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Introduction

In this paper, we present the problem of data acquisition according to compatibility constraints in a submarine torpedo. The torpedo is used in order to make cartography, topology studies, temperature measures and many other tasks in the water. The aim of this torpedo is to collect and process a set of data as soon as possible on a mono processor. In this way, it possesses few sensors, a mono processor and one type of tasks which must be scheduled: acquisition tasks. The acquisition tasks A = {A 1 , . . . , A n } can be considered as coupled-tasks introduced by [START_REF] Shapiro | Scheduling coupled-tasks[END_REF], indeed the torpedo sensors emit a wave which propagates in the water in order to collect the data. Each acquisition task A i has two sub-tasks, the first one a i sends an echo, the second one b i receives it. For a better reading, we will denote the processing time of each sub-task a i and b i . Between the sub-tasks, there is an incompressible idle time L i which represents the spread of the echo in the water.

At last, there exists compatibility constraints between acquisition tasks, due to the fact that some acquisition tasks cannot be processed at the same time as another task. In order to represent this constraint, a compatibility graph G c = (A, E c ) is introduced, where A is the set of coupled-tasks and E c represents the edges which link two coupled-tasks which can be executed simultaneously. In other words, at least one sub-task of a task A i may be executed during the idle time of another task A j (see example in Figure 1).

A 1 A 2 A 3 a 1 b 1 a 2 b 2 a 3 b 3 L 1 L 2 L 3 Compatibility graph Fig. 1. Example of compatibility constraints with ai = bi = 1, L1 = 3, L2 = L3 = 2
The aim of this problem is to produce a shortest schedule (i.e. to minimize the completion time of the last processed task) denoted by C max , in presence of compatibility contraints between acquisition tasks. In the scheduling theory, a problem is categorized by its machine environment, job characteristic and objective function. So using the notation scheme α|β|γ proposed by [START_REF] Graham | Optimization and approximation in deterministic sequencing and scheduling theory: a survey[END_REF], this problem will be defined as

1|(a i , L i , b i ), G c |C max .
Our work consists in measuring the impact of the compatibility graph on the complexity and approximation of scheduling problems with coupled-tasks on a mono processor. This paper is focusing on the limit between the polynomiality and the N P-completeness of our problem, when the compatibility constraint is introduced with different topologies.

The complexity of the scheduling problem, with coupled-tasks and a complete compatibility graph1 , has been investigated first by [START_REF] Orman | On the complexity of coupled-task scheduling[END_REF], [START_REF] Błażewicz | Scheduling of coupled tasks with unit processing times[END_REF][START_REF] Ahr | An exact algorithm for scheduling identical coupled tasks[END_REF]. Nevertheless, in this article we study a different problem in which coupled-tasks (or acquisition tasks) must respect a compatibility graph. By comparing the results of [START_REF] Orman | On the complexity of coupled-task scheduling[END_REF] and those obtained by relaxing the constraint of compatibility, we can measure the impact of compatibility constraint on this kind of problem. In such context, several results (Simonin et al. 2009) have been recently obtained according to coupled-tasks parameters. In the following, we consider the specific problem

Π = 1|(a i = L i = b i ), G c |C max
where all the coupled-tasks have a different length2 . Then, we study the complexity of Π according to the topology of the compatibility graph.

2 Polynomial-time approximation algorithm for Π

For general compatibility graph

We will develop a polynomial-time approximation algorithm for the coupled-tasks scheduling problem in presence of compatibility constraints where the duration of all the tasks is different. Therefore, for all A i and A j , i = j, we have

a i = L i = b i = a j = L j = b j .
With these hypotheses, the tasks are sorted according to their length L i (we have

L 1 < L 2 < . . . < L n ).
Theorem 1. A simple algorithm, which consists in scheduling the tasks consecutively, admits a ratio ρ equal to3 2 . Proof. The length of the schedule obtained by our algorithm is i 3L i , whereas the optimal length is greater or equal to i 2L i . Thus we obtain a ratio ρ ≤ 3 2 . The bound is trivial, and in the following we will propose a better ratio for a specific compatibility graph.

For a complete oriented bipartite graph

This section is devoted to the complexity and approximation in the case where the compatibility graph is a complete oriented 3 bipartite graph G c = (X, Y, E). Let X = {X 1 , . . . , X k } where x i is the length of task X i , and Y = {Y 1 , . . . , Y m } where y j is the length of task Y i . Without lost of generality, we have x 1 > . . . > x k ≥ 3y 1 > . . . > 3y m .

Computational complexity

Theorem 2. The problem

Π ′ : 1|a i = L i = b i , G c = complete oriented bipartite|C max is N P-complete.
Proof. In the following we consider a complete oriented bipartite graph G b c = (X, Y, E), with |X| = 2. The proof is established by a reduction from even partition problem [START_REF] Garey | Computers and Intractability, a Guide to the Theory of N P-Completeness[END_REF]:

Instance: A finite set K of n elements {e 1 , . . . , e n }, a bound B ∈ IN + and a size s(e i ) ∈ IN for each e i ∈ K such that each s(e i ) is even and such that ei∈K s(e i ) = 2B. Remark that the problem remains N P-complete even if ∀i = j, s(e i ) = s(e j ).

Question: Can K be partitioned into two disjoint sets K 1 , K 2 of K such that B = ei∈K1 s(e i ) = ei∈K2 s(e i ) ∈ IN? Let I * be an instance from even partition, we construct an instance I for our scheduling problem where C max = 18B +3 as follows:

We consider (n + 2) tasks denoted by, X 1 , X 2 ∈ X of length x 1 , x 2 , and Y 1 , . . . , Y n ∈ Y of length y 1 , . . . , y n such that:

-X 1 = (3B + 1, 3B + 1, 3B + 1) and X 2 = (3B, 3B, 3B)

-Y i = (a i = s(e i ), L i = s(e i ), b i = s(e i )), ∀i ∈ {1, . . . , n}
We add edges between (X i , Y j ), ∀i ∈ {1, 2}, ∀j ∈ {1, . . . , n}. Obviously, this transformation can be computed in polynomial time.

• Assume that K can be partitioned into two disjoint sets K 1 , K 2 of K such that B = ei∈K1 s(e i ) = ei∈K2 s(e i ) ∈ IN. The task X 1 (resp. X 2 ) is executed at t = 0 (resp. at t = 9B + 3). The task Y i , corresponding to the element e i ∈ K 1 (resp. e i ∈ K 2 ) of length s(e i ), is scheduled as soon as possible in the idle slot of the task X 1 (resp. X 2 ).

• Reciprocally, we suppose that the length of the schedule is C max = 18B + 3. The two tasks X 1 and X 2 cannot be executed into each other. It is clear that the sum of durations of these two tasks is 18B + 3. All the other tasks must be executed in idle slots of length 3B or 3B + 1, which implies the existence of a partition.

Polynomial-time Approximation Algorithm

We propose the following algorithm: initially the X-tasks, |X| = k ≥ 1, and the Y -tasks, |Y | = m ≥ 1, are sorted in non-increasing order with respect to their duration, separately. The tasks are executed in the input order according to the following rule: X-tasks are executed consecutively. A Y -task is assigned to the first used X-task where there is enough available space to include it; if no X-tasks can contain the Y -tasks, they are assigned after the last executed task in the schedule.

This algorithm is similar to the classical Best-Fit algorithm. The sets X and Y are sorted in O(nlog(n)), where |X| + |Y | = n. Definition 1. The set of Y -tasks, which are not executed in the X-tasks, is called remainder R.

Theorem 3. The previous algorithm admits a relative performance bounded by 7/6 for the problem

Π ′ : 1|(a i = L i = b i = x i ), G c = complete oriented bipartite|C max .
Proof. We suppose that there exists a remainder R (otherwise there would be an optimal solution). We consider

C 1 = m i=1 3y i and C 2 = k i=1 x i .
Lemma 1. The size of the slot (i.e. the inactivity time of a couple-task) x i , ∀X i ∈ X, is at least greater than xi 2 for an execution of the Y -tasks if there exists a remainder. Proof. By contradiction, let X i be the first task such that the used time in its slot is less than xi 2 , and let Y j be the first task of the remainder. We have y j > xi 6 , otherwise the task Y j may be executed into the task X i . In such context, there is no task from the Y -tasks which are executed into X i when Y j is considered, because the Y -tasks are sorted in nonincresang order, so y j > xi 3 (in contradiction with the fact that the graph G c is an oriented bipartite complete graph, and that any Y -task can be scheduled in the X-tasks).

Thus, we have

0 ≤ R ≤ C 1 -C2
2 , and one upper bound is:

C h max ≤ Remainder + sequential duration of the X-tasks = C 1 -C2 2 + 3C 2 = 5C2
2 + C 1 . Two cases must be considered:

-If C 1 ≤ C 2 then C opt max ≥ 3C 2 .
Indeed, in the best case the Y -tasks can be executed in the idle slots of the X-tasks. Thus, the ratio is ρ =

C h max C opt max ≤ 5C 2 2 +C1 3C2 ≤ 7 6 . -If C 1 > C 2 then C opt max ≥ 2C 2 + C 1 .
Indeed, in the best case all the inactivity times of the X-tasks are used. The ratio is ρ =

C h max C opt max ≤ 5C 2 2 +C1 2C2+C1 ≤ 5C 2 2 +y 2C2+y ≤ 7 6 , ∀y ≤ C 1 .
The worst case analysis of the relative performance is not rigorous enough. We conjecture that the ratio is 8 7 . In such context, we may exhibit an instance for which the bound is tight. We consider the four tasks

X 1 ∈ X, Y 1 ∈ Y , Y 2 ∈ Y et Y 3 ∈ Y with following char- acteristics: X 1 = (M, M, M ), Y 1 = ( M 6 + 2ǫ, M 6 + 2ǫ, M 6 + 2ǫ), Y 2 = ( M 6 + ǫ, M 6 + ǫ, M 6 + ǫ), Y 3 = ( M 6 -ǫ, M 6 -ǫ, M 6 -ǫ) with M ∈ IN * .
Using the previous algorithm, we obtain a schedule of length C h max = 4M. An optimal solution consists in executing the tasks Y 2 and Y 3 within the idle time of the task X 1 . Therefore, we obtain C opt max = 7M 2 . The ratio is equal to ρ = 8 7 .

Conclusion

We investigate a particular coupled-tasks scheduling problem 1|a i = L i = b i , G c |C max in presence of a compatibility graph with regard to the complexity and appproximation. We design a 3 2 -approximation algorithm for the general case. We also establish the N Pcompleteness for the specific case where there is a bipartite compatibility graph. In such context, we propose a 7 6 -approximation algorithm and the bound is tight. For further research, it would be interesting to propose a polynomial-time approximation algorithm with a non-trivial ratio for non complete oriented bipartite graph.

Note that the lack of compatibility graph is equivalent to a fully connected graph. In this way, all the tasks may be compatible with each other.

The problem with complete compatibily graph is N P-complete (see[START_REF] Orman | On the complexity of coupled-task scheduling[END_REF], so the relaxed version is obviously N P-complete).

the graph is oriented because of the Y -tasks can be scheduled in the X-tasks.