbieta

1
, Silvia Gordillo

1
, Jocelyne

Nanard
2
, Marc Nanard

2
, Cecilia Challiol

1
 and Joao Araujo

3

1Facultad de Informática, Universidad Nacional de La Plata and Conicet Argentina

[gustavo, sergio.firmenich, matias.urbieta, gordillo@lifia.info.unlp.edu.ar]
2 LIRMM, CNRS/Univ. Montpellier, 161 rue Ada, F34392 Montpellier cedex 5, France

[jnanard, mnanard]@lirmm.fr
3 Departamento de Informatica, Faculdade de Ciencia e Tecnologia, Universidade Nova de

Lisboa, Portugal

ja@di.fct.unl.pt

Abstract. Improving navigability in Web applications is a serious challenge for

developers as this quality feature is essential for applications success. In this

paper we present the concept of concern-sensitive navigation, a useful concep-

tual tool to improve navigation by profiting from the nature of application’s

concerns. Concern sensitive navigation allows enriching Web pages with in-

formation, services or links related with the context in which pages are ac-

cessed. We show how our ideas are applied during the development process

(e.g. by applying wise design strategies for separation of concerns) and can also

be used by final users while adapting an application (e.g. by modding). Some

examples of Web 2.0 sites are used to illustrate this last possibility. We also

compare our research with other similar approaches such as the construction of

adaptive Web applications.

Keywords. Separation of concerns, Concern-sensitive navigation, User experi-

ence, Web 2.0, Engineering

1 Introduction and Motivation

The rapid evolution of the Web has changed dramatically the way in which we in-

teract with information and services sources. While we are still using popular and

“old” Web applications, such as the traditional e-commerce sites, a new generation of

Web software has arisen. Interactive encyclopedia like Wikipedia [44], social sites

such as Facebook [13], video and photograph servers such as Youtube [45] and Flickr

[15] not only changed our way to access the Web but also motivated the traditional

sites to introduce new ways to interact and share information, as it is now possible

with tagging facilities or forum support in sites like Amazon.com [2]. Users can build

mashups, and can also customize their preferred sites either by pre-defined configura-

tion patterns such as in my.yahoo.com, or by programming small scripts which can

adapt the application’s interface and presentation style in a process called modding

[11]. In this way users face themselves to new opportunities and of course new prob-

lems.

This rapid evolution has been followed by design approaches such as OOHDM

[38], WebML [7], UWE [27] or OOWS [16], which provide conceptual and concrete

tools (e.g. model-driven engineering environments [18]) to produce applications

quicker and in a correct way. However, there are still open issues regarding the qual-

ity of final applications; in Figure 1 we show the page of a product in Amazon.com.

This is one application in which users navigate through thousands of products with

different concerns (tasks or interests) in mind. In Figure 1.1, for example, the MP3

player page contains a discount banner because the page was accessed from the “Au-

dible device ready” index. Meanwhile in Figure 1.2, the same product page contains

information related to its compatible accessories, because the page was accessed from

the “Ipod and accessories” index.

Figure 1.1: Ipod Touch view from

Audible device ready index

Figure 1.2: Ipod Touch view from

Ipod and accessories index

The contents of the MP3 player page is improved by taking into account the “do-

minant” concern in which it is being accessed; in this case the index in which we se-

lected the product. In both cases, knowing the actual user’s concern (what he is look-

ing for) helps to enrich the information on the target page with new contents and links

to simplify or clarify the user’s task.

To abstract and generalize this simple idea, in [32] we introduced the concept of

concern-sensitive navigation (CSN), a strategy to provide a more flexible navigational

structure, to improve the user navigation experience. Our work aimed at improving

the cognitive and rhetoric access to information, which means providing the user with

the needed information in each concern, and such that it is organized and presented in

a more opportunistic way [24]. By using modern engineering approaches, which favor

a good separation of application concerns, we can provide CSN by profiting from the

information collected during the design stage to offer richer and less flat navigational

structures. CSN can be seen as a kind of Web software adaptation, which does not

need the management of user profiles, therefore overcoming the usually discussed

privacy and security issues.

 In this paper, we elaborate the concept of CSN showing its feasibility in a broad

range of Web applications. Specifically we address two different kinds of CSN adap-

tations: intra and inter-application. We analyze the process of client-based adaptation

and present both a disciplined process and a tool to build CSN structures in existing

applications. The main contributions of the paper are the following:

• We present a lightweight approach for adaptation by using the application

concerns to improve navigability.

• We show that our ideas can be used either by developers of new applications

in an intra-application context or by adapting existing applications in a client-

based way.

• We present a set of tools to support the process of adding inter-application

CSN to existing Web applications.

The structure of the paper is as follows. In Section 2 we introduce CSN and charac-

terize its intent and scope. In Section 3 we discuss the engineering of CSN structures

both during developing time and for existing applications. In Section 4 we discuss

how to implement CSN in Web applications, and introduce the problem of adapting

existing applications; in this context, in Section 5 we discuss several issues related to

client-based adaptation; in particular we discuss several design issues to achieve

modular adaptation code, and briefly describe a tool to support the process. Section 6

discusses some related work and in Section 7 we conclude and present some ideas for

further research.

2 Concern-sensitive navigation

According to [42] we define a concern as a “matter of consideration in a software

system”. A concern may reflect functional aspects1 of an application such as upload-

ing Videos in YouTube, Products search or checking out in Amazon, or topic areas

such as economy or history in an Encyclopedia. Concerns may be generic, when they

appear in a broad number of applications (e.g. support for secure login), domain spe-

cific when they only apply to a set of applications (adding posts or comments in some

Web 2.0 software), or even application specific when they only show up in a particu-

lar kind of software (e.g. routing features in Google Maps). Some kinds of concerns

may be defined abstractly during application development (e.g. management of cate-

gories in an Encyclopedia) and instantiated by users while using the software (e.g.

dealing with a concrete category). A navigational concern is an application concern

that affects navigation, i.e. it manifests in the navigational structure of the application

(i.e. in the exhibited contents, operations and links).

2.1 Concern Sensitive Navigation Functionality: Definition

We say that a Web application supports CSN when the contents, links and opera-

tions exhibited by the application pages are not fixed for different navigation paths,

but instead can change when accessed in the context of different navigation concerns.

To make this definition concrete and practical we assume that users navigate through

navigation objects which are the realization of hypermedia nodes. Suppose a naviga-

tion object Nj which is an instance of a navigation object type N. While in conven-

tional Web navigation, this object will exhibit the same contents and links regardless

of how it was reached, in CSN its properties can be slightly adjusted according to the

1 Non functional concerns such as usability or accessibility though critical in Web software are

not relevant for our paper

current user concern as shown in Figure 2. While Nj comprises two attributes (Figure

2.1.), when accessed in a specific concern C it also exhibits an additional attribute and

an anchor for a link (Figure 2.2). In Figure 3 we illustrate the idea with the example of

Figure 1.

Figure 2.1: Conventional navigation to Nj Figure 2.2: Nj accessed in C

Figure 3.1: A basic product page Figure 3.2: Product page enriched

with concern information

While the basic definition of CSN does not impose limits to the kind of variations

which navigation objects might suffer when accessed in different concerns, a disci-

plined use of these ideas (i.e. in the context of a solid design approach), have a

stronger positive impact on application usability. As explained in the following sub-

section, the concept of CSN is strongly related to the concept of object roles, as ap-

plied to navigation objects.

2.2 Specifying concern sensitive navigation objects

In order to give a deeper theoretical as well as design oriented view of our notion

of CSN, we next explain the distinction between the specification of a navigation ob-

ject and the specification of a concern-sensitive navigation object, i.e. a navigation

object that supports being accessed using the ideas in CSN. As we show below this

specification is determined by separating the object’s properties which correspond to

its type and those which correspond to the role it plays in its relationships with other

navigation objects. As the role concept has many different semantics in the literature,

in the following we tight our discussion to the definitions in [28] which have been

then adopted in the work of [36, 5]. A set of precise definitions are given below.

Suppose that we want to specify a navigation object type N, by enumerating its

properties (contents, outgoing links and operations). According to [40], N is a natural

type when an instance of the type cannot stop belonging to the type without loosing

its identity, and its properties do not depend on any collaboration or relationship with

another object. Such properties are called “Intrinsic properties”. Using the example of

Figure 3.1 above, a particular Mp3 player will always be a player and its base proper-

ties (brand, colour, base price) do not depend on any collaboration (in this case navi-

gation path).

Meanwhile [28], a role type characterizes an entity according to the role it plays in

relationship with other entities. An object playing a role can stop playing the role

without loosing its identity. A role type T then expresses those additional properties

that an object of type N exhibit when playing the role T. Given a navigation type N,

for each concern C in which N can be accessed we define the NinC role type to ex-

press how an instance of N will be perceived when navigated in concern C.

In the example of Figure 3.2, the PlayerInIpodList role specifies those properties

which pertain to a player when accessed from the list, in other words when being na-

vigated in the concern of the list. Similarly, for each possible concern in which we can

access the player and in which we want to use CSN, we need to specify the corre-

sponding role type. For example players show additional properties when accessed

from an Audible Device list; for example one can read why the product is advised,

and a set of links to similar audible ready products. In this case the PlayerInAudible-

Device role type will specify these additional properties.

Notice that roles (similarly to natural types) can be specialized and therefore we

can build hierarchies of role types, therefore improving the specification of concern-

sensitive properties. A thorough discussion on this subject is outside the scope of this

paper and can be read in [28].

Summarizing, a navigation type N (e.g. a Player) exhibits:

• Properties intrinsic to the object type (i.e. which are present regardless the

concern in which it is accessed). We call them core or natural or intrinsic

properties;

• Properties which, given a concern Ci (e.g. PlayerInIpodList), correspond to

the set of perceivable properties of N when accessed in the Concern Ci, i.e.

when an instance of N plays the role NinCi. These properties are expressed

using the role notation in [28], which we also exercised in [37].

In Figure 4 we show the natural type Player and the two roles PlayerInAudibleDe-

vice and PlayerInIpodList.

Figure 4: Intrinsic Properties vs. Properties in audible ready concern and accessories con-

cern

By aligning the navigation object’s properties to the concern in which it is being

accessed, we improve the application’s navigational structure, by making contents

and links more focused to the actual concern the user is navigating (i.e. his intended

task). Figure 5, shows a simplified navigational schema of the exemplar application in

which we show how role types are used to indicate concern-sensitive access, e.g.

when navigating from IpodAccessories, the PlayerInIpodList role is the target of the

link.

Figure 5: Navigational Diagram with roles

2.3 Enrichment Patterns and Types of Concerns which affect Navigation

In order to use the idea of CSN correctly and to maximize its advantages we need

to understand how a navigation object can be enriched when accessed in different

concerns. For the sake of understanding we will refer below to the kind of enrich-

ments that can be realized using role objects.

There are basically three different types of enrichments, which can be of course

combined:

• New or modified contents: A role can add attributes to the core class, or eventu-

ally can change the value of a specific attribute. In the role PlayerInAudibleDe-

vice, the node is enhanced with new content describing the term of the discount

offer.

• New or modified Anchors and Links: A role can add new links (and therefore an-

chors) to the core navigational class; eventually it can also re-define the target of

a link. As an example new outgoing links are provided by PlayerInAudibleDe-

vice role that introduces new navigation path to AudibleDevice and Shopping

nodes.

• New or modified operations: Roles can improve the repertoire of actions or even-

tually modify a specific behavior. New operations simplify the user experience

by exposing services which pertain to the current concern. An example of this

kind of introduction is found when playing PlayerInAudibleDevice role, it is pos-

sible to join to Amazon’s AudibleListener Gold program by means of a new

available operation called “Register”.

A disciplined use of this approach and therefore a judicious use of role-based en-

richments, would try to limit the core to those attributes, anchors, links and operations

that are always valid. When an operation might have different meanings in different

concerns, the designer must carefully analyze if it is reasonable to define it once in the

core and re-define it for each concern. A more detailed discussion of these issues is

outside the scope of this paper.

Though the kind of enrichment we need to add to a navigation object in a particu-

lar concern clearly depends on specific application issues, we can characterize the

most usual enrichment patterns by analyzing the different types of concerns which

arise in Web applications. In this way we can provide guidelines and good practices

for a fruitful application of CSN.

As explained before a variety of concerns might arise in the development of a

Web application. However, some of them impact on navigation (i.e. the user may ac-

cess navigation objects in the context of such concerns), and therefore they might be a

source of information for concern-sensitive improvement.

We next summarize the most important and recurrent concerns we can find in

Web applications and for each one we indicate the most usual types of enrichments

we find when accessing navigation objects in these concerns. We call them enrich-

ment patterns as they can be expressed in a generic way and instantiated for each pos-

sible case of use. To describe them we use a simple template which consists of a de-

scription of the type of concern, a generic description of the enrichment and a

discussion on the modeling issues, including a simple example.

• Tasks concerns. Most Web applications support the user in performing some

tasks: the most usual ones are exploring products, managing the shopping cart,

checking out, booking, bidding, entering comments, uploading content, tagging,

etc. Some of these tasks might involve traversing different pages to be com-

pleted; for example for booking a room in a hotel, or renting a car we might need

to enter information of different kinds; while browsing the shopping cart we

might want to explore some related products, etc. It is clear that we need to ease

the user’s progress in the task.

Enrichment: When the concern is defined by a task or business process (like in

[39]), and operating on the target node might conflict with the process, it is ad-

visable either to eliminate operations which collide with the concern or to add

specific warnings (e.g. the shopping cart or checkout concerns in Amazon).

When the task is performed in an inter-application basis (e.g. navigating from Fa-

cebook to Flickr), it is wise to add in the target application an indication of opera-

tions related with the source (e.g. adding a photo to the Facebook page). Figure 6

shows an instantiation of this pattern for the checkout process. The node Product

is accessed in the check-out concern (e.g. because the user wants to confirm some

specific product’s properties). The role InCheckout contains an attribute with an

indication of the concern, an anchor and corresponding link to return to the proc-

ess and a re-definition of the addToCart operation.

Figure 6: Task-based Enrichment for Check-Out process

• Topic concerns: Pure informational sites might introduce even finer-grained con-

cerns; for example topics or themes such as in an Encyclopedia. Topic-based

concerns are also present in the context of tasks; for example while searching

books in Amazon.com, the genre of the book (thriller, travel, technical) or its

theme area (Software Engineering, Programming, etc.) might itself become a

concern. In a news site, the same news can be accessed with different optics: for

example an article on a new economic measure can be read with a political view

therefore adding links to other articles that make sense in this concern (and per-

haps not in the “pure” economical one).

Enrichment: When a node is accessed in that concern, add information and links

specific to the topic which is related to the node. For example the Ipod in Figure

1.1 is enriched with links to other audio devices and in Figure 1.2 with links to

others Ipod accessories. Figure 5 illustrates an example of a topic-based concern;

in this case the topics are: “Audible Devices” and “iPodAccessories” in which

each role InTopic (the two roles shown in Figure 5) adds different information.

Figure 7 shows an example in an interactive tourist guide. The node cathedral can

be accessed in three different concerns represented by the roles History, Architec-

ture(at the right), and PlaceOfWorship (at the left). Notice that each of them adds

specific information which enriches the core node. For example the PlaceOf-

Workship role adds the massSchedules which only make sense if you access the

cathedral specifically to know how to attend to mass.

Figure 7: Different Topic Concerns for Tourist Application

• “Pure” navigational concerns, like Guided Tours or sets. These are usual ab-

stractions in navigational design and therefore can be considered also as specific

concerns. A clear understanding of these concerns allows improving navigation

through the nodes belonging to the set.

Enrichment: When the concern can be represented as a set as in OOHDM naviga-

tional contexts [38] (e.g. the set of recommendations, etc.), it is wise to enrich the

node with links to the index of the current set, and to the previous and next ele-

ments of the set. Another example of this kind of enrichment can be found in tag-

based navigation like in Flickr (e.g. by providing links to other photos with the

same tag). Also, a particular example of this kind of concerns arises when a task

can be defined as set of steps which must be followed sequentially and there are

no constrains from each step to the following. In Figure 8 we show an example

for a guided tour of paintings. The core node Painting with the basic contents is

enriched with a role InGuidedTour which adds the anchors and corresponding

links to the next, previous and to the Guided Tour index.

Figure 8: A pure navigational concern for a Guided Tour

2.4 Discussion

We have explained above how to specify concern-sensitive navigation objects.

Before we show how to put these ideas in practice there are some additional problems

to be solved. CSN provides the user with a specific kind of adaptive navigation ex-

perience as contents, links and operations adapt to his/her actual concern. Navigation

objects might be enriched according to the concern for example with new information

or operations which fit to the actual user task or navigation path. Regarding this initial

definition there are some issues to consider:

• Notice that the perceivable properties do not depend on the user profile or iden-

tity, which means that CSN is slightly different from adaptive navigation (See

the related work section).

• Besides the so called intrinsic properties, there might be properties which pertain

to different concerns and which we want to exhibit permanently (e.g. the Add To

Wish List operation in a bookstore), i.e. regardless the navigation path. Though

this is a design issue not fully related with concern-driven navigation but with

concern composition, we only give an overview of it (See Section 3.2).

• Defining the concerns which affect a node type requires a clear understanding of

the application concerns, their relationships and the way they are reflected on

navigation (See next section).

• There might be examples in which we want a concern to “persist” in much more

than a single navigation step; for example, in Figure 4 suppose that the Player

node has other (intrinsic) outgoing links, and we want to keep the actual concern

(e.g. exploring iPod accessories). The correct way to indicate this in the diagram

is to define the corresponding role (inIpodList) in the target nodes and re-define

the intrinsic links in the PlayerInIpodList role. In this way we show the differ-

ence in the behavior of the intrinsic link when followed as a pure intrinsic prop-

erty (e.g. independent of any concern), and when followed in different concerns.

• Obviously, all enrichments in the navigational model have their counterpart in

the abstract interface model (since the interface of an enriched node is also en-

riched). While discussing abstract interface issues is outside the scope of the pa-

per, we have already dealt with interface improvements in a related research

[18]. The OOHDM abstract interface model, based on Abstract Data Views [38

can be enriched with roles in a straightforward way and the interface enrichment

can be performed using XML transformations to “weave” the core interface with

the interface counterpart of the navigational role as discussed in detail in [18].

3 Creating Concern-Sensitive Structures in Web Applications

Our main goal is to improve web application usability by realizing CSN. For the

sake of clarity, in the following sub-sections we address this problem from two differ-

ent points of view: a) how to build a brand new Web application supporting CSN and

b) how to adapt an existing application to provide CSN.

3.1 Engineering CSN in a new Web Application

Though the main objective of this paper is to show how to add CSN functionality

to existing Web (particularly Web 2.0) applications in a dynamic way, we next sum-

marize how we can build Web applications which provide CSN functionality. The

whole development process, as well as the associated implementation, and the archi-

tectural issues have been discussed in [32]. Here we present a brief outline of the ap-

proach to demonstrate its feasibility. We only focus on intra-application CSN, i.e. we

suppose that all the navigation occurs within the boundaries of a single application.

Our approach uses a symmetric style for separation of concerns [8] which implies a

separated development process per each navigation concern. This kind of separation

of concerns lets to easily enable or disable specific concerns depending on the con-

cern volatility (e.g. functionality for donations which are activated in an e-commerce

site after a catastrophe and deactivated after a while). We have developed a light ex-

tension of the UML class diagram notation and applied it to the OOHDM design

model, by “just” adding some syntactic sugar in order to have separate models for

each application concern, and some new modeling artifacts and notations.

First, during the requirement modeling process, we identify the relevant application

concerns, and for each of them, we describe the possible interaction and navigation

sequences using User Interaction Diagrams [22, 38]. These diagrams give us the first

clue about the variants exhibited by each information object when being accessed in

different concerns.

Afterwards, and using the information collected from the UIDs we obtain a con-

ceptual model for each application concern. This model can be obtained in two differ-

ent ways: using model transformation tools which map the UIDs onto classes or by

applying heuristics. Considering that many times UIDs are drawn informally (e.g. in a

paper-based style) during discussions with customers, the “manual” approach is often

used. In [38] there is a thorough description of the heuristics which intuitively consist

in considering each UID “data structure” a potential class in the conceptual model and

each transition in the UID diagram as a potential association among classes.

According to OOHDM and the light extension described in [32], each concern is

modeled in a different UML package. In these packages, classes with the same name

might exhibit slightly different attributes and operations, those which pertain to the

corresponding concern.

During the navigational modeling stage, we first build a unique and concern-free

navigational diagram, which shows those nodes (including properties and operations)

and links that are common to all application concerns. Once again we use the infor-

mation gathered from the UIDs to build a table showing how each node is enriched

when accessed in each concern. This table allows us to build a concern-sensitive dia-

gram, using the role notation as shown in Figure 5 above.

The roles-enriched navigational model can be mapped to an implementation either

by following some simple heuristics or in a semi-automatic way using a model-driven

development environment. We have used both approaches in our previous research by

extending our tool Cazon [18] with functionality to weave navigational concerns dy-

namically. We have also shown elsewhere [19] that using XSLT transformation en-

gines we can provide a solution which allows to weave concerns at run-time, and also

to “undo” the weaving process by disabling concerns which are no longer necessary

in the application.

The main disadvantage of the Cazon-based solution is that it requires that the

nodes are specified as XML structure instead of working on the role-based naviga-

tional diagrams. To solve this problem we implemented our extended UML notation

by incorporating the role concept into UML (using some new stereotypes); next we

define a corresponding profile and use it in the MagicUWE [6] model-driven devel-

opment tool. We finally defined the corresponding model to code transformations to

generate a running application using a pure model-driven development style.

3.2 Adapting Existing Web Applications with CSN

Even though we could find good examples of CSN in current mainstream Web ap-

plications (See the examples in Section 1), most of them only provide a limited set of

CSN functionality; in some cases it is possible to find support for set-based navigation

in guided tours (See for example The guided tour of the Roman Open Air Museum

[43]), following the idea of OOHDM navigational contexts [38] or support for naviga-

tion in the context of business processes [39].

However, we have found that it is feasible to incorporate CSN functionality in al-

ready built applications, even if they were not conceived with a methodology like the

one outlined in Section 3.1. Adaptation to CSN in existing Web applications can be

realized in two different ways: a) Server-based adaptation, b) Client-based adaptation.

We next discuss both alternatives as an introduction to Section 4.

3.2.1 Server-Based Adaptation
The problem of adapting an existing Web application can be seen as an example

of application re-engineering. From this point of view one possible approach is to use

the ideas of 3.1, produce a new design model and generate a completely new applica-

tion where the new CSN features are present. However, this alternative might be too

costly, moreover taking into account that we will not change application business

rules but “only” its navigation and interface features.

More cost-effective alternatives strongly depend on the implementation support.

For example the usage of mature Web Model-View-Controller frameworks, which are

based on well-known design patterns [17], makes it easier to introduce CSN concept.

Frameworks like Struts [41], Django [12], etc. provide the notion of Filter which in-

tercepts and decorates web pages. These Filters can be used to implement CSN as de-

corators. As these frameworks also allow a clever separation and encapsulation of

presentation logic using the Command pattern [17], it is possible to add specific pres-

entation logic (e.g. node attributes computation) of a navigation concern in an unob-

trusive fashion.

When it is necessary to modify source code to achieve CSN behavior, i.e. when

the intervention is “obtrusive”, we might create further maintenance problems. For

example, if the code becomes tangled, the application evolution will be more compli-

cated. In this case a better and seamless approach can be applied; this consists in de-

corating the application user interface using a transparent proxy wrapping the whole

application like MonkeyGrease [30] does. Each HTTP request done to the decorated

application is post processed by the proxy, thereby transforming the interface struc-

ture and enriching the content. This approach will be exploited in the next sections

when we discuss client-based adaptation.

3.2.2 Client-Based Adaptation
One of the new trends in the Web 2.0 is the possibility to use client scripting to

customize the contents, layout and styles of Web applications. This kind of interven-

tion, called “tuning” in [11] is becoming increasingly popular since the emergence of

weavers such as GreaseMonkey (GM). Basically, it is possible to program simple

scripts (e.g. in JavaScript) which run in the browser context (and are realized as

browser plug-ins), access the actual page’s DOM tree and eventually change it by

modifying, adding or deleting nodes of the DOM tree to adapt the contents, links and

interface style to the user’s wish.

We have found that using this approach, it is more than feasible to extend the scope

of CSN to a broader set of applications. For example, with a simple script we could

introduce new entries to Wikipedia’s sidebar component. In Figure 9, the original

page at left is transformed with a GreaseMonkey script resulting in new menu entries

as it is shown with a dotted box at right.

Figure 9: Enhancing Wikipedia with GreaseMonkey

These scripts can be made public and then shared by the community of users that

uses the adapted sites. Depending on their popularity, user’s scripts have been later

incorporated as native features of the application. For instance, initially Gmail didn’t

provide a “delete” button on the mail list’s header for deleting selected mails but

GreaseMonkey community contributed this feature2 which later became part of

Gmail. This application has included other functionalities, such as Google Calendar

integration into Gmail3 or User interface (UI from now) layout reordering4, that first

were implemented by the users community

While this approach is feasible and powerful, we found that it can be improved to

provide inter-application CSN; in the following sections we elaborate this idea and

present a framework for CSN in Web 2.0 applications.

4 Broadening the Scope of CSN. Examples and Feasibility

One of the aims of our research is to provide tools to realize CSN in existing ap-

plications in a non-intrusive way. For this reason we conducted a thorough study of a

large number of popular applications, from typical e-stores such as Amazon.com, to

interactive encyclopedia like Wikipedia and sites such as Youtube, Flickr, Picassa,

Facebook, LinkedIn [29], etc. We assessed the following issues: does CSN provide

substantial improvement when used in these applications? Is it feasible to implement

CSN? Which technical problems must we solve? Which are the “boundaries” for real-

izing CSN? What tools are necessary for this endeavor? For the sake of clarity we

separately address each of these questions in the following sub-sections.

4.1 Enriching Navigational Schemas in an intra-application basis

In [32] we showed that CSN provides a more flexible navigation structure there-

fore improving the user experience by easing the access to information corresponding

to the actual concern owing to a more opportunistic organization of information. This

is true, regardless of the type of application we are navigating. For instance, Wikipe-

dia allows to group articles within a Book structure for sharing with other users or for

easy printing. In practice, the book reviewing process in the current design is not an

easy task due to the fact that the book concern is lost after traversing the link from the

book index to one of its attached articles. To illustrate this example, Figure 10.1

shows the initial design of a book article of Jorge Luis Borges without any feature

that helps the books edition. On the contrary, on Figure 10.2, we present an enhanced

article interface with a topic concern called Book article. This concern introduces

components pointed with a dotted box which provides contextual information and al-

lows browsing adjoining articles.

2 Gmail Delete Button script - http://userscripts.org/scripts/review/1345
3 Gmail + Google Calendar script - http://userscripts.org/scripts/show/9411
4 Gmail: Chat Right script - http://userscripts.org/scripts/show/4665

Figure 10.1: Borges’s wikipedia ar-

ticle

Figure 10.2: Article with Book Edition

concern

Figure 11 shows the new navigational model for Wikipedia enriched with a deco-

rator which enhances the Article node when the user accesses it from BookEdition.

Figure 11: A navigational schema for the Wikipedia Book Concern

The schema above shows how the book concern “contributes” to enrich the infor-

mation presented in a Wikipedia article to improve usability. In this case the use of

CSN is bounded to Wikipedia and its underlying concerns. We define “intra-

application” CSN as a CSN navigation occurring within the boundaries of a single

application.

4.2 Keeping Navigational Concerns persistent through different applications

In our analysis we have also found that the same concept can be applied with a

broader view by analyzing concerns which spam through different applications, i.e.

beyond the previously shown “intra-application” examples.

In Figure 12, we show a topic-based CSN that comprises Delicious (as source of

navigation) and Wikipedia (as target of navigation). The left of the figure displays

tagged links to Wikipedia and the right of the figure displays a Wikipedia page en-

riched with the Delicious navigational concern.

In order to take advantage of information gathered from tags, when users navigate

from Delicious to Wikipedia by traversing one of Delicious’s tagged links, the Wiki-

pedia article is enriched with a set of links to similar pages that have the same tags set

as current URL does at Delicious. For each tag associated with the URL, a link should

also point to its Wikipedia meaning.

Figure 12: showing inter-application CSN between Delicious and Wikipedia

Notice that Wikipedia has to be enriched with different navigational concerns de-

pending on the user’s navigation path. This behavior improves user experience by af-

fording facilities which helps keeping current user concern shared and reused for sev-

eral applications. In Figure 13, we show the navigational models of the above

mentioned example where two application packages demarcate applications bounda-

ries. Note that when the user navigates from Delicious search node to Wikipedia arti-

cle node, this is enhanced by adding information about the resulting posts. With a

dashed line we show the original navigation.

Figure 13: Navigational Schema between Delicious and Wikipedia

We can extend the example above and provide different enrichments to Wikipedia

according to the link’s origin, as schematically shown in Figure 14. More generally,

we define “inter-application” CSN as CSN navigation where we can use concerns in a

source Web application to enrich contents in a target application.

Figure 14: Inter-application CSN for Wikipedia

The principles in intra and inter-application CSN are basically the same and as a

consequence the improvements of navigability are somewhat similar. While we have

largely discussed intra-application CSN in this paper and in [32], a brief comment is

needed to assess inter-application CSN. In all our experiments with users (some of

them briefly reported in 5.4), we have found that CSN is more than welcomed in an

inter-application basis; the reason is that it is easier to lose the navigation context

when departing from an application to another. In this sense when an application’s

page is enriched with contents and links which depend on the application from which

we navigate, we can keep the navigation concern explicit and also active by offering

these new context and links. As discussed in Section 2.4 a navigational concern can

be kept active in navigation paths of any length, provided the corresponding roles

have been clearly specified in the target nodes. For example if we navigate from Deli-

cious to Wikipedia and then to Flickr, we can specify that the Flickr node opens using

either a “FromWikipedia” role, a “FromDelicious” role or none of them by indicating

it in the Flickr roles (if any) and in the outgoing links of Wikipedia and the Delicious-

Search role of Figure 13.

4.3 Feasibility and problems

Considering our idea of realizing CSN on top of existing applications it is impor-

tant to analyze architectural and design restrictions, particularly when we aim to use

CSN in an “inter-application” style.

Some applications provide extensions facilities at the server side (for example Fa-

cebook [13] and LinkedIn [29]), while others provide extensions facilities at the client

side (for example Youtube [45]), and most of the time none of them allow implement-

ing CSN facilities easily. The obvious alternative to make CSN feasible is to run

scripts, implemented as browser’s plug-ins at the client side.

The implantation of CSN functionality depends on mainly two significant factors:

concern scenario and application’s extensibility. CSN can be implemented in a single

application (intra-application CSN) which just requires understanding the application

underlying model for enriching it. On the other hand, when the navigational concern

comprises several applications (inter-application CSN), we must understand the two

models, the way the applications are connected and how CSN is realized in the target

application with information from the source one. For instance, when analyzing how

to improve navigation from Flickr to Wikipedia, the Tag concern in Flickr might re-

quire a “translation” to Wikipedia’s Article.

While the implementation of scripts to adapt an application at the client-side is fea-

sible, there are some problems regarding the needed effort and the stability of the re-

sult. Ad-hoc plug-ins which realize a solution for a specific concern need to access di-

rectly any low-level page structure like specific HTML tags, or registering standard

HTML event listener to DOM. This is usually achieved by directly manipulating the

DOM tree; as said before this process can be simplified as some applications like

Gmail and YouTube are providing APIs [20, 46] for easier access to already defined

UI components and underlying data.

We have done some experiments using the GreaseMonkey engine for weaving

concern-specific elements onto the currently navigated page. This engine takes the

current page, and appends a JavaScript file which introspects the host page by apply-

ing structural changes over it.

In Figure 15, we show a UML activity diagram, corresponding to the process that

occurs when the user loads a page into the browser, and a plug-in is defined for it.

Figure 15: Activity diagram, client-side weaving process

However, when this approach is used, each specific implementation must be done

from scratch, thus hindering extensibility and reuse. Additionally if the being adapted

(e.g. Wikipedia) changes, we have to face a serious problem of maintenance in our

scripts. We analyze this issue in the following sections.

4.4 Improving the realization of CSN

While providing plug-ins for different applications is an important step forward to

realize CSN in Web software (even considering the evolution issues mentioned be-

fore), we have also found that it is possible to provide better support for CSN by ana-

lyzing families of similar applications, such as social sites (Facebook, LinkedIn,

MySpace [31]), encyclopedia (Wikipedia, Knol [26]), E-stores (Amazon, Barnes and

Noble [3], etc.), image and photo repositories (Flickr, Picassa, etc.)5. By using tech-

niques of product-line engineering [10], it is possible to abstract the common con-

5 We do not pretend to establish a formal classification here as it can be argued that Wikis and

repositories are specializations of a more generic type of applications of user generated con-

tent

cerns in these applications and build generic tools which provide the basis for CSN

without considering the specific applications’ look and feels. In this way we can de-

rive concrete plug-ins either by providing the data needed for a member of the family

or by just specializing the corresponding scripts.

Using the same ideas we can build support for inter-application CSN first by fo-

cusing on two specific applications, e.g. Facebook to Flickr and then generalizing the

source and the target and building generic support for CSN between social networks

and repositories.

To make this discussion more concrete, in the following section we formalize our

approach for client-side adaptation.

5 A High-Level approach for Client-Side CSN Adaptation

As previously explained, an application can be adapted at the client-side with CSN

features by means of scripts which act as browser’s plug-ins. These scripts are de-

signed to detect that navigation initiated in a source page correspond to a specific

concern, and to apply the modifications or adaptations needed to the target node in

such a way that the information, operations and all remaining issues related to the

concern are introduced.

Even though the task of writing scripts is often considered a minor activity which

can be done by final users, we consider that client-side adaptation, specifically to in-

troduce navigations improvements like in CSN, should be tackled with a high level,

methodological approach. We have developed a simple process to guide developers in

the implementation of CSN at the application’s client side and a tool to simplify the

development of scripts.

The process is an adaptation of the one explained in Section 3.1, and comprises the

following steps:

1. Identify suitable navigational concerns. This stage consists in understanding

the main tasks and themes in the underlying application (s).

2. Analyze target node types and specify which enhancements these nodes

might have when accessed in each of the corresponding concerns. These en-

hancements will be realized as decorators; as explained before, might in-

volve low-level tasks which manipulate the DOM for adding new contents or

links.

3. Determine those source node types which give origin to a CSN.

From these nodes we must extract the information needed to accomplish the

transformation in the target node. This information will be concepts for a

topic CSN or actions for a task CSN. Additionally a navigational or interface

enhancement may be required, when the source node does not provide links

to the target and we aim to have this navigation. Again the DOM will have to

be accessed to retrieve some piece of data or creating new document leaf.

4. Implement the corresponding scripts for both the source and target node

types. The main responsibilities of these scripts are the following. The source

script will check if there is a link between the source and target application

and will store the concern information required for realizing CSN in the tar-

get. The target script will introduce the adaptations into the corresponding

DOM elements; this script will use the information stored by the source

script.

These tasks which require accessing the DOM document are simplified by a visual

tool, which also generates a script template that the developer completes with details

of the concrete application. As a result of this process, we get two scripts that run re-

spectively at the source node and target nodes. These scripts can be generic and then

reused to form others CSN plug-ins, when some good practices are followed as dis-

cussed in the following sub-sections. In particular we show how to achieve increasing

levels of abstraction in plug-ins development for CSN.

5.1 Adding Abstraction Mechanisms to Script Development

Ad-hoc implementations of client-side CSN, briefly described in the previous sub-

section can be tedious and error prone as scripts must deal with low level page details.

Additionally, and considering the usual “permanent beta” state of Web 2.0 software,

when the underlying application changes scripts might become useless. Therefore the

need for an abstraction layer becomes mandatory in order to offer the developer a

more maintainable and clear platform to help him focus in the development of the ex-

tensions, instead of the burden of interpreting how a Web page is constructed and how

it can be extended. This new layer decouples the access to low-level UI component by

using an adaptor [17]. In Figure 16, we show a schema of the abstraction layer - rep-

resented as a dotted box-.

Figure 16: Abstraction layer architecture

To specify the abstraction layer, we have used the Modding Interface (MI) tech-

nology presented at [11] which is based on a UI ontology specification. The MI itself

is divided in two (sub) layers: (1) a specification containing abstractions about the

concepts shown in the page (2) a sub layer to extract these concepts from the UI of the

underlying Web page; we call this layer “data abstraction layer”. The first layer pro-

vides an Application Programming Interface (API) that serves as an interface which

allows avoiding references to volatile structures in the CSN code. The second one is a

XSLT file that extracts the concepts occurrence from the Web page. When the under-

lying Web page changes, only the data extraction layer must be updated. The main

idea behind the MI is to register JavaScript functions as listeners of conceptual events

defined for the concepts in the ontology. In our use of the MI all CSN adaptations will

be performed using these functions.

According to this idea, when the user opens a web site, the MI specification –

identified as a WWW resource with URL- is included in the web page. After process-

ing the specification, a view model is available into the page scope enabling different

scripts to access to UI components and manipulating them.

If the underlying application changes its UI structure, we will only need to update

the way in which the MI resolves data from the UI, while the CSN scripts remain us-

able because the interface encapsulates the access to DOM elements.

As a first example, suppose that we want to engineer CSN between Flickr and

Wikipedia in such a way that Flickr tags can be searched in Wikipedia and that Wiki-

pedia (the target application) will provide additional content and links when accessed

from Flickr.

The first step is to create MIs for both Flickr and Wikipedia; the effort in building

these interfaces can be rewarded if later we aim to build different CSN structures in-

volving Flickr and Wikipedia (either for sources or targets in navigation).

The MI for Flickr defines the following concepts: Tag with the property name and

the conceptual event TagLoad; in the other hand, the concept UserComment has two

properties named user and comment, and a conceptual event named UserComment-

Load. Respectively the MI for Wikipedia (shown in Figure 17) defines the concept of

Menu, with its properties title, and body and conceptual events such as MenuLoad.

With this specification, developers can extend the Wikipedia navigational functional-

ity in an ordered way.

Figure 17: Sketch of Wikipedia Modding Interface

Next we have to create the corresponding scripts. The one running on top of Flickr

adds some anchors to allow navigation to Wikipedia, and stores (temporally) the ac-

tual user concern and the tags defined in the Flickr page, which will be used by the

Wikipedia script. When the user navigates to Wikipedia, the Wikipedia script per-

forms the following actions: when activated (which means that we are navigating

from Wikipedia), it restores the information saved by the source script and, using this

information, the corresponding links are added into the DOM element wrapped by the

Menu concept.

In Figure 18 we illustrate the example. The left part displays a picture correspond-

ing to Da Pena’s palace hosted by Flickr and, the right part a Wikipedia’s page about

Portugal – which is reached when users navigate using the Flickr’s tag –. In the Flickr

image the dotted box highlights the picture’s tags which will act as a Tag navigational

concern for the Wikipedia application. In Wikipedia, a dotted rectangle indicates the

navigational concern contributions: contextual information about the source page – in

this case information about the palace – and the set of tags that describes the palace

where each one is searchable into Wikipedia.

Figure 18: Showing inter-application CSN between Flickr and Wikipedia

If we now aim to go further to add CSN to Wikipedia (e.g. when navigation starts

in Delicious) we should either write another script for Wikipedia (which is equivalent

to define the corresponding role object as shown in Section 2) which will perform the

corresponding tasks to provide the concern enrichment.

When the enrichment is similar (e.g. like the one in Figure 17), the existing script

could be reused or specialized depending on (a) what information is necessary for the

enrichment (b) how this information is saved by the source script. In the worst case, if

the source application model is different i.e. if the concepts defined are different from

the ones in Flickr, the developer must change the way in which the Wikipedia script

restore the information. On the other hand, if the source application model has defined

the same concept (e.g. Tag with the property name) then, the script can be completely

reused.

Though the MI provides a high level abstract view of the underlying application

structure, the process of creating the MI might be tedious as well as the development

of the corresponding scripts. In the following sub-section we present our approach for

simplifying these tasks.

5.2 Visual Specification of CSN Structures

We have developed a simple, visual tool to simplify the process of client-side ad-

aptation of existing Web applications. This tool helps users in the CSN development

process, covering steps 2, 3 and 4 as depicted in section 5. Our final aim is to auto-

mate the whole process described in the beginning of this section. To make the de-

scription of the tool more understandable we exemplify here showing the most sig-

nificant steps to develop the adaptation in Figure 18. The first step is to specify the

MI, which is done by choosing meaningful concepts from the application’s UI as

shown in Figure 19.1 on the left. On the right of Figure 19.1 we show the dialog used

to complete the specification of the concept, including properties and events. This

process can be incremental, i.e. the MI can be defined “opportunistically” to be useful

for the current adaptation, and completed later when new adaptations require more

concepts to be defined. Additionally and even though the script scope (the applica-

tions in which it “runs”) is configurable from GreaseMonkey, our tool allows defining

that scope, by setting a set of URLs or URL patterns as in GreaseMonkey which is

useful for applications sharing similar concepts.

The result of this process is the ontology describing the application model and an

XSLT file – this is the data extraction layer - which is used to extract the occurrences

of the concepts defined in the application model (i.e., its ontology), from the concrete

application. Figure 19.2 shows the MI Viewer which shows all the defined concepts

with their corresponding properties and events.

Figure 19.1: Adding concepts to the Modding Interface Figure 19.2 MI Viewer

The next step is to create the script for the source application. In our example we

first need to specify those anchors which will trigger CSN. As shown in Figure 20.1

this is done by selecting “Create anchor as CSN source…”. This option will open a

dialog to allow adding a link for each occurrence of the selected concept (in this case

a Tag), eventually using information of this concept for the anchor’s attributes. In this

way we enrich the tags shown in Figure 18 with the Search at Wikipedia text. As we

have only selected the Tag concept, only occurrences of this concept will be stored to

be used in the target node. In Figure 20.2 we show a code section corresponding to

the script generated for Flickr. We show how the anchor required by the plug-in is

added. Note that, after the script is generated, the developer may eventually modify

how the attribute href is made within the function generateAnchorForTag.

 Figure 20.1: Create new plug-in Figure 20.2: Script section

The function addAnchorAsCSNSource is the place where the behaviour to save the

information in memory, is added to the link (in low-level terms, by setting a value for

onclick attribute), and it is finally the function that appends the new anchor into the

DOM.

Next we create the script for the target application (Wikipedia). By using the tool

we navigate to Wikipedia, the tool indicates that we have information to be used in a

CSN adaptation (the stored occurrences of the Tag concept in Flickr). By accepting

the suggestion (Figure 21 top) a configuration dialog is open. First we choose the kind

of CSN enrichment we want to add to Wikipedia; the enrichment options are based on

those explained in section 2.3. In the second step we can choose how to use the infor-

mation available (information which has been saved by the source script). Finally, in

the last step we decide where this information will be used. Note that, perhaps, we

will want to use the information when the menu is loaded (Load event); in other cases

we might make those links available when another event, such as MouseOver occurs.

As a result of this process we export the corresponding GreaseMonkey scripts

which will include the listeners for the concept Menu, the functions to access the oc-

currences of Tag in Flickr and an API to create the new links corresponding to the

concern.

For simple CSN adaptations, as those shown in Figure 18, the developer can be re-

leased of all the low-level burden of script programming. For more complex adapta-

tions our tool generates a script template to be completed by the developer.

Figure 21: Selecting Concepts to enrich target application

5.3 Improving development for application families

As explained in Section 4.4, applications in the same “family” usually deal with

similar concepts and therefore involve the same navigational concerns. For example,

applications such as LinkedIn, FaceBook, Hi5[23], etc. have similar domain models,

and provide a set of common functionality. In this context, once we have built support

for navigational concerns involving one of the members of the family, we could use

the experience to reduce the effort in subsequent developments in the same family.

In some way, the abstraction process to generalize a concrete CSN development

(e.g. for LinkedIn) to a broader set of applications (other social networks) is a simpli-

fied example of framework development; for the sake of conciseness we explain only

its more important steps.

First, we need to specify a common ontology with the shared concepts in the fam-

ily. These concepts will be used by the “family” scripts.

Next we specify the data extraction layer for each application in the family; this is

mandatory because even sharing the same concepts, the mapping into user interface

objects is usually different. Now we are able to create more generic concrete scripts,

i.e. scripts which can work with any application of the family. These scripts will work

on the shared concepts defined by the common ontology. For instance, we can de-

velop a generic script for social communities, covering contact information manage-

ment.

Application 1

DOM

Application 2

DOM

Concrete

plugin 2
Concrete

plugin 1

Abstract family

model
(social network

family) Javascript

code

Figure 22: Family Abstract plug-in architecture

In Figure 22 we show how an abstract family model provides a model for giving

support to concrete scripts which enhance social network applications. Each concrete

plug-in uses the abstract model, applying specific changes, and these are translated to

DOM changes at the underlying application such as Facebook or LinkedIn. A slightly

more complex model is necessary when we also wish to exploit the differences exist-

ing in members of the family. For example, the concept of Company is outstanding in

LinkedIn but irrelevant in Hi5. The two main differences in these cases (not shown in

the Figure 16) are the following: first, the scripts will be “proprietary” for the specific

application, and second it will use concepts not defined in the Family model. This sit-

uation can be solved by either including the “different” concepts in the family model

(but somewhat corrupting its structure or making it more complex), or by using addi-

tional layers which contains each application’s model and using these layers when re-

quired.

With these ideas in mind, we have implemented the Delicious CSN plug-in, pre-

sented in section 4.1, using a MI specification. In this way, the Delicious script ac-

cesses to elements defined in the MI showed in Figure 23 (for the sake of conciseness

we only show the properties defined for the concept Post, however, it must be noted

that the concept Post and the conceptual event PostLoad are included too). Suppose

that we want to use the Delicious script with another application, like Google Marks.

As we can find the same concepts in Google Marks, and considering that the Deli-

cious script only accesses to concepts occurrences, we can use the same MI for

Google Marks and the script defined originally for Delicious, will work unchanged

with Google Marks too. Note that, we only should implement a new data extraction

layer to found the Post occurrences into Google Marks DOM.

<?xml version="1.0" standalone="no"?>

<!DOCTYPE rdf:RDF [...]>

<rdf:RDF site="del.icio.us" ...

......

<owl:DatatypeProperty rdf:ID="rel-bookmark">

<rdfs:domain rdf:resource="#Post"/>

<rdfs:range rdf:resource="&xsd;string"/>

</owl:DatatypeProperty>

<owl:DatatypeProperty rdf:ID="rel-tag">

<rdfs:domain rdf:resource="#Post"/>

<rdfs:range rdf:resource="&xsd;string"/>

</owl:DatatypeProperty>

......

</rdf:RDF>

Figure 23: Tag family’s abstract model

5.4 Towards good design practices for CSN

We have conducted several experiments with users to assess the usability of appli-

cations enhanced with CSN; this experience has contributed our research with a valu-

able feedback and allowed us to improve the user interface aspects of our plug-ins.

The first and one of the most interesting feedbacks is the need to provide contex-

tual information about the current navigational concern and how it was triggered. In

our first developments, we just concentrated in the enhancement of the target page

with components that support CSN (such as new information, links and operations),

but users complained about the lack of informative description of which topic or task

originated the enrichment. For instance in the Tag navigational concern example be-

tween Flickr and Wikipedia (Figure 18), after navigating a tag link to the correspond-

ing page in Wikipedia, users asked for some information that helped to realize why

they were there. In the example, they needed to know that the Portugal page was

reached from Da Pena’s palace (See Figure 18).

 Additionally users usually found hard to distinguish a specific navigational con-

cern in pages saturated of data. As one of the consequences of this observation, facili-

ties for CSN should be designed to be recognizable to the user, easing its localization

and usability. In Figure 24 we show how a Youtube video can be enhanced when be-

ing accessed from a Facebook post. Note that, in the example, the actual user concern

- i.e. Facebook's information and functionalities – is highlighted so that the user can

find it easily. In this case it is also important that the added content uses a style simi-

lar to the “source” application.

Figure 24: Facebook concern in Youtube

When inter-application navigation occurs, the current user concern must “travel”

from one application to the other; however, very often target applications do not share

the same domain business model as the corresponding source applications. Therefore,

some kind of ontology alignments is demanded, transforming the involved concern

data for being compliant with the navigation target semantics. For instance, in our ex-

amples, we aligned Flicker’s tag concept with Wikipedia’s article concept. This op-

eration required the participation of a designer who was responsible for adapting both

models.

We are currently defining a set of good practices for developers to use when ex-

tending Web applications with new navigational operations, being them restricted to

CSN or more general.

6 Related Work

Separation of concerns has been a driving force in Software (and Web) Engineer-

ing for years since the seminal work of Parnas [34]; the driving force for the research

in this area has been, as discussed before, to improve modularity and therefore sim-

plify maintenance, evolution and reuse. Advanced design techniques such as design

patterns [17] or brand new approaches such as Aspect-Oriented software design

(AOSD) [14] have as their objective to provide better ways to isolate different appli-

cation concerns and provide different types of support for the late weaving of soft-

ware components which realize these concerns.

In the Web Engineering field there has been also an early recognition of the need

to separate the coarse grained concerns of Web software in the different stages of de-

velopment. In this way, all mature approaches [38,7, 27, 25] separate business logic

from navigation and presentation issues. More recently these approaches have incor-

porated elements of AOSD to deal with further application themes such as adaptation,

security, etc. [27, 33].

In our research we have used these ideas but with a different objective. In [32] we

introduced concern-sensitive navigation and demonstrated how to systematically pro-

duce better navigational structures by using separation of concerns, generalized some

existing approaches to enhance navigation in specific contexts such as sets of related

objects (called Navigational Contexts in OOHDM [38]) or business processes [39].

While in [32] we use our understanding of application requirements when building

applications from scratch to improve usability, in this paper we go further by using

the basic ideas of CSN as a starting point to work on existing applications. Our con-

tribution is manyfold. First, we extend the scope of CSN to existing applications and

show that CSN enrichments can be done on a server or client-based style. Second, we

show how to use the same ideas in an inter-application basis and finally we present a

set of concepts and tools to aid the developer in building CSN structures in a client-

based way, by transparently improving existing applications’ interfaces.

CSN has some points in common with the work on adaptive hypermedia [1].

Adaptive hypermedia approaches seek to improve user’s navigation by taking into ac-

count the user’s profile and needs. In an adaptive hypermedia application, nodes and

links vary according to the characteristics of the user, his navigation history, etc.

Adaptive hypermedia systems rely on a user model which represents the meaningful

user’s features and an adaptation model in which the adaptation rules and algorithms

are specified. The increasing interest in adaptive hypermedia has motivated that most

well known Web engineering approaches have extended their modeling repertoire to

describe different kinds of adaptive behaviors. For example WebML [9] provides fa-

cilities for building context-aware Web applications, i.e. those applications which

adapt to the user’s context (his profile, location, interests, etc.) describing the adapta-

tion using event-condition-action rules. UWE meanwhile supports adaptive naviga-

tion [4] using aspects focusing mainly in links adaptation.

CSN, as briefly indicated in Section 2.4, has some points in common with these

works since our work also aims at improving user’s navigation by adding contents or

links to the visited nodes. Clearly, while the adaptation actions that can be specified in

CSN and adaptive hypermedia are similar, the adaptation conditions in adaptive hy-

permedia or context-aware Web approaches are richer than in CSN because these

techniques consider different aspects of the user, while CSN only takes into account

his current navigation interest (his actual concern).

In this way, CSN provides a useful type of adaptation (as shown in all the preced-

ing examples) while requiring less resources than adaptive hypermedia techniques.

Specifically, it is not necessary to build a user model since all applications will be-

have similarly for different users. Besides, the adaptation actions, which are expressed

explicitly as rules in adaptive hypermedia, result naturally from a “conventional” de-

sign process in which we only require a clear separation of concerns from require-

ments.

 Additionally, and as shown in Section 5 the approach also works in already built

applications by just using the same kind of analysis and a set of simple and non-

intrusive tools. In this way, we can provide a useful kind of adaptation (considering

the tasks and topics in which the user is now working) which is focused to the specific

application, without collecting much information about the user, as we only need his

actual navigation path.

 Our approach to improve navigation in existing applications by using scripting

techniques makes an extensive use of the ideas in [11]. While the Modding Interface

does not give a solution to CSN issues by itself, it is an outstanding idea to simplify

and modularize the scripting process, making it feasible and helping to produce a

more solid and modular client-based solution.

Inter-application communication has been a subject of research by different com-

panies for some years now; Passport .Net [35] and Google Applications Suite [21]

provide authentication ways across different applications and combine service func-

tionalities. Unfortunately these technologies have not become standard yet and there-

fore navigation support is usually restricted to the boundaries of the corresponding

owner (Microsoft and Google in this case). Our experiments with CSN in an inter-

application way show that it is possible to have customized improvements without

much scripting effort, when a base Modding Interface, or a support for a family is al-

ready provided.

7 Concluding Remarks and Further work

In this paper we have presented a novel approach for improving navigability and

access to information in Web applications. By clearly understanding the different

concerns which are “packed” in a Web page, we can improve the user experience en-

riching those pages with information, operations and links pertaining to the actual

user concern.

We have shown how this approach can be used when building new applications

profiting from the identification of application concerns during the development proc-

ess. In that sense we have shown that a good software engineering practice (separa-

tion of concerns) can be used not only to improve modularity and maintainability, but

also to improve usability when these concerns are wisely used during navigation de-

sign. We have also shown how we used the same basic ideas to improve existing ap-

plications and particularly to enrich those applications using a client-side scripting

strategy. Considering that a brand new generation of Web applications (the so called

Web 2.0 applications) has emerged, there are many opportunities for improving navi-

gation between these applications. In this sense, we have illustrated our approach and

showed that it is possible to enrich inter-application navigation in a way which is ob-

livious to the existing software. Given that this kind of “intervention” may be trouble-

some when the application evolves, we have also explained how to use existing tech-

niques (The Modding Interface concept) to modularize the interaction between scripts

and the intervened DOM; particularly we have shown how to use an abstraction me-

chanism to make scripts more stable and even generic. We also discussed how to go

further in this strategy when dealing with families of applications (e.g. social software

like Facebook or LinkedIn).

We have tested our extensions with users and obtained valuable feedback to im-

prove the characteristics of the concern-sensitive extensions.

This area is relatively new and naturally there is a good deal of work to be done.

We are actively working in different areas. From the modeling point of view, we are

extending our approach to the interface realm; this implies analyzing how the naviga-

tional concern concept reflects on the abstract interface and how interface modeling

languages can be seamlessly improved for this by following the same principles of

composition transparency we presented in [19].

First we are improving our comprehension on good ways to use concern informa-

tion to improve navigability. In order to do that we are studying popular applications

to find recurrent navigability problems to later derive enrichment patterns specializing

those in Section 2.3. From a more concrete point of view we are developing concrete

plug-ins to experiment with different kinds of Web 2.0 applications and have a more

extensive user experiences base. Considering that the development of these plug-ins is

generally complex, we are improving our tools to ease the enrichment process. These

tools support the developer task by providing a visual interface and thus avoiding the

burden of having to deal directly with low level DOM structures. We are also study-

ing the problem of ontology alignment to deal with inter-application enrichments in a

more systematic way, particularly for applications families.

References

1. Adaptive Hypermedia Reference Library. http://wwwis.win.tue.nl/ah/publications.html

2. Amazon. http://www.amazon.com/

3. Barnes and Noble. http://www.barnesandnoble.com/

4. Baumeister H., Knapp A., Koch N. and Zhang G.. Modelling Adaptivity with Aspects. In

David Lowe and Martin Gaedke, editors, Proc. 5th Int. Conf. Web Engineering

(ICWE'05), LNCS 3579, pages 406-416. Springer, Berlin, 2005.

5. Bäumer D., Riehle D., Siberski W., and Wulf M., The Role Object Pattern. Proceedings

of Plop,1997, USA. Available at: http://hillside.net/plop/plop97/Proceedings/riehle.pdf.

6. Busch M. and Koch N. . MagicUWE - A CASE Tool Plugin for Modeling Web Applica-

tions. In Proc. 9th Int. Conf. Web Engineering (ICWE'09), LNCS, volume 5648, pages

505-508. Springer, Berlin, 2009.

7. Ceri, P., Fraternali, P., Bongio, A., Web Modeling Language (WebML), A Modeling

Language for Designing Web Sites. Computer Networks and ISDN Systems, 33(1-6),

2000, 137-157.

8. Clarke, S., Baniassad, E. Aspect-Oriented Analysis and Design. The Theme Approach.

Addison-Wesley, 2005.

9. Ceri S., Daniel F., Facca F. M. and Matera M.. Model-Driven Engineering of Active Con-

text-Awareness. World Wide Web (WWW), Spring, 2007, 387-413

10. Clemens, P., Northrop, L. Software Product Lines: Practices and Patterns. Addison Wes-

ley, 2001.

11. Diaz, O., Arellano, C., Iturrioz, J. Layman tuning of websites: facing change resilience. in

Proceeding of WWW2008 Conference, (Beijing, 2008).

12. Django. http://www.djangoproject.com/

13. Facebook. http://www.facebook.com/

14. Filman, R., Elrad, T., Clarke, S., Aksit, M. Aspect Oriented Software Development. Ad-

dison Wesley, 2004.

15. Flickr. http://www.flickr.com/

16. Fons, J., Pelechano, V.,Pastor O.,Valderas P., Torres V. Applying OOWS model-driven

Approach for developing Web Applications. The Internet movie database case study. in

Web Engineering: Modelling and Implementing Web Applications, Springer, 2008.

17. Gamma, E., Richard H., Johnson, R., Vlissides, J. Design Patterns. Elements of Reusable

Object-Oriented Software. Addison-Wesley, 1995.

18. Ginzburg J., Distante D., Rossi G., Urbieta M.. Oblivious Integration of Volatile Func-

tionality in Web Application Interfaces. Journal of Web Engineering, Vol. 8, No 1, pp 25-

47, 2009.

19. Ginzburg, J., Rossi, G., Urbieta, M., Distante, D.: Transparent interface composition in

Web Applications. in Proceedings of ICWE2007 Conference, (Como, 2007). Springer,

2007, 152-166.

20. Gmail Greasemonkey API. http://code.google.com/p/gmail-

greasemonkey/wiki/GmailGreasemonkey10API

21. Google applications suite. http://www.google.com/apps/

22. Güell, N., Schwabe, D., Vilain, P. Modeling Interactions and Navigation in Web Applica-

tions. in Proceedings of ER Workshops 2000 Conference, (Utah, 2000), Springer, 115-

127.

23. Hi5. http://hi5.com/

24. Horchani, M., Nanard, J., Nanard, M. Les Hypermédias comme Paradigme d’Interfaces

Adaptatives. in Les hypermédias Journal, I. Saleh (ed), Hermès, 2004, 119-146.

25. Houben, G.J., van der Sluijs, K., Barna P., Broekstra, J., Casteleyn, S., Fiala, Z., Frasin-

car, F. Hera. In Web Engineering: Modelling and Implementing Web Applications,

Springer, 2008, 263-301.

26. Knol. http://knol.google.com/

27. Koch, N., Knapp, A., Zhang, G., Baumeister, H. UML-Based Web Engineering. in Web

Engineering: Modelling and Implementing Web Applications. Springer, 2008, 157-191.

28. Kristensen, B.B., Osterbye, K.: Roles, Conceptual Abstraction Theory and Practical Lan-

guage Issues. Journal of Theory and Practice of Object Systems, 2(3), 1996, 143-160.

29. LinkedIn. http://www.linkedin.com/

30. MonkeyGrease. http://code.google.com/p/monkeygrease/

31. MySpace. http://www.myspace.com/

32. Nanard, J., Rossi, G., Nanard, M., Gordillo, S., Perez, L. Concern-Sensitive Navigation:

Improving Navigation in Web Software through Separation of Concerns. in Proceedings

of CAiSE’08 Conference, (Montpellier, 2008), Springer, 420–434.

33 Niederhausen, M., van der Sluijs, K., Hidders, J., Leonardi, E., Houben, G.J., Meißner, K.

Harnessing the Power of Semantics-Based, Aspect-Oriented Adaptation for AMACONT.

in Proceedings of ICWE 2009 Conference (San Sebastián, 2009), Springer, 2009, 106-

120.

34. Parnas. http://dret.net/biblio/reference/par72

35. Passport .NET. http://www.passport.net/

36. Riehle D. and Gross T.: Role Model Based Framework Design and Integration. OOPSLA

1998: 117-133

37. Rossi, G., Nanard, J., Nanard, M., Koch, N. Engineering Web Applications with Roles.

Journal of Web Engineering, 6 (1), 2007, 19-48.

38. Rossi, G., Schwabe, D.: Modeling and Implementing Web Applications with OOHDM.

in Web Engineering: Modelling and Implementing Web Applications, Springer, 2008.

39. Schmid, H., Rossi, G.: Modeling and Designing Processes in E-Commerce Applications.

in IEEE Internet Computing Journal, 8 (1), 2004, 19-27.

40. Sowa, J. Conceptual Structures: Information Processing in Mind and Machine. Addison

Wesley, 1984.

41. Struts. http://struts.apache.org/

42. Sutton, S. and Rouvellou, I.: Modeling of Software Concerns in Cosmos. in Proceedings

of ACM Conference, (Enschede, 2002), ACM Press, 2002, 127-133.

43. The guided tour of the Roman Open Air Museum. http://www.villa-

rustica.de/tour/toure.html

44. Wikipedia. http://www.wikipedia.org/

45. Youtube. http://www.youtube.com/

46. YouTube API.

 http://code.google.com/intl/es-zAR/apis/youtube/getting_started.html#player_apis

