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Compiling under the closed-world assumption (CWA) has been shown to be an appropriate way for implementing object-oriented languages such as Java on low-end embedded systems. In this paper, we explore the implications of using whole program optimizations such as Rapid Type Analysis (RTA) and coloring on programs targeting the .Net infrastructure. We extended RTA so that it takes into account .Net specific features such as (i) array covariance, a language feature also supported in Java, (ii) generics, whose specifications in .Net impacts type analysis and (iii) delegates, which encapsulate methods within objects. We also use an intraprocedural control flow analysis in addition to RTA . We evaluated the optimizations that we implemented on programs written in C#. Preliminary results show a noticeable reduction of the code size, class hierarchy and polymorphism of the programs we optimize. Array covariance is safe in almost all cases, and some delegate calls can be implemented as direct calls.

Introduction

High-end embedded systems such as mobile phones have widely adopted objectoriented languages like Java. Object-oriented programming offers code reuse through inheritance and more reliable designs, which improves the productivity in software development. As the complexity of embedded systems is increasing, it has become important to reduce the length of their development cycles. But low-end embedded systems such as SIM cards and sensors are still programmed in C and assemblythe use of object-oriented languages generates an overhead at runtime, which is hard to reconcile with the limited resources of these systems.

We aim at reducing the overhead of .Net for low-end embedded systems. We do not consider high-end embedded systems such as tablet computers or mobile phones, which have a large amount of external memory available. For the systems we are considering, all the code memory is integrated on the chip, therefore the cost of a chip is almost directly proportional to the code space. Also the power consumption is higher if the memory is bigger. As a result, we must focus on both runtime efficiency and memory consumption.

There are several sources of overhead associated with Java and .Net -namely dynamic compilation, garbage collection, object mechanisms 1 and the increase in code size due to methods that are never invoked in the libraries. Static compilation resolves the first issue, and we do not consider garbage collection in this paper. To address the last two issues, whole program optimizations such as type analysis and coloring have been commonly used. Type analysis tries to resolve the behavior of object mechanisms at compile-time and identifies some uncallable methods. Coloring can be used to efficiently implement multiple subtyping of interfaces. These techniques require to know the whole program to compile, which means they are not directly compatible with dynamic loading. They require the closed-world assumption (CWA), which ensures that what is known to be true at compile-time will remain truei.e., the program is entirely known and cannot change at runtime. Most efficient compilation schemes are based on that assumption [START_REF] Ducournau | Empirical assessment of object-oriented implementations with multiple inheritance and static typing[END_REF], though current Java and .Net runtime systems rely on adaptive compilation in order to support dynamic loading [AFG + 04].

We explore the implications of using RTA and coloring to implement .Net on low-end embedded systems. We extended RTA so that it takes into account some .Net specific features:

• array covariance, a language feature also supported in Java which generates some subtype tests at runtime (also called array store checks),

• generics, whose specifications in .Net allow the programmer to instantiate open generic types (new T), which brings alive all generic instances of T,

• delegates, which encapsulate methods within objects (only in .Net). Invoking a delegate generally results in one or many indirect calls.

In particular, we target systems based on the Cortus APS3 processor family, which is specifically designed for the embedded world. These 32-bit processors feature a tiny silicon footprint (the same size as an 8-bit Intel 8051), low power consumption, high code density and multi-core configuration [START_REF] Kerr-Munslow | Advantages and pitfalls of moving from an 8 bit system to 32 bit architectures[END_REF].

This article is structured as follows. Section 2 is an overview of the compiler and runtime. Section 3 presents the type analysis algorithm and the global optimizations we implement. Section 4 explains how we lay down runtime structures. Section 5 presents the results we obtained optimizing a selection of programs that target the .Net platform. The last sections describe related work, conclusion and prospects.

Compiler Overview

This section briefly presents our overall implementation of the Common Language Infrastructure [START_REF] Miller | The Common Language Infrastructure annotated standard[END_REF]. 

Compilation Scheme

Compilation schemes describe the transformation process from the source code to an executable. The scheme used in .Net and Java is particular in that it includes two steps. First, source-level languages like C# are compiled to a processor-agnostic intermediate language (which is called Msil in the case of .Net). This intermediate language is then executed by the platform in either a compiled or interpreted manner. The first step involves compilers and linkers dedicated to specific languages to make them compatible with the platform, while the second enables the execution of the intermediate language for a specific architecture. We are concerned with the latter as it is the one that supports object-oriented features. In the case of .Net, this step is specified by the Common Language Infrastructure standard.

Well-known implementations such as CLR [START_REF] Meijer | Technical overview of the Common Language Runtime[END_REF] and Mono [Mon] are based on a virtual machine architecture in order to support dynamic loading, and generally involve adaptive compilation [AFG + 04]. We chose to disable dynamic loading, which allows us to implement global optimizations [START_REF] Ducournau | Implementing statically typed object-oriented programming languages[END_REF]. This choice may seem restrictive, however most firmwares do not require such a feature. Indeed, firmware updates consist in directly replacing the code in memory.

Our global compiler computes a conservative approximation of the behavior of the program using a type analysis algorithm. Its final implementation will support all .Net language features, except dynamic loading and introspection2 . Indeed, it is not possible to detect the set of instantiated classes at compile-time when introspection is enabled. All of the other features are implemented at the moment, except genericity and exception handling. However, generics are supported in the type analysis so that we can analyze programs using them.

Compilation is performed ahead-of-time so that there is no negative impact on runtime. The compiler produces C code from the Msil bytecode which is then compiled by the gcc port for Cortus APS3 (Figure 1). Compiling through C has been shown to be a viable strategy to implement Java on embedded systems [START_REF] Varma | Java-through-C compilation: An enabling technology for Java in embedded systems[END_REF] and allows us to focus on eliminating the overhead of object-oriented languages.

Optimizations

Type analysis. Type analysis is a well-known optimization that works under the CWA, and Rapid Type Analysis (RTA) is the most commonly used algorithm [START_REF] Bacon | Fast and Effective Optimization of Statically Typed Object-Oriented Languages[END_REF]. It constructs a call graph of the program, which allows us to identify the methods which are uncallable and remove it. It also approximates the dynamic types of the expressions in the program. Some virtual calls may be monomorphic (see Section 3.1), therefore they can be replaced with static calls. Moreover, some subtype tests may be solved at compile-time. The type analysis that we implemented is based on RTA and takes into account some .Net specific features such as array covariance and delegates (see Section 3).

Coloring. Coloring is an implementation technique for object mechanisms which extends the single subtyping implementation to multiple subtyping. This technique initially proposed by [START_REF] Dixon | A fast method dispatcher for compiled languages with multiple inheritance[END_REF] has been proven to be efficient and well-suited in a global compilation framework [START_REF] Ducournau | Coloring, a versatile technique for implementing objectoriented languages[END_REF]. We use this technique to compute our runtime structures. As well, we use the information generated by type analysis to remove some entries in these structures. Therefore method tables only contain polymorphic methods and type IDs for unsolved subtype test targets (see Section 4).

Garbage Collection and Libraries

Garbage collection is currently implemented using TinyGC [Tin], a mark-and-sweep garbage collector which provides a subset of the Boehm GC API [START_REF] Boehm | Garbage collection in an uncooperative environment[END_REF]. This paper does not focuses on the efficiency of garbage collection. It will be considered in the future, as it has a significant impact on the runtime efficiency of the compiled program. Indeed, it would be preferable to use a precise GC rather than a conservative one, in order to reduce the memory overhead. Also, the use of a generational GC scheme has been shown to be well-suited for languages such as Java and C#, which create many short lived objects. An incremental GC scheme is also needed, as most embedded systems must satisfy real-time constraints.

For the low-level libraries, we implemented a significant subset of the .Net core class library and peripheral drivers for UART and GPIO. It has been possible to write this code entirely in C#. In the Cortus APS3 architecture, peripherals are mapped into memory, therefore it is possible to access them using the unsafe keyword, which allows C# programmers to use pointers. Similarly to C++, unsafe C# code may cause errors due to pointers such as memory leaks, therefore we only use it when necessary. As well, we implemented some interrupt handlers using static methods. At startup, trap vectors are initialized with the addresses of these methods.

Type Analysis

This section presents our type analysis which is based on Rapid Type Analysis [START_REF] Bacon | Fast and Effective Optimization of Statically Typed Object-Oriented Languages[END_REF], a well-known algorithm, with optimizations which are specific to .Net. Various implementation issues are also discussed.

Rapid Type Analysis

Due to their dynamic nature, object mechanisms such as virtual call and subtype testing produce a substantial overhead at runtime. Given the information available in a closed world, type analysis tries to approximate their behavior at compile-time. Typically, when a method is invoked, its implementation is determined by the dynamic type of the receiver. This type can be statically approximated with a precision dependent on the kind of analysis chosen. Similarly, some subtype tests can be resolved at compile-time as we can also approximate the actual type of the tested object. Our algorithm is based on RTA (Rapid Type Analysis) which computes two sets for instantiated classes and live methods [START_REF] Bacon | Fast and Effective Optimization of Statically Typed Object-Oriented Languages[END_REF]. The approximation of each static type is the set of its instantiated subclasses. RTA mostly tries to resolve virtual calls, though it can be used to eliminate some subtype tests as well. The algorithm starts from the program entry point and constructs a call graph for the program. When a method call is reached, possible implementations for the method are deduced from the class hierarchy and the set of instantiated classes. They are thereby considered alive (i.e., callable) and their code is analyzed. Similarly, it is possible to know which fields are alive (i.e., accessed in the live code).

Metamodel. Unlike the original RTA, our representation of classes, fields and methods is based on a metamodel that removes multiple inheritance ambiguities which may occur with .Net interfaces [START_REF] Ducournau | Metamodeling semantics of multiple inheritance[END_REF]. It separates the identity of methods from their implementations. We use the terms global method to designate the former and local method for the latter (Figure 2). For instance, a method that is defined in a class and redefined in a subclass is represented by a single global method associated with two local methods. Each global method is introduced by a single class or interface3 .

Figure 2 shows a partial view of our metamodel. This partial view is restricted to types and methods, therefore it does not include fields. Both global and local methods have a flag which indicates whether they are alive. We can consider that live global methods may need an entry in the method tables, while live local methods contain the live code. Fields also have a flag which indicates their liveness. Another flag shows if a given class is concrete, i.e., instantiated at least once in the live code. In the algorithm, this flag has to be set to true (all boolean flags are set to false by default in the metamodel) using the SetConcrete method, which propagates the instantiated class to the concreteSubClasses4 of its supertypes. Dispatch returns the implementation for a given global method that a class knows. In addition, we add a flag so that we can recognize subtype test targets: since we use the Cohen technique extension to multiple subtyping [START_REF] Vitek | Efficient type inclusion tests[END_REF], this allows us to reduce the number of types which will need a unique identifier at runtime (see Section 4.1). • Class instantiations cause the class to be marked as concrete and add the class to the concreteSubClasses of its supertypes (SetConcrete). If the class defines a local method which is associated with a live global method, it is marked as alive and enqueued (SetAlive).

• Subtype tests cause the target type to be marked as subtype test target (hasTypeId).

• Field accesses cause the field to be marked as alive (isAlive).

• Static calls cause the callee to be marked as alive and enqueue it (SetAlive).

• Virtual calls cause the set of dispatched local methods to be computed (Dispatch). Each method of this set is marked as alive and enqueued (SetAlive). If it is a virtual call, the associated global method is marked as alive too (isAlive).

Monomorphic call detection. An expression is said to be monomorphic when its value at runtime will always be of the same dynamic type. When the receiver is monomorphic, a virtual call always invoke the same method. Here, we use monomorphic in a wider meaning, that is when a virtual call always invoke the same method (even when the receiver is not monomorphic). The call graph resulting from RTA shows for each call site the set of local methods that can actually be invoked. When this set is reduced to a singleton, the call is monomorphic and can be implemented as a static call. Moreover, inlining can be performed when it does not increase code size, but we leave the decision to gcc.

Algorithm 2: Monomorphic call detection Algorithm 2 describes a procedure which detects whether a given virtual call is monomorphic or not. Given the informations generated by Algorithm 1, if there is only one local method which can be dispatched, the call is considered monomorphic and can be implemented as a static call.

Dead code elimination.

As a result of RTA, we know which methods are dead. Under the closed-world assumption, their code can be eliminated, which can be quite effective for programs that use large frameworks such as .Net or Java. Besides, reducing code size is a major concern of the embedded world. Global methods and fields that are dead do not need to be compiled. They can be eliminated from method tables and object layouts respectively. As well, live global methods that are never called in a polymorphic manner do not need an entry in the method tables, and abstract classes do not need such table at runtime.

Subtype test elimination. Subtype tests allow runtime checking of whether an

object is typed by a specified type (called the target type) or not. This is typically needed for downcasts and for array assignments, which are unsafe in .Net and Java as covariant type overriding is allowed (see Section 3.2). We associate subtype check sites to the set of types that the tested object can take at execution. When all these types are subtypes of the target, the test is guaranteed to return true and can be removed. Conversely, when no subtype is contained within the set, we are guaranteed that the test returns false and we can replace it by the appropriate code (i.e., throw or ldnull). Moreover, the programmer can be warned at compile-time, which enhances software reliability. Algorithm 3 describes a procedure which detects whether a given subtype test can be resolved at compile-time or not. Given the informations generated by Algorithm 1, for each concrete type of the tested object, the test must always return the same result in order to be resolved at compile-time.

Array Covariance

Array covariance means that if class B is a subtype of A, it implies that B[] is a subtype of A[].
Assignments to elements of arrays are thus generally unsafe, as an array statically typed by A[] can actually be an instance of B[], and a subtype test must be performed to ensure that the type of the assigned value is an instance of B.

Metamodel. Figure 3 shows how arrays are represented in our metamodel. When an array typed by A[] is instantiated, i.e., when the analysis reaches a new A[] expression, we invoke SetElementType on the instance of the metamodel which represents its element type, that is A. In a similar way to SetConcrete, this propagates A to the elementSubTypes of its supertypes. This allows the approximation of the dynamic type of an array given its static type.

Extended algorithm. Algorithm 4 adds a new action to perform in the base algorithm of RTA (see Algorithm 1). This action is associated with array instantiations, and marks the element type of the array (SetElementType). Array store check elimination. Subtype test elimination does not apply directly here as we do not know the target type at compile-time (i.e., the element type of the array). We approximate it the following way: the element type of an array statically typed by A[] can be of any subtype X of A when X[] is marked as concrete. As both target and source have their types approximated, many combinations are possible, which reduces the chances of having all tests return the same result. However, if the array type is specific, this technique can eliminate many tests produced by array covariance. Algorithm 5 is similar to Algorithm 3. Given the informations generated by Algorithm 1 and 4, it detects whether the subtype test associated to an array access can be resolved at compile-time or not. 

Generics

In .Net, generics are supported at the bytecode level, contrarily to Java which uses type erasure. Expressions involving run-time types such as new T are allowed, which must be considered when analyzing the bytecode. We compute the set of generic instances for each open generic type (a.k.a. formal type) in the program, as for arrays. When expressions such as new T are encountered, RTA executes the appropriate action for each generic instance of the open generic type. For new T, generic instances of T are marked as concrete (see Algorithm 1, lines 1 to 2) and their default constructor are marked alive (see Algorithm 1, lines 3 to 4). As a result, the call graph of the analyzed program is complete.

Delegates

Delegates allow programmers to encapsulate methods within objects, and they are typically used to define callback methods. A delegate is typed by a class which inherits System.Delegate and introduces a method named Invoke, which allows the wrapped method to be called with parameters of the right types. When a method is wrapped into a delegate, its signature must match the signature of Invoke5 . Moreover, a delegate may be chained with other delegates of the same type, in which case calling Invoke implies several method calls with the same parameters (but different receivers).

Metamodel. Figure 4 shows how delegates are represented in our metamodel. Both global and local methods have a flag which indicates whether they are wrapped in delegates. For each delegate class, Matches checks if a given method matches the signature of the Invoke method.

methPtr next obj (i) (ii) (iii) (i) (ii) (iii)
Figure 5): (i) a reference to the method which is wrapped into the delegate; (ii) a reference to the this argument to pass to the wrapped method (null if method is static); (iii) a reference to the next delegate in the chain to invoke (if any).

Delegate instantiation.

A delegate is instantiated by passing (i) and (ii) to the constructor of its class. (ii) is computed using the bytecode instruction ldftn or ldvirtftn. Both load the method address, statically for the former. The latter is equivalent to a virtual call, except the method is not actually called. In other words, it is equivalent to Dispatch in the metamodel (Figure 2), and the method address is accessed via a method table. It is possible to optimize these virtual dispatches in the same way we optimized virtual calls in the base algorithm (see Section 3.1). When the set of local methods that can actually be dispatched is reduced to a singleton, the address of the method can be directly accessed. Chained delegates. It is possible to chain two delegates of the same type. This is done using the static method Combine of System.Delegate. Its returned value is typed by System.Delegate, therefore the compiler generates a cast to the appropriate delegate type. As a result, given a delegate class, we can determine at compiletime whether its instances may be chained (which allows the field isChained to be initialized in Figure 4). If not, we can remove the next pointer of its instances. Invoking a chained delegate causes to invoke each delegate in the chain. When the return type of this delegate is not void, it is the return value of the last delegate in the chain which is returned.

Delegate invocation.

A delegate is invoked calling the Invoke method of its class. This method is annotated with the keyword runtime, which means it is implemented in the virtual machine. Therefore, we have to generate the appropriate code for this method. Given RV the return type of the delegate signature, the following code works for all classes of delegates: Delegate optimization. The above code is generated for the general case. However, given a specific delegate class, it is possible to generate more efficient code. For this purpose, we maintain a set of wrapped methods. This is done the following way: methods whose addresses are accessed using ldftn or ldvirtftn are considered wrapped. For each delegate class, wrapped methods that match the signature of Invoke may be called through this class of delegates. If all these methods are non-static, we can remove the first check. If they are all static, we can remove the obj field too. If there is only a single method that may be called, we can replace the indirect call by a direct call and remove the methPtr field. Moreover, the second check can be removed for classes of delegates which are never chained (see above).

Algorithm 7 describes a procedure which detects at compile-time whether a delegate invocation can be implemented as a direct call or not. Given the informations generated by Algorithm 1 and 6, if only one local method is both wrapped and matches the delegate's signature, the delegate call is monomorphic. Inlining. Under some circumstances, the code of the Invoke method may be inlined. We let gcc choose whether to inline or not. For classes of delegates where Invoke consists in a single direct call, it is possible to replace calls to Invoke with a direct call to the wrapped method. In this case, the delegate class and its instances can be removed from the program (i.e., code, instantiations and invocations) if the delegate fields are never accessed in the live code. If the wrapped method is non-static, the delegate instance can be replaced in the stack with the obj field.

Analysis Details

Static types and evaluation stack. In the C# code, static types are annotations of names. As the .Net virtual machine is stack-based, when we analyze the bytecode, we have to track the types on the stack in order to retrieve the static types of all operands. This is done by implementing the verification algorithm described in the Common Language Infrastructure standard [START_REF] Miller | The Common Language Infrastructure annotated standard[END_REF]. However, we are using it for type propagation purposes, not bytecode verification, since we make the assumption that the high-level compiler generates correct bytecode.

Intraprocedural control flow analysis. In addition to RTA, we use an intraprocedural control flow analysis. It propagates the concrete types induced by literals and instantiations (new) in the context of a single method. We use this information when we construct the call graph of the program, which reduces its size. As a result, our type analysis is more precise than RTA only.

Black boxes. Some keywords (e.g., internalcall, runtime and native) specify that a method is directly implemented in the virtual machine. This is typically used by low-level methods in a system library, which are not portable. As a result, some code is located in the virtual machine itself. There is an issue in the case where we do not have access to this code. For example, performing type analysis on programs that target a proprietary implementation such as CLR does not permit us to have complete knowledge of the code, which is a requirement for the optimizations we implement. This is however a problem in our preliminary study, not the final implementation, as we will have our own libraries and therefore full access to the code when the compiler will be operational. In the preliminary study, internal methods can be considered as black boxes as we do not have access to their implementation and we are only concerned about their output, that is their return type. Typically, if a subclass B of A is instantiated in a black box and returned under the static type A, B must be considered alive, which is not assumed by our type analysis in the case where B is never instantiated in the live code. A solution is to consider that all non-abstract subclasses of the black box return type are instantiated. As a result, type analysis loses in precision but remains sound. There is however a huge loss of precision when the return type is a universal supertype such as Object or Array. In this case, we detect the casts applied to the returned object and we consider that all non-abstract subclasses of the cast targets are instantiated.

Implementation Technique

Implementation techniques determine the representation of objects, that is the data structures that support object-oriented mechanisms -namely virtual call, subtype test and field access. This section presents the technique that we chose, which is known as coloring, and extends the single subtyping implementation to multiple subtyping [START_REF] Ducournau | Coloring, a versatile technique for implementing objectoriented languages[END_REF].

Single Subtyping Implementation

In statically typed languages, an object is typically implemented as a table of its fields with a pointer to the method table which is associated with its class. The layout of these tables depends on the implementation technique chosen. In single subtyping, the implementation relies on reference invariance and position invariance, which means that the code sequences generated to support object mechanisms does not depend on the static type nor the dynamic type of the receiver (Figure 6). Object layouts and method tables are straightforward extensions of those of its direct superclass (Figure 7). As a result, this technique is compatible with dynamic loading. Subtype tests. Subtype testing can be implemented using the technique proposed by [START_REF] Cohen | Type-extension type tests can be performed in constant time[END_REF], which consists assigning both a unique ID and an invariant position in the method table to each class. It is guaranteed that an object x is an instance of the class A if and only if the method table of x contains the type ID of A at the position associated with A. In our implementation, we use method tables to hold both methods and type IDs (Figure 6). There is an ambiguity in the case where a method is located at an address n which is also a type ID, as some subtype tests may return true erroneously. A solution is to choose non-even values for type IDs, as addresses are aligned. Some implementations of the Cohen technique need to check the bounds of the table, as the position associated with a type ID may be greater than the upper bound of the actual table that the tested object points to. This check is eliminated in our case, as method tables are consecutive in memory and the largest one is placed in the final position.

Array store checks. Some additional data at runtime is needed to perform array store checks (see Section 3.2). The code sequence for this mechanism is similar to a subtype test (Figure 6) except that #typeOffset and #targetId must be computed at runtime. We chose to put this information directly in the array instance rather than in its method table. Besides, when array store checks are eliminated in the type analysis, this information can be removed. The figure at the right shows the associated method tables, where boxes represent the groups of methods introduced by each type. The hole induced by the conflict between J and A is placed in the method table of J, which is inexistent at runtime as interfaces cannot be instantiated. 

Coloring Implementation

Though multiple inheritance is not fully supported in .Net and Java, multiple subtyping is possible through special types called interfaces which can only introduce abstract methods. In this context, fields are only introduced by classes. As a result, the single subtyping implementation works for object layouts. In contrast, methods can be introduced by unrelated classes or interfaces in such a way that they would have different positions in the single subtyping implementation (Figure 8). In other words, the position invariant cannot be ensured for methods and interface IDs. The general idea of coloring consists in inserting empty entries in order to maintain position invariance (Figure 9). This technique works under the CWA and has the same efficiency as single subtyping, except space cost. In this respect, the number of holes has to be minimized. Coloring can be described as the technique that keeps single subtyping invariants at minimal space cost. It has been separately proposed for the three basic mechanisms (i.e., virtual call, field access and subtype test) [DMSV89, PW90, VHK97]. Like minimal graph coloring, the coloring problem considered here has been proven to be NP-hard in the general case, but efficient heuristics have been proposed.

Interfaces.

To some extent, it should be possible to take advantage of the abstract nature of interfaces in order to reduce the number of holes. Like abstract classes, interfaces are never instantiated, which means their method tables do not exist at runtime. They are only computed so that they can be extended in the method tables of the instantiated subclasses, which are concrete. Accordingly, holes introduced in the abstract tables can be filled in the concrete tables. It should be advantageous to consider this when performing coloring, as space cost may be reduced (Figure 9). Moreover, we can consider classes that are never instantiated in the live code as abstract too.

Unidirectional coloring. The number of holes induced by coloring can be reduced using positive and negative offsets on the method tables. This technique is known as bidirectional coloring [START_REF] Pugh | Two-directional record layout for multiple inheritance[END_REF]. However, the Cortus APS3 does not support negative offsets in load instructions, therefore an additional subtraction would be needed for some accesses in the method tables. We chose unidirectional coloring, which only uses positive offsets.

Optimizations

Type analysis allowed us to remove some entries from the method tables. As explained in Section 3, methods that are never called polymorphically do not need an entry in the method tables. Similarly, types that are never used as subtype test targets in the live code do not need a type ID. Therefore method tables only contain necessary data plus some holes, which would have not been possible under the OWA. The following optimizations concern what remains in these structures.

Filling empty entries. As the drawback of coloring is the insertion of holes in the method tables, we propose using these empty entries to store static data. The only constraint is to maintain subtype test integrity, which means that a hole cannot be filled with a value that is not even. For example, static fields can be used to fill empty entries in the method tables. We chose to fill holes with objects as they are pointers and therefore even values. This optimization offers two advantages: (i) reduction of the number of holes; (ii) locality in the case where a static field f can fill a hole in the method table of a class that knows f.

Merging colors.

A class named A that implements an interface I must provide a definition for the methods that I knows. A priori, a method m introduced in I designates the same method that the method m defined in A, therefore they share the same entry in the method tables. However, it is possible to provide separate definitions for these methods in the class definition of A. This feature is known as explicit overriding in .Net [START_REF] Miller | The Common Language Infrastructure annotated standard[END_REF] and explicit interface implementation in C# [START_REF] Jagger | C# Annotated Standard[END_REF]. As a result, A must provide a definition for m I , but introduces its own method m A as side effect. Both methods share the same implementation, except when there is an explicit implementation of m I in A. Under the CWA, it is possible to know whether m I and m A share the same implementation in all classes or not. If it is the case, both entries in the method tables contain a pointer to the same code (see Section 3.1), and it is possible to unify them. Accordingly, m I and m A share the same entry (i.e., color) in the method tables when possible.

Tests and Results

In this section, we evaluate the global techniques presented in this paper on programs written in C#.

Target Programs

We implemented the compiler described in Section 2, including our extensions for RTA (see Section 3) and the implementation technique described in Section 4. However, having a functional compiler is not sufficient to execute real programs on our specific architecture, that is Cortus APS3. Indeed, the .Net framework provided by Microsoft is not portable as it includes some internal calls to the virtual machine and operating system (see Section 3.5). As a result, we need to provide our own framework and reimplement the libraries referenced by the target programs. This can be quite tedious, so we chose a different approach. Instead of measuring execution time and memory consumption at runtime, our compiler counts the number of optimized entities (e.g., virtual calls, subtype tests) for a given program and shows the results with and without optimizations. Our target programs can be split in two categories:

• programs based on the .Net Micro Framework, a smaller version of the .Net

Framework dedicated to embedded systems,

• programs based on the standard .Net Framework -these programs are bigger and use consequent libraries.

Experiments showed that results are homogeneous for a given framework, therefore we only show them for two programs per framework. In the first category, Clock and ServiceClient are samples of the .Net Micro Framework SDK. In the second category, Compiler is our implementation of the Common Language Infrastructure and Gateway is a wireless access point based on the standard .Net Framework.

Results

As explained in Section 3.5, our current solution for the black box issue reduces the efficiency of type analysis, which has to be considered before discussing measurements. Also, the way of writing programs (use of polymorphism for example) and the size of the framework classes may have a significant impact on results (see Section 5.3).

Class hierarchy. Our compiler loads the model of classes which are instantiated in the live code and the model of their supertypes (direct or indirect). Figure 10(a Each subtable corresponds to a specific kind of method (non-virtual or virtual). Non-virtual methods include both instance and static methods. For virtual methods, we distinct global and local methods according to the definition given in Section 3.1. For each subtable, the first column shows the number of methods in the loaded types, whereas the second column shows the number of live methods. bytecode loaded live red.

Clock 41KB 25KB 39% ServiceClient 78KB 85KB 26% Compiler 1142KB 629KB 45% Gateway 2519KB 1481KB 41% (c) Bytecode size reduction
For each program, the first column shows the size of bytecode in the loaded types whereas the second column shows the size of live bytecode. Sizes are given in kilobytes. show that only a few fields and methods in the loaded types are alive. As explained in Section 3, dead members can be eliminated as we do not need to compile them. Also, code size reduces as the number of methods decreases (Figure 11(c)).

Delegates. Figure 12 shows that only a few delegate classes are actually both instantiated and invoked. Delegates that are instantiated but not invoked can be removed from the program. Conversely, when a delegate which is not instantiated is invoked, its value is null. In this respect, we do not need to compile the call site. Moreover, we can warn the programmer that a null check should be inserted prior to the call site. Figure 12 also shows that we can remove the first check and the chain check in most Invoke methods (see Section 3.4). In some cases, we can replace the indirect call by a direct one. When all three optimizations are possible, we can remove the delegate class from the program and replace the call to Invoke with a direct call to the wrapped method. The first subtable shows the number of delegate classes for a given program. The first column shows those which are loaded in our compiler whereas the second column shows those which are alive, i.e. instantiated and invoked. The second subtable considers the optimizations that can be applied to the Invoke methods of these live delegate classes. opt1 stands for eliminating the first check in Invoke. opt2 stands for eliminating the chain check, whereas opt3 stands for replacing the indirect call by a direct call.

The last column shows the number of Invoke methods for which we can apply all three optimizations. Invocation sites. When object mechanisms are resolved at compile-time, they can be more efficiently implemented, as indirections in the method tables can be avoided.

Figure 13(a) shows that most method calls are static. This is due to the fact that C# considers methods as non-virtual by default, unless the virtual keyword is explicitly used. Therefore, polymorphism is less used than in languages like Java. Concerning virtual calls, most of them are actually monomorphic and can be implemented as static calls. Figure 13(b) shows that most subtype checks due to array covariance can be eliminated, in contrast to those due to downcasts. This can be explained by the fact that only a few arrays are instantiated in the live code (Figure 10(b)).

Runtime structures. Figures 14(a) and 14(b) show that runtime structures are accordingly small, as object layouts and method tables respectively contain live fields and live polymorphic methods plus a few type IDs.

Coloring. Figure 15(a) shows which entities in the program need to be colored. It shows that method tables only contain a few type IDs (those for types which are targets of one or many unsafe subtype tests) and a few methods (those which are called in a polymorphic manner). Figure 15(b) shows that there is a small proportion of holes in the method tables. Moreover, a significant part of them can be filled using static references.

Discussion

The results show a noticeable reduction of the programs. Half of the types can be ignored at compile-time and about half of the methods do not need to be compiled, which reduces the code size.

Frameworks. The frameworks used by the target programs have a significant influence on the results. In fact, these frameworks are generally bigger than the programs themselves. To some extent, running RTA on two programs which use the same framework can be viewed as analyzing the same code but starting from two different entry points. Monomorphic call detection is less efficient for big programs which target the standard .Net framework. Using an interprocedural control flow analysis might reduce the gap resulting from the program size. For each program, the first column shows the number of method entries in the method tables. The second column shows the number of type IDs, and the third column shows the number of holes induced by coloring. The last column shows the number of static fields which are typed by a reference type, and can be used to fill holes in the method tables. Polymorphism. Using C#, only a few method calls are virtual. Of these virtual calls, most are considered monomorphic by RTA, which means they can be implemented as static calls. This brings us back to the efficiency of procedural languages like C. We can say that the language resulting from our compilation process is less object-oriented than the high-level language, which is C# in the case of this experiment. Most method calls are static, and most array accesses do not need a subtype test due to covariance. However, most explicit subtype tests remain.

Coloring. We find only a few holes in the method tables, which can be explained by the fact that most classes do not implement interfaces and that the average size of the method tables is relatively small. In the worst case, we can fill a significant subset of these holes with static fields.

Related Work

This section presents related works. The first section presents some techniques which could be considered for implementation, whereas the second section shows an overview of existing implementations for Java and .Net that target embedded systems.

Related Techniques

Type analyses. Many type analysis algorithms exist, with their accuracy which depends on their cost. Control Flow Analysis (CFA) is an interprocedural analysis which gives better results than RTA, but its cost is considerably higher [START_REF] Shivers | Control-Flow Analysis of Higher-Order Languages -or-Taming Lambda[END_REF]. However, scalable implementations of CFA have been proposed [START_REF] Probst | A Demand Driven Solver for Constraint-Based Control Flow Analysis[END_REF]. As well, some intermediate solutions between RTA and CFA have been explored, such as eXtended Type Analysis (XTA) [START_REF] Tip | Scalable propagation-based call graph construction algorithms[END_REF]. Whereas RTA maintains a single set of concrete types for the whole program, XTA maintains a separate set for each method and field. Implementation techniques. Some implementations are based on binary tree dispatch (BTD) rather than method tables [START_REF] Zendra | Efficient dynamic dispatch without virtual function tables: The SmallEiffel compiler[END_REF]. The efficiency of BTD relies on conditional branch prediction. The Prm compiler has been used as an experimental platform to test various implementations for object-oriented languages [START_REF] Ducournau | Empirical assessment of object-oriented implementations with multiple inheritance and static typing[END_REF]. BTD and coloring were jointly tested, and their combination were shown to be the best choice under the closed-world assumption for processors equipped with branch prediction. However, branch prediction is not implemented in low-power processors such as the Cortus APS3 because it increases power consumption. Moreover, BTD tends to increase code size, which is inappropriate for small embedded systems. Therefore we do not use this technique. However, we implement monomorphic calls with static calls, which corresponds to a BTD of depth 0. Accordingly, our implementation can be described as MC-BTD 0 -G in [START_REF] Ducournau | Empirical assessment of object-oriented implementations with multiple inheritance and static typing[END_REF].

Adaptive compilation. Popular virtual machines such as Sun's HotSpot and Microsoft's CLR use adaptive compilation in order to be efficient in the context of dynamic loading [AFG + 04]. The techniques they use are not applicable in our context of static compilation. However, some techniques that we use could be tested in an adaptive compilation framework. Indeed, [IKY + 00] proposes to use global optimizations under the OWA and to use some backup code in the case where initial hypotheses become invalidated at runtime. For instance, some virtual calls can be devirtualized until the assumption that they are monomorphic becomes invalidated. When it happens, the compiler performs code patching by substituting the optimized code by the backup code.

Embedded Runtime Systems

There is a large number of runtime systems that target embedded systems, especially for Java.

Interpreters. Sun's KVM [KVM00] and Microsoft's TinyCLR are based on an interpreter -TinyCLR is the execution engine behind the .Net Micro Framework [START_REF] Thompson | Introducing the .NET Micro Framework[END_REF]. Sun's JavaCard targets low-end embedded systems such as smart cards and converts the Java bytecode to a more compact format prior to execution [BBE + 99]. It does not supports dynamic loading.

Dynamic compilers. The KVM has been replaced by Sun's CLDC HotSpot, which compiles hot spot methods at runtime [START_REF]The CLDC HotSpot implementation virtual machine[END_REF]. There is little information on its implementation. Armed E-Bunny [START_REF] Debbabi | Armed E-Bunny: a selective dynamic compiler for embedded java virtual machine targeting ARM processors[END_REF] and Dalvik VM [CB10] -the execution engine for Google's Android platform -also use a mix between interpretation and adaptive compilation. Microsoft's Compact Framework targets high-end embedded systems, and is based on the CLR which only uses dynamic compilation [WSW + 02]. As the generated code is placed in RAM, a technique called code pitching consists of removing a subset of this code when there is a lack of memory.

Ahead-of-time compilers. Sun's CLDC HotSpot and Microsoft's CLR can also support ahead-of-time compilation. However, the optimizations proposed in this paper are not directly applicable in their case, as they must support dynamic loading. JamaicaVM uses ahead-of-time compilation, except for dynamically loaded code which is interpreted [START_REF] Siebert | Bringing the full power of Java technology to embedded realtime applications[END_REF]. Similarly, Excelsior JET uses ahead-of-time compilation and dynamic compilation for the code which is dynamically loaded [MLG + 02]. Excelsior JET also proposes a global optimization mode where RTA and dead code elimination are used. Similar implementations. Type analysis and coloring are also implemented in FLEX [START_REF] Ananian | Data size optimizations for Java programs[END_REF], which includes various optimizations for Java programs, and FijiVM, an ahead-of-time compiler for Java which generates C code and uses 0-CFA rather than RTA [START_REF] Pizlo | Real time Java on resourceconstrained platforms with Fiji VM[END_REF]. However, coloring is only used for interface methods. Our work is different in that language-specific features such as array covariance are considered in the type analysis (see Section 3.2). Moreover, we implement all virtual methods in the same table using coloring, and use static references to fill holes.

Other implementations. Proprietary implementations such as Aonix's Perc Pico [Aon] and I2ST's MicroJVM [Mic] claim to execute Java with the same efficiency as optimized C code. It would be interesting to have more details on these implementations, as there is little information available.

Conclusion and Future Work

This paper describes the global techniques that we use in our Msil-to-C static compiler, which targets low-end embedded systems. The type analysis that we use is an extension of RTA [START_REF] Bacon | Fast and Effective Optimization of Statically Typed Object-Oriented Languages[END_REF] which takes into account array covariance, generics and delegates. It is used jointly with an intraprocedural control flow analysis. Runtime structures are computed using the coloring technique [START_REF] Ducournau | Coloring, a versatile technique for implementing objectoriented languages[END_REF]. Our coloring implementation takes advantage of the information generated by RTA. Indeed, runtime structures contain only necessary data such as polymorphic methods and type IDs for subtype test targets.

Our experimental results show a noticeable reduction of the programs under the CWA, therefore it confirms that global compilation is an appropriate strategy for implementing object-oriented languages on embedded systems. A significant amount of the code size can be removed, and most virtual calls can be replaced with static calls. Moreover, array covariance has almost no overhead and delegate calls can be as efficient as static calls in some circumstances. Array store check elimination should be considered for Java programs as well.

The coloring implementation technique offers the efficiency of the single subtyping implementation. The drawback of this technique being the insertion of empty entries in the method tables, it can be attenuated by replacing these entries with some static fields when possible. Since interfaces cannot introduce fields, there are no empty entries in the object layouts. Therefore coloring is an appropriate implementation technique for .Net and Java as multiple subtyping concerns only interfaces.

Future Work

Further work will implement generics by taking advantage of the CWA. There are two common implementation schemes for generics; one consists of specializing the code among the instantiations of a generic class (heterogeneous, like in C++) whereas the other is based on type erasure and prevents performing operations that depend on the runtime type (homogeneous, as in Java) [START_REF] Odersky | Pizza into Java: Translating theory into practice[END_REF]. In the CLR, generics are implemented using a mixed scheme which tries to combine the benefits of both implementations [START_REF] Kennedy | Design and implementation of generics for the .NET Common Language Runtime[END_REF]. So far, our extended RTA takes generics into account in order to make the call graph complete. It remains to exploit the results of the type analysis in order to determine which generic instances must be compiled, and according to which implementation scheme.

We will also optimize null checks, range checks, and implement exception handling. In order to add multithread support, we may use FreeRTOS [Fre] as our runtime does not include any operating system yet. We will also investigate an efficient garbage collection scheme that satisfies real-time constraints.

We chose RTA as a type analysis algorithm because it gives very good results at low cost. An interprocedural control flow analysis like CFA might however give better results, especially for delegates, and will be considered for implementation [START_REF] Shivers | Control-Flow Analysis of Higher-Order Languages -or-Taming Lambda[END_REF].

Roland Ducournau is Professor of Computer Science at the University of Montpellier. In the late 80s, while with Sema Group, he designed and developed the YAFOOL language, based on frames and prototypes and dedicated to knowledge based systems. His research topic focuses on class specialization and inheritance, especially multiple inheritance. His recent work is dedicated to the design and assessment of scalable constant-time techniques for implementing object-oriented languages. Contact him at roland. ducournau@lirmm.fr, or visit http://www.lirmm.fr/~ducour.

  a unit of code, and arrows indicate compilation processes. In this example, a program written in two modules respectively in C# and Visual Basic is compiled using our compilation scheme. The third MSIL box represents a library which is referenced by the program.
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  The figure at the left shows a hierarchy of classes, which are represented by boxes. Solid arrows represent class inheritance. The figure at the right shows the associated method tables, where boxes represent the group of methods introduced by each type.
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  ) compares the entire program with what is actually loaded. The difference results from the use of libraries in .Net, which contain more classes than necessary for one single program. The small numbers of loaded interfaces and super-interfaces per type (Figure 10(b)) means that most classes do not implement interfaces.
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  Algorithm 3: Subtype test elimination Data: obj the tested object and target the target type Result: unsafe if test is unsafe, otherwise true or false canBeTrue, canBeFalse ← false; foreach subClass ∈ StaticType(obj).concreteSubClasses do if subClass ∈ target.concreteSubClasses then

	if canBeFalse then
	return unsafe;
	end
	canBeTrue ← true;
	else
	if canBeTrue then
	return unsafe;
	end
	canBeFalse ← true;
	end
	end
	return canBeTrue;

  5 -Representation of two chained delegates Extended algorithm. Algorithm 6 describes an extension of the base RTA (see Algorithm 1) which takes into account delegates. Methods which are wrapped into delegates are marked as alive (SetAlive) and wrapped (isWrapped). The action associated with class instantiations is extended. If the instantiated class introduces a local method which is associated with a wrapped global method, the local method is also marked as wrapped (isWrapped).

	Algorithm 6: Extension of RTA for delegates	
	end	
	end	
	end	
	case ldftn meth	// ldftn
	localMeth ← LocalMethod(meth);	
	localMeth.SetAlive();	
	localMeth.isWrapped ← true;	
	case ldvirtftn obj.meth	// ldvirtftn
	type ← StaticType(obj);	
	globalMeth ← GlobalMethod(meth, type);	
	globalMeth.isAlive ← true;	
	globalMeth.isWrapped ← true;	
	foreach subClass ∈ type.concreteSubClasses do	
	localMeth ← subClass.Dispatch(globalMeth);	
	localMeth.SetAlive();	
	localMeth.isWrapped ← true;	
	end	
	Delegate representation. A delegate can be represented by a class which owns
	three fields (Figure	

case new class // instantiation if ¬ class.isConcrete then ... // same as the base algorithm foreach globalMeth ∈ class.knownMethods when globalMeth.isAlive do localMeth ← class.Dispatch(globalMeth); ... // same as the base algorithm if globalMeth.isWrapped then localMeth.isWrapped ← true;

  Algorithm 7: Check if delegate call can be direct Data: delegate the class introducing Invoke, and wrappedMeths the set of wrapped methods Result: localMeth the method to call directly, or null if the call is indirect

	localMeth ← null;
	foreach wrappedMeth ∈ wrappedMeths do
	if delegate.Matches(wrappedMeth) then
	if localMeth = null then
	localMeth ← wrappedMeth;
	else
	return null;
	end
	end
	end
	return localMeth;

  The code sequences are expressed in the intuitive pseudo-code proposed by[START_REF] Driesen | Efficient Polymorphic Calls[END_REF]. The diagram depicts the corresponding object representation. Pointers and pointed values are in roman type with solid lines, and offsets are italicized with dotted lines. Each mechanism relies on a single invariant offset.

	// field access		
	load [object + #fieldOffset], value		
		typeOffset	typeId	method
	// virtual call load [object + #table], table	table		method table
	load [table + #methodOffset], method			methodOffset
	call method		fieldOffset
	// subtype test	object		object layout
	load [object + #table], table load [table + #typeOffset], typeId		value
	comp typeId, #targetId		
	bne #fail		
	// succeed		

  Class and interface loadingEach subtable corresponds to a specific kind of type (class or interface). For each subtable, the first column shows the number of types in the whole hierarchy (program and libraries), whereas the second column shows the number of types loaded in our compiler according to RTA. Instantiated classes and average number of supertypes The first subtable shows the number of instantiated types. The second subtable shows the average number of supertypes per type (direct and indirect).

	number of	classes program loaded	red.	interfaces program loaded	red.
	Clock	408	201	51%	16	11	31%
	ServiceClient	493	263	47%	24	14	42%
	Compiler	5361	1657	69%	451	204	55%
	Gateway	13653	2797	79%	1019	276	72%
	(a) number of	instantiated classes arrays	supertypes classes interfaces	
	Clock		93	21	2.3	0.2	
	ServiceClient	145	20	1.9	0.2	
	Compiler	841	164	3.7	1.6	
	Gateway		1369	305	3.4	1.4	
	(b)						

  Dead field eliminationEach subtable corresponds to a specific kind of field (instance or static). For each subtable, the first column shows the number of fields in the loaded types whereas the second column shows the number of live fields.

		number of	instance fields loaded live	red.	static fields loaded live	red.
		Clock		434	316	27%		630	83	87%
		ServiceClient		596	488	18%		649	80	88%
		Compiler	4936 3066	38%	7489	918	88%
		Gateway	11670 7600	35%	15271 1878	88%
	(a) number of non-virtual methods			global	virtual methods	local
		loaded	live	red.	loaded	live	red.	loaded	live	red.
	Clock	1105	513	54%		272	79	71%	353	114	68%
	ServiceClient	1310	737	44%		358	121	66%	542	173	68%
	Compiler	14546	6869	53%		4032 1047	74%	7640 2331	69%
	Gateway	28815 15001	48%		7200 1974	73%	14070 4772	61%
			(b) Dead method elimination	

  Method callsEach subtable describes a specific kind of method call (static or virtual). For virtual calls, the first column shows the number of virtual calls in the live bytecode whereas the second shows the number of polymorphic calls. Monomorphic calls can be implemented as static calls. Subtype tests Each subtable describes a specific kind of subtype test (explicit or due to array covariance). For each subtable, the first column shows the total number of subtype tests whereas the second column shows the number of unsafe tests. Safe tests can be removed from the program. Object layouts This table describes the number of entries in the object layouts (one layout per non-abstract class). For each subtable, the first column considers the loaded program, whereas the second column shows the number of entries which are actually needed, i.e., live fields of concrete classes. Method tables This table describes the number of entries in the method tables. For each subtable, the first column considers the loaded program, whereas the second column shows the number of entries which are actually needed, i.e. live polymorphic methods and unsafe subtype test targets.

	number of		methods loaded colored	red.		types loaded colored	red.
	Clock ServiceClient number of 272 358		static 14 calls 13	virtual calls 223 all 95% poly. 96% 297	red.	37 42	84% 86%
	Compiler	Clock	4032		1317 320	187 92%	36 2025	81% 516	75%
	Gateway	ServiceClient 7200	3014 631	602 91%	78 3378	87% 1016	70%
		Compiler		33940 (a) Colored entities 8812 3445	61%
		Gateway		83592	18037 8269	54%
	explicit subtype tests Each subtable respectively describes the number of global methods and types which need an entry in the array store checks method tables. They respectively correspond to methods called from polymorphic call sites, and unsafe subtype test targets. number of methods type IDs holes static refs Clock 363 38 2 35 ServiceClient 543 39 2 41 (a) number of all unsafe red. all unsafe red. Compiler 8585 2761 1000 492
	Clock Gateway	81	80 17213	1% 5045		29 4170	0	100% 1186
	ServiceClient	84 (b) Entries in method tables 82 2% 199	0	100%
	Compiler	2294	2200	4%		2161	79	96%
	Gateway		5254	5009	5%		4176	100	98%
			(b) Figure 13 -Invocation sites
	number of entries	total loaded needed		red.	average loaded needed
	Clock				785	455	42%	3.8	4.3
	ServiceClient			745	579	22%	3.1	3.8
	Compiler				9278	6019	35%	5.2	6.3
	Gateway				18665	10751	42%	5.4	6.3
	total loaded needed (a) number of entries		red.	average loaded needed
	Clock				1969	403	80%	9.6	4.3
	ServiceClient			2283	584	74%	9.4	4.0
	Compiler				39310	12346	67%	22.4	13.7
	Gateway				74915	26428	65%	21.8	19.3
			(b) Figure 14 -Runtime structures

In .Net, the System.Reflection namespace provides classes to introspect the program at runtime, and execute programs via predefined metaobjects.

.Net and Java allow a method to be introduced by several interfaces which may be implemented by the same class. In this situation, we consider that they represent different global methods, therefore the method table of this class may have different entries filled by the same method address.

The property concreteSubClasses associates a given static type to the set of its potential dynamic types.

However, methods do not need to match the delegate's signature exactly. The return type may be covariant and parameter types may be contravariant.
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