
HAL Id: lirmm-00488279
https://hal-lirmm.ccsd.cnrs.fr/lirmm-00488279

Submitted on 1 Jun 2010

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Complexity and Approximation for Scheduling Problem
for Coupled-Tasks in Presence of Compatibility Tasks

Gilles Simonin, Rodolphe Giroudeau, Jean-Claude König

To cite this version:
Gilles Simonin, Rodolphe Giroudeau, Jean-Claude König. Complexity and Approximation for Schedul-
ing Problem for Coupled-Tasks in Presence of Compatibility Tasks. PMS: Project Management and
Scheduling, Apr 2010, Tours, France. pp.371-374. �lirmm-00488279�

https://hal-lirmm.ccsd.cnrs.fr/lirmm-00488279
https://hal.archives-ouvertes.fr


1

Complexity and approximation for scheduling problem

for coupled-tasks in presence of compatibility tasks

G. Simonin 1, R. Giroudeau1 and J.C König1

1 LIRMM UMR 5506, 161 rue Ada 34392, Montpellier France
{simonin,rgirou,konig}@lirmm.fr

Keywords: coupled-tasks, compatibility graph, complexity, approximation.

1 Introduction

In this paper, we present the problem of data acquisition according to compatibility
constraints in a submarine torpedo. The torpedo is used in order to make cartography,
topology studies, temperature measures and many other tasks in the water. The aim of
this torpedo is to collect and process a set of data as soon as possible on a mono processor.
In this way, it possesses few sensors, a mono processor and one type of tasks which must be
scheduled: acquisition tasks. The acquisition tasks A = {A1, . . . , An} can be considered as
coupled-tasks introduced by Shapiro (1980), indeed the torpedo sensors emit a wave which
propagates in the water in order to collect the data. Each acquisition task Ai has two
sub-tasks, the first one ai sends an echo, the second one bi receives it. For a better reading,
we will denote the processing time of each sub-task ai and bi. Between the sub-tasks, there
is an incompressible idle time Li which represents the spread of the echo in the water.

At last, there exists compatibility constraints between acquisition tasks, due to the fact
that some acquisition tasks cannot be processed at the same time as another task. In order
to represent this constraint, a compatibility graph Gc = (A, Ec) is introduced, where A is
the set of coupled-tasks and Ec represents the edges which link two coupled-tasks which
can be executed simultaneously. In other words, at least one sub-task of a task Ai may be
executed during the idle time of another task Aj (see example in Figure 1).

A1A2 A3

a1 b1a2 b2 a3 b3

L1

L2 L3

Compatibility graph

Fig. 1. Example of compatibility constraints with ai =bi =1, L1 = 3, L2 =L3 =2

The aim of this problem is to produce a shortest schedule (i.e. to minimize the com-
pletion time of the last processed task) denoted by Cmax, in presence of compatibility
contraints between acquisition tasks. In the scheduling theory, a problem is categorized
by its machine environment, job characteristic and objective function. So using the no-
tation scheme α|β|γ proposed by Graham et al. (1979), this problem will be defined as
1|(ai, Li, bi), Gc|Cmax.

Our work consists in measuring the impact of the compatibility graph on the complexity
and approximation of scheduling problems with coupled-tasks on a mono processor. This
paper is focusing on the limit between the polynomiality and the NP-completeness of our
problem, when the compatibility constraint is introduced with different topologies.
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The complexity of the scheduling problem, with coupled-tasks and a complete com-
patibility graph1, has been investigated first by Orman and Potts (1997), Błażewicz et al.
(2009), and Ahr et al. (2004). Nevertheless, in this article we study a different problem in
which coupled-tasks (or acquisition tasks) must respect a compatibility graph. By compar-
ing the results of Orman and Potts (1997) and those obtained by relaxing the constraint
of compatibility, we can measure the impact of compatibility constraint on this kind of
problem. In such context, several results (Simonin et al. 2009) have been recently obtained
according to coupled-tasks parameters. In the following, we consider the specific problem
Π = 1|(ai =Li = bi), Gc|Cmax where all the coupled-tasks have a different length2. Then,
we study the complexity of Π according to the topology of the compatibility graph.

2 Polynomial-time approximation algorithm for Π

2.1 For general compatibility graph

We will develop a polynomial-time approximation algorithm for the coupled-tasks
scheduling problem in presence of compatibility constraints where the duration of all the
tasks is different. Therefore, for all Ai and Aj , i 6= j, we have ai = Li = bi 6= aj = Lj = bj.
With these hypotheses, the tasks are sorted according to their length Li (we have
L1 < L2 < . . . < Ln).

Theorem 1. A simple algorithm, which consists in scheduling the tasks consecutively, ad-
mits a ratio ρ equal to 3

2
.

Proof. The length of the schedule obtained by our algorithm is
∑

i 3Li, whereas the optimal
length is greater or equal to

∑

i 2Li. Thus we obtain a ratio ρ ≤ 3

2
.

The bound is trivial, and in the following we will propose a better ratio for a specific
compatibility graph.

2.2 For a complete oriented bipartite graph

This section is devoted to the complexity and approximation in the case where the
compatibility graph is a complete oriented3 bipartite graph Gc = (X, Y, E). Let X =
{X1, . . . , Xk} where xi is the length of task Xi, and Y = {Y1, . . . , Ym} where yj is the
length of task Yi. Without lost of generality, we have x1 > . . . > xk ≥ 3y1 > . . . > 3ym.

Computational complexity

Theorem 2. The problem Π ′ : 1|ai = Li = bi, Gc = complete oriented bipartite|Cmax is
NP−complete.

Proof. In the following we consider a complete oriented bipartite graph Gb
c = (X, Y, E),

with |X | = 2. The proof is established by a reduction from even partition problem (Garey
and Johnson 1979):

Instance: A finite set K of n elements {e1, . . . , en}, a bound B ∈ IN+ and a size
s(ei) ∈ IN for each ei ∈ K such that each s(ei) is even and such that

∑

ei∈K
s(ei) = 2B.

Remark that the problem remains NP-complete even if ∀i 6= j, s(ei) 6= s(ej).

1 Note that the lack of compatibility graph is equivalent to a fully connected graph. In this way,
all the tasks may be compatible with each other.

2 The problem with complete compatibily graph is NP-complete (see Orman and Potts (1997),
so the relaxed version is obviously NP-complete).

3 the graph is oriented because of the Y -tasks can be scheduled in the X-tasks.
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Question: Can K be partitioned into two disjoint sets K1,K2 of K such that B =
∑

ei∈K1
s(ei) =

∑

ei∈K2
s(ei) ∈ IN?

Let I∗ be an instance from even partition, we construct an instance I for our schedul-
ing problem where Cmax =18B+3 as follows:

We consider (n + 2) tasks denoted by, X1, X2 ∈ X of length x1, x2, and Y1, . . . , Yn ∈ Y
of length y1, . . . , yn such that:

– X1 = (3B + 1, 3B + 1, 3B + 1) and X2 = (3B, 3B, 3B)
– Yi = (ai = s(ei), Li = s(ei), bi = s(ei)), ∀i ∈ {1, . . . , n}

We add edges between (Xi, Yj), ∀i ∈ {1, 2}, ∀j ∈ {1, . . . , n}. Obviously, this transfor-
mation can be computed in polynomial time.

• Assume that K can be partitioned into two disjoint sets K1,K2 of K such that B =
∑

ei∈K1
s(ei) =

∑

ei∈K2
s(ei) ∈ IN. The task X1 (resp. X2) is executed at t = 0 (resp.

at t = 9B + 3). The task Yi, corresponding to the element ei ∈ K1 (resp. ei ∈ K2) of
length s(ei), is scheduled as soon as possible in the idle slot of the task X1 (resp. X2).

• Reciprocally, we suppose that the length of the schedule is Cmax = 18B + 3. The
two tasks X1 and X2 cannot be executed into each other. It is clear that the sum of
durations of these two tasks is 18B + 3. All the other tasks must be executed in idle
slots of length 3B or 3B + 1, which implies the existence of a partition.

Polynomial-time Approximation Algorithm

We propose the following algorithm: initially the X-tasks, |X |=k≥1, and the Y -tasks,
|Y |=m≥ 1, are sorted in non-increasing order with respect to their duration, separately.
The tasks are executed in the input order according to the following rule: X-tasks are
executed consecutively. A Y -task is assigned to the first used X-task where there is enough
available space to include it; if no X-tasks can contain the Y -tasks, they are assigned after
the last executed task in the schedule.

This algorithm is similar to the classical Best-Fit algorithm. The sets X and Y are
sorted in O(nlog(n)), where |X | + |Y | = n.

Definition 1. The set of Y -tasks, which are not executed in the X-tasks, is called remain-
der R.

Theorem 3. The previous algorithm admits a relative performance bounded by 7/6 for the
problem Π ′ : 1|(ai = Li = bi = xi), Gc = complete oriented bipartite|Cmax.

Proof. We suppose that there exists a remainder R (otherwise there would be an optimal

solution). We consider C1 =
∑m

i=1
3yi and C2 =

∑k

i=1
xi.

Lemma 1. The size of the slot (i.e. the inactivity time of a couple-task) xi, ∀Xi ∈ X, is
at least greater than xi

2
for an execution of the Y -tasks if there exists a remainder.

Proof. By contradiction, let Xi be the first task such that the used time in its slot is less
than xi

2
, and let Yj be the first task of the remainder. We have yj > xi

6
, otherwise the task

Yj may be executed into the task Xi. In such context, there is no task from the Y -tasks
which are executed into Xi when Yj is considered, because the Y -tasks are sorted in non-
incresang order, so yj > xi

3
(in contradiction with the fact that the graph Gc is an oriented

bipartite complete graph, and that any Y -task can be scheduled in the X-tasks).

Thus, we have 0 ≤ R ≤ C1 − C2

2
, and one upper bound is: Ch

max ≤ Remainder +

sequential duration of the X-tasks =
(

C1 −
C2

2

)

+ 3C2 = 5C2

2
+ C1. Two cases must be

considered:
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– If C1 ≤ C2 then Copt
max ≥ 3C2. Indeed, in the best case the Y -tasks can be executed in

the idle slots of the X-tasks. Thus, the ratio is ρ =
Ch

max

C
opt
max

≤
5C2

2
+C1

3C2

≤ 7

6
.

– If C1 > C2 then Copt
max ≥ 2C2 + C1. Indeed, in the best case all the inactivity times of

the X-tasks are used. The ratio is ρ =
Ch

max

C
opt
max

≤
5C2

2
+C1

2C2+C1

≤
5C2

2
+y

2C2+y
≤ 7

6
, ∀y ≤ C1.

The worst case analysis of the relative performance is not rigorous enough. We conjec-
ture that the ratio is 8

7
. In such context, we may exhibit an instance for which the bound is

tight. We consider the four tasks X1 ∈ X , Y1 ∈ Y , Y2 ∈ Y et Y3 ∈ Y with following char-
acteristics: X1 = (M, M, M), Y1 = (M

6
+ 2ǫ, M

6
+ 2ǫ, M

6
+ 2ǫ), Y2 = (M

6
+ ǫ, M

6
+ ǫ, M

6
+ ǫ),

Y3 = (M
6

− ǫ, M
6

− ǫ, M
6

− ǫ) with M ∈ IN∗. Using the previous algorithm, we obtain a
schedule of length C

h
max = 4M. An optimal solution consists in executing the tasks Y2

and Y3 within the idle time of the task X1. Therefore, we obtain C
opt
max = 7M

2
. The ratio

is equal to ρ = 8
7
.

3 Conclusion

We investigate a particular coupled-tasks scheduling problem 1|ai = Li = bi, Gc|Cmax

in presence of a compatibility graph with regard to the complexity and appproximation.
We design a 3

2
-approximation algorithm for the general case. We also establish the NP-

completeness for the specific case where there is a bipartite compatibility graph. In such
context, we propose a 7

6
-approximation algorithm and the bound is tight. For further

research, it would be interesting to propose a polynomial-time approximation algorithm
with a non-trivial ratio for non complete oriented bipartite graph.
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