
HAL Id: lirmm-00490989
https://hal-lirmm.ccsd.cnrs.fr/lirmm-00490989

Submitted on 25 Apr 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Efficient Compilation of .NET Programs for Embedded
Systems

Olivier Sallenave, Roland Ducournau

To cite this version:
Olivier Sallenave, Roland Ducournau. Efficient Compilation of .NET Programs for Embedded Sys-
tems. ECOOP 2010 - Workshop on the Implementation, Compilation, Optimization of Object-
Oriented Languages, Programs and Systems @ICOOOLPS’10, Jun 2010, Maribor, Slovenia. pp.3:1-
3:8, �10.1145/1925801.1925804�. �lirmm-00490989�

https://hal-lirmm.ccsd.cnrs.fr/lirmm-00490989
https://hal.archives-ouvertes.fr

Efficient Compilation of .NET
Programs for Embedded Systems

Olivier Sallenaveab Roland Ducournaub

a. Cortus S.A., Montpellier, France
http://www.cortus.com

b. LIRMM — CNRS and Université Montpellier 2, France
http://www.lirmm.fr

Abstract Compiling under the closed-world assumption (CWA) has been
shown to be an appropriate way for implementing object-oriented lan-
guages such as Java on low-end embedded systems. In this paper, we ex-
plore the implications of using whole program optimizations such as Rapid
Type Analysis (RTA) and coloring on programs targeting the .Net infras-
tructure. We extended RTA so that it takes into account .Net specific
features such as (i) array covariance, a language feature also supported
in Java, (ii) generics, whose specifications in .Net impacts type analysis
and (iii) delegates, which encapsulate methods within objects. We also
use an intraprocedural control flow analysis in addition to RTA . We eval-
uated the optimizations that we implemented on programs written in C#.
Preliminary results show a noticeable reduction of the code size, class hi-
erarchy and polymorphism of the programs we optimize. Array covariance
is safe in almost all cases, and some delegate calls can be implemented as
direct calls.

Keywords array covariance, closed-world assumption, delegate, late bind-
ing, subtype test, type analysis

1 Introduction

High-end embedded systems such as mobile phones have widely adopted object-
oriented languages like Java. Object-oriented programming offers code reuse through
inheritance and more reliable designs, which improves the productivity in software
development. As the complexity of embedded systems is increasing, it has become
important to reduce the length of their development cycles. But low-end embedded
systems such as SIM cards and sensors are still programmed in C and assembly —
the use of object-oriented languages generates an overhead at runtime, which is hard
to reconcile with the limited resources of these systems.

http://www.cortus.com
http://www.lirmm.fr

We aim at reducing the overhead of .Net for low-end embedded systems. We do
not consider high-end embedded systems such as tablet computers or mobile phones,
which have a large amount of external memory available. For the systems we are
considering, all the code memory is integrated on the chip, therefore the cost of a
chip is almost directly proportional to the code space. Also the power consumption is
higher if the memory is bigger. As a result, we must focus on both runtime efficiency
and memory consumption.

There are several sources of overhead associated with Java and .Net — namely
dynamic compilation, garbage collection, object mechanisms1 and the increase in code
size due to methods that are never invoked in the libraries. Static compilation resolves
the first issue, and we do not consider garbage collection in this paper. To address
the last two issues, whole program optimizations such as type analysis and coloring
have been commonly used. Type analysis tries to resolve the behavior of object
mechanisms at compile-time and identifies some uncallable methods. Coloring can
be used to efficiently implement multiple subtyping of interfaces. These techniques
require to know the whole program to compile, which means they are not directly
compatible with dynamic loading. They require the closed-world assumption (CWA),
which ensures that what is known to be true at compile-time will remain true —
i.e., the program is entirely known and cannot change at runtime. Most efficient
compilation schemes are based on that assumption [DMP09], though current Java
and .Net runtime systems rely on adaptive compilation in order to support dynamic
loading [AFG+04].

We explore the implications of using RTA and coloring to implement .Net on
low-end embedded systems. We extended RTA so that it takes into account some
.Net specific features:

• array covariance, a language feature also supported in Java which generates
some subtype tests at runtime (also called array store checks),

• generics, whose specifications in .Net allow the programmer to instantiate open
generic types (new T), which brings alive all generic instances of T,

• delegates, which encapsulate methods within objects (only in .Net). Invoking
a delegate generally results in one or many indirect calls.

In particular, we target systems based on the Cortus APS3 processor family, which
is specifically designed for the embedded world. These 32-bit processors feature a tiny
silicon footprint (the same size as an 8-bit Intel 8051), low power consumption, high
code density and multi-core configuration [KM10].

This article is structured as follows. Section 2 is an overview of the compiler and
runtime. Section 3 presents the type analysis algorithm and the global optimizations
we implement. Section 4 explains how we lay down runtime structures. Section 5
presents the results we obtained optimizing a selection of programs that target the
.Net platform. The last sections describe related work, conclusion and prospects.

2 Compiler Overview

This section briefly presents our overall implementation of the Common Language
Infrastructure [MR04].

1We employ the term object mechanism to designate mechanisms that depend on the dynamic
type of a receiver, e.g., virtual call or subtype test.

·

C# MSIL

MSIL

MSIL

C
Machine

code

global compilation

Visual
Basic

Each box represents a unit of code, and arrows indicate compilation processes. In this example, a program
written in two modules respectively in C# and Visual Basic is compiled using our compilation scheme.
The third MSIL box represents a library which is referenced by the program.

Figure 1 – Compilation scheme

2.1 Compilation Scheme

Compilation schemes describe the transformation process from the source code to
an executable. The scheme used in .Net and Java is particular in that it includes
two steps. First, source-level languages like C# are compiled to a processor-agnostic
intermediate language (which is called Msil in the case of .Net). This intermediate
language is then executed by the platform in either a compiled or interpreted manner.
The first step involves compilers and linkers dedicated to specific languages to make
them compatible with the platform, while the second enables the execution of the
intermediate language for a specific architecture. We are concerned with the latter as
it is the one that supports object-oriented features. In the case of .Net, this step is
specified by the Common Language Infrastructure standard.

Well-known implementations such as CLR [MM00] and Mono [Mon] are based on
a virtual machine architecture in order to support dynamic loading, and generally
involve adaptive compilation [AFG+04]. We chose to disable dynamic loading, which
allows us to implement global optimizations [Duc11b]. This choice may seem restric-
tive, however most firmwares do not require such a feature. Indeed, firmware updates
consist in directly replacing the code in memory.

Our global compiler computes a conservative approximation of the behavior of
the program using a type analysis algorithm. Its final implementation will support all
.Net language features, except dynamic loading and introspection2. Indeed, it is not
possible to detect the set of instantiated classes at compile-time when introspection is
enabled. All of the other features are implemented at the moment, except genericity
and exception handling. However, generics are supported in the type analysis so that
we can analyze programs using them.

Compilation is performed ahead-of-time so that there is no negative impact on
runtime. The compiler produces C code from the Msil bytecode which is then com-
piled by the gcc port for Cortus APS3 (Figure 1). Compiling through C has been
shown to be a viable strategy to implement Java on embedded systems [VB04] and
allows us to focus on eliminating the overhead of object-oriented languages.

2In .Net, the System.Reflection namespace provides classes to introspect the program at run-
time, and execute programs via predefined metaobjects.

4 · Olivier Sallenave, Roland Ducournau

2.2 Optimizations

Type analysis. Type analysis is a well-known optimization that works under the
CWA, and Rapid Type Analysis (RTA) is the most commonly used algorithm [Bac97].
It constructs a call graph of the program, which allows us to identify the methods
which are uncallable and remove it. It also approximates the dynamic types of the
expressions in the program. Some virtual calls may be monomorphic (see Section 3.1),
therefore they can be replaced with static calls. Moreover, some subtype tests may be
solved at compile-time. The type analysis that we implemented is based on RTA and
takes into account some .Net specific features such as array covariance and delegates
(see Section 3).

Coloring. Coloring is an implementation technique for object mechanisms which
extends the single subtyping implementation to multiple subtyping. This technique
initially proposed by [DMSV89] has been proven to be efficient and well-suited in a
global compilation framework [Duc11a]. We use this technique to compute our run-
time structures. As well, we use the information generated by type analysis to remove
some entries in these structures. Therefore method tables only contain polymorphic
methods and type IDs for unsolved subtype test targets (see Section 4).

2.3 Garbage Collection and Libraries

Garbage collection is currently implemented using TinyGC [Tin], a mark-and-sweep
garbage collector which provides a subset of the Boehm GC API [BW88]. This paper
does not focuses on the efficiency of garbage collection. It will be considered in the
future, as it has a significant impact on the runtime efficiency of the compiled program.
Indeed, it would be preferable to use a precise GC rather than a conservative one, in
order to reduce the memory overhead. Also, the use of a generational GC scheme has
been shown to be well-suited for languages such as Java and C#, which create many
short lived objects. An incremental GC scheme is also needed, as most embedded
systems must satisfy real-time constraints.

For the low-level libraries, we implemented a significant subset of the .Net core
class library and peripheral drivers for UART and GPIO. It has been possible to write
this code entirely in C#. In the Cortus APS3 architecture, peripherals are mapped
into memory, therefore it is possible to access them using the unsafe keyword, which
allows C# programmers to use pointers. Similarly to C++, unsafe C# code may
cause errors due to pointers such as memory leaks, therefore we only use it when
necessary. As well, we implemented some interrupt handlers using static methods.
At startup, trap vectors are initialized with the addresses of these methods.

3 Type Analysis

This section presents our type analysis which is based on Rapid Type Analysis [Bac97],
a well-known algorithm, with optimizations which are specific to .Net. Various im-
plementation issues are also discussed.

3.1 Rapid Type Analysis

Due to their dynamic nature, object mechanisms such as virtual call and subtype
testing produce a substantial overhead at runtime. Given the information available

Efficient Compilation of .NET Programs for Embedded Systems · 5

Type

hasTypeId: Boolean

Class

isConcrete: Boolean

Dispatch(GlobalMethod): LocalMethod

Interface

GlobalMethod

isAlive: Boolean

LocalMethod

isAlive: Boolean
code: List<Instruction>

1

*

*

*

1

1

*

*

definedMethods

knownMethodsintroducedMethods

implementations

SetConcrete(): Void

superTypes*

*

*

*

concreteSubClasses

Figure 2 – Metamodel of types and methods

in a closed world, type analysis tries to approximate their behavior at compile-time.
Typically, when a method is invoked, its implementation is determined by the dy-
namic type of the receiver. This type can be statically approximated with a precision
dependent on the kind of analysis chosen. Similarly, some subtype tests can be re-
solved at compile-time as we can also approximate the actual type of the tested object.
Our algorithm is based on RTA (Rapid Type Analysis) which computes two sets for
instantiated classes and live methods [Bac97]. The approximation of each static type
is the set of its instantiated subclasses. RTA mostly tries to resolve virtual calls,
though it can be used to eliminate some subtype tests as well. The algorithm starts
from the program entry point and constructs a call graph for the program. When a
method call is reached, possible implementations for the method are deduced from
the class hierarchy and the set of instantiated classes. They are thereby considered
alive (i.e., callable) and their code is analyzed. Similarly, it is possible to know which
fields are alive (i.e., accessed in the live code).

Metamodel. Unlike the original RTA, our representation of classes, fields and
methods is based on a metamodel that removes multiple inheritance ambiguities which
may occur with .Net interfaces [DP11]. It separates the identity of methods from
their implementations. We use the terms global method to designate the former and
local method for the latter (Figure 2). For instance, a method that is defined in a class
and redefined in a subclass is represented by a single global method associated with
two local methods. Each global method is introduced by a single class or interface3.

Figure 2 shows a partial view of our metamodel. This partial view is restricted
to types and methods, therefore it does not include fields. Both global and local
methods have a flag which indicates whether they are alive. We can consider that
live global methods may need an entry in the method tables, while live local methods

3.Net and Java allow a method to be introduced by several interfaces which may be implemented
by the same class. In this situation, we consider that they represent different global methods,
therefore the method table of this class may have different entries filled by the same method address.

6 · Olivier Sallenave, Roland Ducournau

contain the live code. Fields also have a flag which indicates their liveness. Another
flag shows if a given class is concrete, i.e., instantiated at least once in the live code.
In the algorithm, this flag has to be set to true (all boolean flags are set to false
by default in the metamodel) using the SetConcrete method, which propagates the
instantiated class to the concreteSubClasses4 of its supertypes. Dispatch returns
the implementation for a given global method that a class knows. In addition, we add
a flag so that we can recognize subtype test targets: since we use the Cohen technique
extension to multiple subtyping [VHK97], this allows us to reduce the number of types
which will need a unique identifier at runtime (see Section 4.1).

Algorithm 1: The base algorithm (RTA)
Data: main, the entry point of the program
Functions:
StaticType(obj) returns the static type associated to the expression obj.
GlobalMethod(meth, type) returns the global method associated to meth that type knows.
LocalMethod(meth) returns the local method associated to meth.

queue ← { LocalMethod(main) };
while queue 6= ∅ do

current ← queue.Dequeue();
foreach instr ∈ current.code do // parse current’s code

switch instr do
1 case new class // instantiation

if ¬ class.isConcrete then
class.SetConcrete(); // propagate to supertypes
foreach globalMeth ∈ class.knownMethods
when globalMeth.isAlive do

class.Dispatch(globalMeth).SetAlive();
end

end
2 case obj isa type // subtype test

type.hasTypeId ← true;
case obj.field // field access

field.isAlive ← true;
3 case meth() // static call

LocalMethod(meth).SetAlive();
4 case obj.meth() // virtual call

type ← StaticType(obj);
globalMeth ← GlobalMethod(meth, type);
globalMeth.isAlive ← true;
foreach subClass ∈ type.concreteSubClasses do

subClass.Dispatch(globalMeth).SetAlive();
end

endsw
endsw

end
end

Base algorithm. RTA starts from the entry point. It analyzes the code of reachable
methods and executes certain actions associated with specific expressions — namely
class instantiations, subtype tests, field accesses, static calls and virtual calls (see
Algorithm 1). SetAlive marks a local method as alive and enqueues it if it has not
been previously analyzed.

4The property concreteSubClasses associates a given static type to the set of its potential dy-
namic types.

Efficient Compilation of .NET Programs for Embedded Systems · 7

• Class instantiations cause the class to be marked as concrete and add the class to
the concreteSubClasses of its supertypes (SetConcrete). If the class defines
a local method which is associated with a live global method, it is marked as
alive and enqueued (SetAlive).

• Subtype tests cause the target type to be marked as subtype test target (hasTypeId).

• Field accesses cause the field to be marked as alive (isAlive).

• Static calls cause the callee to be marked as alive and enqueue it (SetAlive).

• Virtual calls cause the set of dispatched local methods to be computed (Dispatch).
Each method of this set is marked as alive and enqueued (SetAlive). If it is a
virtual call, the associated global method is marked as alive too (isAlive).

Monomorphic call detection. An expression is said to be monomorphic when
its value at runtime will always be of the same dynamic type. When the receiver is
monomorphic, a virtual call always invoke the same method. Here, we use monomor-
phic in a wider meaning, that is when a virtual call always invoke the same method
(even when the receiver is not monomorphic). The call graph resulting from RTA
shows for each call site the set of local methods that can actually be invoked. When
this set is reduced to a singleton, the call is monomorphic and can be implemented
as a static call. Moreover, inlining can be performed when it does not increase code
size, but we leave the decision to gcc.

Algorithm 2: Monomorphic call detection
Data: globalMeth the callee and type the receiver’s static type
Result: localMeth the dispatched method, or null if call is not monomorphic

localMeth ← null;
foreach subClass ∈ type.concreteSubClasses do

if localMeth = null then
localMeth ← subClass.Dispatch(globalMeth);

else if localMeth 6= subClass.Dispatch(globalMeth) then
return null;

end
end
return localMeth;

Algorithm 2 describes a procedure which detects whether a given virtual call is
monomorphic or not. Given the informations generated by Algorithm 1, if there is
only one local method which can be dispatched, the call is considered monomorphic
and can be implemented as a static call.

Dead code elimination. As a result of RTA, we know which methods are dead.
Under the closed-world assumption, their code can be eliminated, which can be quite
effective for programs that use large frameworks such as .Net or Java. Besides,
reducing code size is a major concern of the embedded world. Global methods and
fields that are dead do not need to be compiled. They can be eliminated from method
tables and object layouts respectively. As well, live global methods that are never
called in a polymorphic manner do not need an entry in the method tables, and
abstract classes do not need such table at runtime.

8 · Olivier Sallenave, Roland Ducournau

Subtype test elimination. Subtype tests allow runtime checking of whether an
object is typed by a specified type (called the target type) or not. This is typically
needed for downcasts and for array assignments, which are unsafe in .Net and Java
as covariant type overriding is allowed (see Section 3.2). We associate subtype check
sites to the set of types that the tested object can take at execution. When all these
types are subtypes of the target, the test is guaranteed to return true and can be
removed. Conversely, when no subtype is contained within the set, we are guaranteed
that the test returns false and we can replace it by the appropriate code (i.e., throw or
ldnull). Moreover, the programmer can be warned at compile-time, which enhances
software reliability.

Algorithm 3: Subtype test elimination
Data: obj the tested object and target the target type
Result: unsafe if test is unsafe, otherwise true or false

canBeTrue, canBeFalse ← false;
foreach subClass ∈ StaticType(obj).concreteSubClasses do

if subClass ∈ target.concreteSubClasses then
if canBeFalse then

return unsafe;
end
canBeTrue ← true;

else
if canBeTrue then

return unsafe;
end
canBeFalse ← true;

end
end
return canBeTrue;

Algorithm 3 describes a procedure which detects whether a given subtype test can
be resolved at compile-time or not. Given the informations generated by Algorithm
1, for each concrete type of the tested object, the test must always return the same
result in order to be resolved at compile-time.

3.2 Array Covariance

Array covariance means that if class B is a subtype of A, it implies that B[] is a
subtype of A[]. Assignments to elements of arrays are thus generally unsafe, as an
array statically typed by A[] can actually be an instance of B[], and a subtype test
must be performed to ensure that the type of the assigned value is an instance of B.

Metamodel. Figure 3 shows how arrays are represented in our metamodel. When
an array typed by A[] is instantiated, i.e., when the analysis reaches a new A[] expres-
sion, we invoke SetElementType on the instance of the metamodel which represents
its element type, that is A. In a similar way to SetConcrete, this propagates A to the
elementSubTypes of its supertypes. This allows the approximation of the dynamic
type of an array given its static type.

Extended algorithm. Algorithm 4 adds a new action to perform in the base algo-
rithm of RTA (see Algorithm 1). This action is associated with array instantiations,
and marks the element type of the array (SetElementType).

Efficient Compilation of .NET Programs for Embedded Systems · 9

Type

Interface

superTypes*

*

Array

SetElementType(): Void

Class elementType

1

1

*

*

elementSubTypes

Figure 3 – Array support in metamodel

Algorithm 4: Extension of RTA for arrays
case new array // array instantiation

array.elementType.SetElementType(); // propagate to supertypes

Array store check elimination. Subtype test elimination does not apply directly
here as we do not know the target type at compile-time (i.e., the element type of the
array). We approximate it the following way: the element type of an array statically
typed by A[] can be of any subtype X of A when X[] is marked as concrete. As both
target and source have their types approximated, many combinations are possible,
which reduces the chances of having all tests return the same result. However, if
the array type is specific, this technique can eliminate many tests produced by array
covariance. Algorithm 5 is similar to Algorithm 3. Given the informations generated
by Algorithm 1 and 4, it detects whether the subtype test associated to an array
access can be resolved at compile-time or not.

Algorithm 5: Array store check elimination
Data: obj the assigned object and array the static type of the assigned array
Result: unsafe if test is unsafe, otherwise true of false

canBeTrue, canBeFalse ← false;
foreach subClass ∈ StaticType(obj).concreteSubClasses do

foreach eltType ∈ array.elementType.elementSubTypes do
if subClass ∈ eltType.concreteSubClasses then

if canBeFalse then
return unsafe;

end
canBeTrue ← true;

else
if canBeTrue then

return unsafe;
end
canBeFalse ← true;

end
end

end
return canBeTrue;

10 · Olivier Sallenave, Roland Ducournau

Matches(LocalMethod): Boolean

Type

Interface

GlobalMethod

isWrapped: Boolean

LocalMethod

isWrapped: Boolean

1

*

* *1

1

*

*

definedMethods
knownMethodsintroducedMethods

implementations

superTypes*

*

*

*

matchingMethods

Class

Delegate

isChained: Boolean

Figure 4 – Delegate support in metamodel

3.3 Generics

In .Net, generics are supported at the bytecode level, contrarily to Java which uses
type erasure. Expressions involving run-time types such as new T are allowed, which
must be considered when analyzing the bytecode. We compute the set of generic in-
stances for each open generic type (a.k.a. formal type) in the program, as for arrays.
When expressions such as new T are encountered, RTA executes the appropriate ac-
tion for each generic instance of the open generic type. For new T, generic instances of
T are marked as concrete (see Algorithm 1, lines 1 to 2) and their default constructor
are marked alive (see Algorithm 1, lines 3 to 4). As a result, the call graph of the
analyzed program is complete.

3.4 Delegates

Delegates allow programmers to encapsulate methods within objects, and they are
typically used to define callback methods. A delegate is typed by a class which in-
herits System.Delegate and introduces a method named Invoke, which allows the
wrapped method to be called with parameters of the right types. When a method is
wrapped into a delegate, its signature must match the signature of Invoke5. More-
over, a delegate may be chained with other delegates of the same type, in which case
calling Invoke implies several method calls with the same parameters (but different
receivers).

Metamodel. Figure 4 shows how delegates are represented in our metamodel. Both
global and local methods have a flag which indicates whether they are wrapped in
delegates. For each delegate class, Matches checks if a given method matches the
signature of the Invoke method.

5However, methods do not need to match the delegate’s signature exactly. The return type may
be covariant and parameter types may be contravariant.

Efficient Compilation of .NET Programs for Embedded Systems · 11

methPtr nextobj

(i) (ii) (iii) (i) (ii) (iii)

Figure 5 – Representation of two chained delegates

Extended algorithm. Algorithm 6 describes an extension of the base RTA (see
Algorithm 1) which takes into account delegates. Methods which are wrapped into
delegates are marked as alive (SetAlive) and wrapped (isWrapped). The action
associated with class instantiations is extended. If the instantiated class introduces
a local method which is associated with a wrapped global method, the local method
is also marked as wrapped (isWrapped).

Algorithm 6: Extension of RTA for delegates
case new class // instantiation

if ¬ class.isConcrete then
... // same as the base algorithm
foreach globalMeth ∈ class.knownMethods
when globalMeth.isAlive do

localMeth ← class.Dispatch(globalMeth);
... // same as the base algorithm
if globalMeth.isWrapped then

localMeth.isWrapped ← true;
end

end
end

case ldftn meth // ldftn
localMeth ← LocalMethod(meth);
localMeth.SetAlive();
localMeth.isWrapped ← true;

case ldvirtftn obj.meth // ldvirtftn
type ← StaticType(obj);
globalMeth ← GlobalMethod(meth, type);
globalMeth.isAlive ← true;
globalMeth.isWrapped ← true;
foreach subClass ∈ type.concreteSubClasses do

localMeth ← subClass.Dispatch(globalMeth);
localMeth.SetAlive();
localMeth.isWrapped ← true;

end

Delegate representation. A delegate can be represented by a class which owns
three fields (Figure 5): (i) a reference to the method which is wrapped into the
delegate; (ii) a reference to the this argument to pass to the wrapped method (null
if method is static); (iii) a reference to the next delegate in the chain to invoke (if
any).

Delegate instantiation. A delegate is instantiated by passing (i) and (ii) to the
constructor of its class. (ii) is computed using the bytecode instruction ldftn or
ldvirtftn. Both load the method address, statically for the former. The latter is
equivalent to a virtual call, except the method is not actually called. In other words,
it is equivalent to Dispatch in the metamodel (Figure 2), and the method address is

12 · Olivier Sallenave, Roland Ducournau

accessed via a method table. It is possible to optimize these virtual dispatches in the
same way we optimized virtual calls in the base algorithm (see Section 3.1). When
the set of local methods that can actually be dispatched is reduced to a singleton, the
address of the method can be directly accessed.

Chained delegates. It is possible to chain two delegates of the same type. This
is done using the static method Combine of System.Delegate. Its returned value is
typed by System.Delegate, therefore the compiler generates a cast to the appropriate
delegate type. As a result, given a delegate class, we can determine at compile-
time whether its instances may be chained (which allows the field isChained to be
initialized in Figure 4). If not, we can remove the next pointer of its instances.
Invoking a chained delegate causes to invoke each delegate in the chain. When the
return type of this delegate is not void, it is the return value of the last delegate in
the chain which is returned.

Delegate invocation. A delegate is invoked calling the Invoke method of its class.
This method is annotated with the keyword runtime, which means it is implemented
in the virtual machine. Therefore, we have to generate the appropriate code for this
method. Given RV the return type of the delegate signature, the following code works
for all classes of delegates:

RV Invoke(...)
{

RV retval;

// check if method is static
if (obj == null)

retval = (*methPtr)(...); // indirect call
else

retval = (*methPtr)(obj, ...); // indirect call

// check if delegate is chained
if (next != null)

next.Invoke(...); // call next delegate in chain
else

return retval; // last delegate in chain
}

Delegate optimization. The above code is generated for the general case. How-
ever, given a specific delegate class, it is possible to generate more efficient code.
For this purpose, we maintain a set of wrapped methods. This is done the following
way: methods whose addresses are accessed using ldftn or ldvirtftn are considered
wrapped. For each delegate class, wrapped methods that match the signature of In-
voke may be called through this class of delegates. If all these methods are non-static,
we can remove the first check. If they are all static, we can remove the obj field too.
If there is only a single method that may be called, we can replace the indirect call
by a direct call and remove the methPtr field. Moreover, the second check can be
removed for classes of delegates which are never chained (see above).

Algorithm 7 describes a procedure which detects at compile-time whether a del-
egate invocation can be implemented as a direct call or not. Given the informations
generated by Algorithm 1 and 6, if only one local method is both wrapped and matches
the delegate’s signature, the delegate call is monomorphic.

Efficient Compilation of .NET Programs for Embedded Systems · 13

Algorithm 7: Check if delegate call can be direct
Data: delegate the class introducing Invoke, and wrappedMeths the set of wrapped methods
Result: localMeth the method to call directly, or null if the call is indirect

localMeth ← null;
foreach wrappedMeth ∈ wrappedMeths do

if delegate.Matches(wrappedMeth) then
if localMeth = null then

localMeth ← wrappedMeth;
else

return null;
end

end
end
return localMeth;

Inlining. Under some circumstances, the code of the Invokemethod may be inlined.
We let gcc choose whether to inline or not. For classes of delegates where Invoke
consists in a single direct call, it is possible to replace calls to Invoke with a direct
call to the wrapped method. In this case, the delegate class and its instances can be
removed from the program (i.e., code, instantiations and invocations) if the delegate
fields are never accessed in the live code. If the wrapped method is non-static, the
delegate instance can be replaced in the stack with the obj field.

3.5 Analysis Details

Static types and evaluation stack. In the C# code, static types are annotations
of names. As the .Net virtual machine is stack-based, when we analyze the bytecode,
we have to track the types on the stack in order to retrieve the static types of all
operands. This is done by implementing the verification algorithm described in the
Common Language Infrastructure standard [MR04]. However, we are using it for
type propagation purposes, not bytecode verification, since we make the assumption
that the high-level compiler generates correct bytecode.

Intraprocedural control flow analysis. In addition to RTA, we use an intrapro-
cedural control flow analysis. It propagates the concrete types induced by literals and
instantiations (new) in the context of a single method. We use this information when
we construct the call graph of the program, which reduces its size. As a result, our
type analysis is more precise than RTA only.

Black boxes. Some keywords (e.g., internalcall, runtime and native) specify
that a method is directly implemented in the virtual machine. This is typically used
by low-level methods in a system library, which are not portable. As a result, some
code is located in the virtual machine itself. There is an issue in the case where we do
not have access to this code. For example, performing type analysis on programs that
target a proprietary implementation such as CLR does not permit us to have complete
knowledge of the code, which is a requirement for the optimizations we implement.
This is however a problem in our preliminary study, not the final implementation, as
we will have our own libraries and therefore full access to the code when the compiler
will be operational. In the preliminary study, internal methods can be considered
as black boxes as we do not have access to their implementation and we are only

14 · Olivier Sallenave, Roland Ducournau

// field access
load [object + #fieldOffset], value

// virtual call
load [object + #table], table
load [table + #methodOffset], method
call method

// subtype test
load [object + #table], table
load [table + #typeOffset], typeId
comp typeId, #targetId
bne #fail
// succeed

object layout

method table

object

table

value

typeId method

fieldOffset

typeOffset

methodOffset

The code sequences are expressed in the intuitive pseudo-code proposed by [Dri01]. The diagram depicts
the corresponding object representation. Pointers and pointed values are in roman type with solid lines,
and offsets are italicized with dotted lines. Each mechanism relies on a single invariant offset.

Figure 6 – Code sequences and object representation

concerned about their output, that is their return type. Typically, if a subclass B
of A is instantiated in a black box and returned under the static type A, B must be
considered alive, which is not assumed by our type analysis in the case where B is
never instantiated in the live code. A solution is to consider that all non-abstract
subclasses of the black box return type are instantiated. As a result, type analysis
loses in precision but remains sound. There is however a huge loss of precision when
the return type is a universal supertype such as Object or Array. In this case, we
detect the casts applied to the returned object and we consider that all non-abstract
subclasses of the cast targets are instantiated.

4 Implementation Technique

Implementation techniques determine the representation of objects, that is the data
structures that support object-oriented mechanisms — namely virtual call, subtype
test and field access. This section presents the technique that we chose, which is known
as coloring, and extends the single subtyping implementation to multiple subtyping
[Duc11a].

4.1 Single Subtyping Implementation

In statically typed languages, an object is typically implemented as a table of its fields
with a pointer to the method table which is associated with its class. The layout of
these tables depends on the implementation technique chosen. In single subtyping, the
implementation relies on reference invariance and position invariance, which means
that the code sequences generated to support object mechanisms does not depend on
the static type nor the dynamic type of the receiver (Figure 6). Object layouts and
method tables are straightforward extensions of those of its direct superclass (Figure
7). As a result, this technique is compatible with dynamic loading.

Efficient Compilation of .NET Programs for Embedded Systems · 15

A A

B A

C A

B

B

B

A

C C B

The figure at the left shows a hierarchy of classes, which are represented by boxes. Solid arrows represent
class inheritance. The figure at the right shows the associated method tables, where boxes represent the
group of methods introduced by each type.

Figure 7 – Single subtyping implementation

A

I

J

B

I I

J I

A I

J

A

B I ?

conflicting
positions

B B

The figure at the left shows a hierarchy of classes and interfaces. Solid arrows represent class inheritance,
and dashed arrows represent interface subtyping. The figure at the right shows the associated method
tables, where boxes represent the groups of methods introduced by each type.

Figure 8 – Conflicting positions

Subtype tests. Subtype testing can be implemented using the technique proposed
by [Coh91], which consists assigning both a unique ID and an invariant position in
the method table to each class. It is guaranteed that an object x is an instance of
the class A if and only if the method table of x contains the type ID of A at the
position associated with A. In our implementation, we use method tables to hold both
methods and type IDs (Figure 6). There is an ambiguity in the case where a method
is located at an address n which is also a type ID, as some subtype tests may return
true erroneously. A solution is to choose non-even values for type IDs, as addresses
are aligned. Some implementations of the Cohen technique need to check the bounds
of the table, as the position associated with a type ID may be greater than the upper
bound of the actual table that the tested object points to. This check is eliminated
in our case, as method tables are consecutive in memory and the largest one is placed
in the final position.

Array store checks. Some additional data at runtime is needed to perform array
store checks (see Section 3.2). The code sequence for this mechanism is similar to a
subtype test (Figure 6) except that #typeOffset and #targetId must be computed
at runtime. We chose to put this information directly in the array instance rather
than in its method table. Besides, when array store checks are eliminated in the type
analysis, this information can be removed.

16 · Olivier Sallenave, Roland Ducournau

A

I

J

B B

I I

J I

A I

J

B I A J

A

B

empty
entries

The figure at the right shows the associated method tables, where boxes represent the groups of methods
introduced by each type. The hole induced by the conflict between J and A is placed in the method table
of J, which is inexistent at runtime as interfaces cannot be instantiated.

Figure 9 – Coloring implementation

4.2 Coloring Implementation

Though multiple inheritance is not fully supported in .Net and Java, multiple sub-
typing is possible through special types called interfaces which can only introduce
abstract methods. In this context, fields are only introduced by classes. As a result,
the single subtyping implementation works for object layouts. In contrast, methods
can be introduced by unrelated classes or interfaces in such a way that they would
have different positions in the single subtyping implementation (Figure 8). In other
words, the position invariant cannot be ensured for methods and interface IDs. The
general idea of coloring consists in inserting empty entries in order to maintain po-
sition invariance (Figure 9). This technique works under the CWA and has the
same efficiency as single subtyping, except space cost. In this respect, the num-
ber of holes has to be minimized. Coloring can be described as the technique that
keeps single subtyping invariants at minimal space cost. It has been separately pro-
posed for the three basic mechanisms (i.e., virtual call, field access and subtype test)
[DMSV89, PW90, VHK97]. Like minimal graph coloring, the coloring problem con-
sidered here has been proven to be NP-hard in the general case, but efficient heuristics
have been proposed.

Interfaces. To some extent, it should be possible to take advantage of the abstract
nature of interfaces in order to reduce the number of holes. Like abstract classes,
interfaces are never instantiated, which means their method tables do not exist at
runtime. They are only computed so that they can be extended in the method tables
of the instantiated subclasses, which are concrete. Accordingly, holes introduced in
the abstract tables can be filled in the concrete tables. It should be advantageous
to consider this when performing coloring, as space cost may be reduced (Figure 9).
Moreover, we can consider classes that are never instantiated in the live code as
abstract too.

Unidirectional coloring. The number of holes induced by coloring can be reduced
using positive and negative offsets on the method tables. This technique is known as
bidirectional coloring [PW90]. However, the Cortus APS3 does not support negative
offsets in load instructions, therefore an additional subtraction would be needed for
some accesses in the method tables. We chose unidirectional coloring, which only uses
positive offsets.

Efficient Compilation of .NET Programs for Embedded Systems · 17

4.3 Optimizations

Type analysis allowed us to remove some entries from the method tables. As explained
in Section 3, methods that are never called polymorphically do not need an entry in
the method tables. Similarly, types that are never used as subtype test targets in the
live code do not need a type ID. Therefore method tables only contain necessary data
plus some holes, which would have not been possible under the OWA. The following
optimizations concern what remains in these structures.

Filling empty entries. As the drawback of coloring is the insertion of holes in the
method tables, we propose using these empty entries to store static data. The only
constraint is to maintain subtype test integrity, which means that a hole cannot be
filled with a value that is not even. For example, static fields can be used to fill empty
entries in the method tables. We chose to fill holes with objects as they are pointers
and therefore even values. This optimization offers two advantages: (i) reduction of
the number of holes; (ii) locality in the case where a static field f can fill a hole in
the method table of a class that knows f.

Merging colors. A class named A that implements an interface I must provide
a definition for the methods that I knows. A priori, a method m introduced in I
designates the same method that the method m defined in A, therefore they share the
same entry in the method tables. However, it is possible to provide separate defini-
tions for these methods in the class definition of A. This feature is known as explicit
overriding in .Net [MR04] and explicit interface implementation in C# [JPS07]. As
a result, A must provide a definition for mI, but introduces its own method mA as side
effect. Both methods share the same implementation, except when there is an explicit
implementation of mI in A. Under the CWA, it is possible to know whether mI and
mA share the same implementation in all classes or not. If it is the case, both entries
in the method tables contain a pointer to the same code (see Section 3.1), and it is
possible to unify them. Accordingly, mI and mA share the same entry (i.e., color) in
the method tables when possible.

5 Tests and Results

In this section, we evaluate the global techniques presented in this paper on programs
written in C#.

5.1 Target Programs

We implemented the compiler described in Section 2, including our extensions for RTA
(see Section 3) and the implementation technique described in Section 4. However,
having a functional compiler is not sufficient to execute real programs on our specific
architecture, that is Cortus APS3. Indeed, the .Net framework provided by Microsoft
is not portable as it includes some internal calls to the virtual machine and operating
system (see Section 3.5). As a result, we need to provide our own framework and re-
implement the libraries referenced by the target programs. This can be quite tedious,
so we chose a different approach. Instead of measuring execution time and memory
consumption at runtime, our compiler counts the number of optimized entities (e.g.,
virtual calls, subtype tests) for a given program and shows the results with and
without optimizations.

18 · Olivier Sallenave, Roland Ducournau

number of classes interfaces
program loaded red. program loaded red.

Clock 408 201 51% 16 11 31%
ServiceClient 493 263 47% 24 14 42%
Compiler 5361 1657 69% 451 204 55%
Gateway 13653 2797 79% 1019 276 72%

(a) Class and interface loading

Each subtable corresponds to a specific kind of type (class or interface). For each subtable, the first
column shows the number of types in the whole hierarchy (program and libraries), whereas the second
column shows the number of types loaded in our compiler according to RTA.

number of instantiated supertypes
classes arrays classes interfaces

Clock 93 21 2.3 0.2
ServiceClient 145 20 1.9 0.2
Compiler 841 164 3.7 1.6
Gateway 1369 305 3.4 1.4
(b) Instantiated classes and average number of supertypes

The first subtable shows the number of instantiated types. The second subtable shows the average
number of supertypes per type (direct and indirect).

Figure 10 – Class hierarchy

Our target programs can be split in two categories:

• programs based on the .Net Micro Framework, a smaller version of the .Net
Framework dedicated to embedded systems,

• programs based on the standard .Net Framework — these programs are bigger
and use consequent libraries.

Experiments showed that results are homogeneous for a given framework, therefore
we only show them for two programs per framework. In the first category, Clock and
ServiceClient are samples of the .Net Micro Framework SDK. In the second category,
Compiler is our implementation of the Common Language Infrastructure and Gateway
is a wireless access point based on the standard .Net Framework.

5.2 Results

As explained in Section 3.5, our current solution for the black box issue reduces the
efficiency of type analysis, which has to be considered before discussing measurements.
Also, the way of writing programs (use of polymorphism for example) and the size of
the framework classes may have a significant impact on results (see Section 5.3).

Class hierarchy. Our compiler loads the model of classes which are instantiated
in the live code and the model of their supertypes (direct or indirect). Figure 10(a)
compares the entire program with what is actually loaded. The difference results
from the use of libraries in .Net, which contain more classes than necessary for one
single program. The small numbers of loaded interfaces and super-interfaces per type
(Figure 10(b)) means that most classes do not implement interfaces.

Efficient Compilation of .NET Programs for Embedded Systems · 19

number of instance fields static fields
loaded live red. loaded live red.

Clock 434 316 27% 630 83 87%
ServiceClient 596 488 18% 649 80 88%
Compiler 4936 3066 38% 7489 918 88%
Gateway 11670 7600 35% 15271 1878 88%

(a) Dead field elimination

Each subtable corresponds to a specific kind of field (instance or static). For each subtable, the first
column shows the number of fields in the loaded types whereas the second column shows the number of
live fields.

number of non-virtual methods virtual methods
global local

loaded live red. loaded live red. loaded live red.
Clock 1105 513 54% 272 79 71% 353 114 68%
ServiceClient 1310 737 44% 358 121 66% 542 173 68%
Compiler 14546 6869 53% 4032 1047 74% 7640 2331 69%
Gateway 28815 15001 48% 7200 1974 73% 14070 4772 61%

(b) Dead method elimination

Each subtable corresponds to a specific kind of method (non-virtual or virtual). Non-virtual methods
include both instance and static methods. For virtual methods, we distinct global and local methods
according to the definition given in Section 3.1. For each subtable, the first column shows the number of
methods in the loaded types, whereas the second column shows the number of live methods.

bytecode loaded live red.
Clock 41KB 25KB 39%
ServiceClient 78KB 85KB 26%
Compiler 1142KB 629KB 45%
Gateway 2519KB 1481KB 41%

(c) Bytecode size reduction

For each program, the first column shows the size of bytecode in the loaded types whereas the second
column shows the size of live bytecode. Sizes are given in kilobytes.

Figure 11 – Dead code elimination

Dead code elimination. Figures 11(a) and 11(b) show that only a few fields and
methods in the loaded types are alive. As explained in Section 3, dead members can
be eliminated as we do not need to compile them. Also, code size reduces as the
number of methods decreases (Figure 11(c)).

Delegates. Figure 12 shows that only a few delegate classes are actually both in-
stantiated and invoked. Delegates that are instantiated but not invoked can be re-
moved from the program. Conversely, when a delegate which is not instantiated is
invoked, its value is null. In this respect, we do not need to compile the call site.
Moreover, we can warn the programmer that a null check should be inserted prior to
the call site. Figure 12 also shows that we can remove the first check and the chain
check in most Invoke methods (see Section 3.4). In some cases, we can replace the
indirect call by a direct one. When all three optimizations are possible, we can remove
the delegate class from the program and replace the call to Invoke with a direct call
to the wrapped method.

20 · Olivier Sallenave, Roland Ducournau

number of delegate classes Invoke methods
loaded live red. opt1 opt2 opt3 all opts

Clock 21 14 33% 10 9 2 1
ServiceClient 11 7 36% 6 4 1 0
Compiler 60 31 48% 24 29 10 10
Gateway 170 88 48% 37 52 15 9

The first subtable shows the number of delegate classes for a given program. The first column shows
those which are loaded in our compiler whereas the second column shows those which are alive, i.e.
instantiated and invoked. The second subtable considers the optimizations that can be applied to the
Invoke methods of these live delegate classes. opt1 stands for eliminating the first check in Invoke. opt2
stands for eliminating the chain check, whereas opt3 stands for replacing the indirect call by a direct call.
The last column shows the number of Invoke methods for which we can apply all three optimizations.

Figure 12 – Delegates

Invocation sites. When object mechanisms are resolved at compile-time, they can
be more efficiently implemented, as indirections in the method tables can be avoided.
Figure 13(a) shows that most method calls are static. This is due to the fact that C#
considers methods as non-virtual by default, unless the virtual keyword is explicitly
used. Therefore, polymorphism is less used than in languages like Java. Concerning
virtual calls, most of them are actually monomorphic and can be implemented as
static calls. Figure 13(b) shows that most subtype checks due to array covariance can
be eliminated, in contrast to those due to downcasts. This can be explained by the
fact that only a few arrays are instantiated in the live code (Figure 10(b)).

Runtime structures. Figures 14(a) and 14(b) show that runtime structures are
accordingly small, as object layouts and method tables respectively contain live fields
and live polymorphic methods plus a few type IDs.

Coloring. Figure 15(a) shows which entities in the program need to be colored.
It shows that method tables only contain a few type IDs (those for types which are
targets of one or many unsafe subtype tests) and a few methods (those which are
called in a polymorphic manner). Figure 15(b) shows that there is a small proportion
of holes in the method tables. Moreover, a significant part of them can be filled using
static references.

5.3 Discussion

The results show a noticeable reduction of the programs. Half of the types can be
ignored at compile-time and about half of the methods do not need to be compiled,
which reduces the code size.

Frameworks. The frameworks used by the target programs have a significant influ-
ence on the results. In fact, these frameworks are generally bigger than the programs
themselves. To some extent, running RTA on two programs which use the same
framework can be viewed as analyzing the same code but starting from two differ-
ent entry points. Monomorphic call detection is less efficient for big programs which
target the standard .Net framework. Using an interprocedural control flow analysis
might reduce the gap resulting from the program size.

Efficient Compilation of .NET Programs for Embedded Systems · 21

number of static virtual calls
calls all poly. red.

Clock 1317 187 36 81%
ServiceClient 3014 602 78 87%
Compiler 33940 8812 3445 61%
Gateway 83592 18037 8269 54%

(a) Method calls

Each subtable describes a specific kind of method call (static or virtual). For virtual calls, the first
column shows the number of virtual calls in the live bytecode whereas the second shows the number of
polymorphic calls. Monomorphic calls can be implemented as static calls.

number of explicit subtype tests array store checks
all unsafe red. all unsafe red.

Clock 81 80 1% 29 0 100%
ServiceClient 84 82 2% 199 0 100%
Compiler 2294 2200 4% 2161 79 96%
Gateway 5254 5009 5% 4176 100 98%

(b) Subtype tests

Each subtable describes a specific kind of subtype test (explicit or due to array covariance). For each
subtable, the first column shows the total number of subtype tests whereas the second column shows the
number of unsafe tests. Safe tests can be removed from the program.

Figure 13 – Invocation sites

number of entries total average
loaded needed red. loaded needed

Clock 785 455 42% 3.8 4.3
ServiceClient 745 579 22% 3.1 3.8
Compiler 9278 6019 35% 5.2 6.3
Gateway 18665 10751 42% 5.4 6.3

(a) Object layouts

This table describes the number of entries in the object layouts (one layout per non-abstract class). For
each subtable, the first column considers the loaded program, whereas the second column shows the
number of entries which are actually needed, i.e., live fields of concrete classes.

number of entries total average
loaded needed red. loaded needed

Clock 1969 403 80% 9.6 4.3
ServiceClient 2283 584 74% 9.4 4.0
Compiler 39310 12346 67% 22.4 13.7
Gateway 74915 26428 65% 21.8 19.3

(b) Method tables

This table describes the number of entries in the method tables. For each subtable, the first column
considers the loaded program, whereas the second column shows the number of entries which are actually
needed, i.e. live polymorphic methods and unsafe subtype test targets.

Figure 14 – Runtime structures

22 · Olivier Sallenave, Roland Ducournau

number of methods types
loaded colored red. loaded colored red.

Clock 272 14 95% 223 37 84%
ServiceClient 358 13 96% 297 42 86%
Compiler 4032 320 92% 2025 516 75%
Gateway 7200 631 91% 3378 1016 70%

(a) Colored entities

Each subtable respectively describes the number of global methods and types which need an entry in the
method tables. They respectively correspond to methods called from polymorphic call sites, and unsafe
subtype test targets.

number of methods type IDs holes static refs
Clock 363 38 2 35
ServiceClient 543 39 2 41
Compiler 8585 2761 1000 492
Gateway 17213 5045 4170 1186

(b) Entries in method tables

For each program, the first column shows the number of method entries in the method tables. The
second column shows the number of type IDs, and the third column shows the number of holes induced
by coloring. The last column shows the number of static fields which are typed by a reference type, and
can be used to fill holes in the method tables.

Figure 15 – Coloring

Polymorphism. Using C#, only a few method calls are virtual. Of these virtual
calls, most are considered monomorphic by RTA, which means they can be imple-
mented as static calls. This brings us back to the efficiency of procedural languages
like C. We can say that the language resulting from our compilation process is less
object-oriented than the high-level language, which is C# in the case of this experi-
ment. Most method calls are static, and most array accesses do not need a subtype
test due to covariance. However, most explicit subtype tests remain.

Coloring. We find only a few holes in the method tables, which can be explained
by the fact that most classes do not implement interfaces and that the average size
of the method tables is relatively small. In the worst case, we can fill a significant
subset of these holes with static fields.

6 Related Work

This section presents related works. The first section presents some techniques which
could be considered for implementation, whereas the second section shows an overview
of existing implementations for Java and .Net that target embedded systems.

6.1 Related Techniques

Type analyses. Many type analysis algorithms exist, with their accuracy which
depends on their cost. Control Flow Analysis (CFA) is an interprocedural analysis
which gives better results than RTA, but its cost is considerably higher [Shi91]. How-
ever, scalable implementations of CFA have been proposed [Pro02]. As well, some
intermediate solutions between RTA and CFA have been explored, such as eXtended

Efficient Compilation of .NET Programs for Embedded Systems · 23

Type Analysis (XTA) [TP00]. Whereas RTA maintains a single set of concrete types
for the whole program, XTA maintains a separate set for each method and field.

Implementation techniques. Some implementations are based on binary tree dis-
patch (BTD) rather than method tables [ZCC97]. The efficiency of BTD relies on
conditional branch prediction. The Prm compiler has been used as an experimen-
tal platform to test various implementations for object-oriented languages [DMP09].
BTD and coloring were jointly tested, and their combination were shown to be the
best choice under the closed-world assumption for processors equipped with branch
prediction. However, branch prediction is not implemented in low-power processors
such as the Cortus APS3 because it increases power consumption. Moreover, BTD
tends to increase code size, which is inappropriate for small embedded systems. There-
fore we do not use this technique. However, we implement monomorphic calls with
static calls, which corresponds to a BTD of depth 0. Accordingly, our implementation
can be described as MC-BTD0-G in [DMP09].

Adaptive compilation. Popular virtual machines such as Sun’s HotSpot and Mi-
crosoft’s CLR use adaptive compilation in order to be efficient in the context of
dynamic loading [AFG+04]. The techniques they use are not applicable in our con-
text of static compilation. However, some techniques that we use could be tested
in an adaptive compilation framework. Indeed, [IKY+00] proposes to use global op-
timizations under the OWA and to use some backup code in the case where initial
hypotheses become invalidated at runtime. For instance, some virtual calls can be
devirtualized until the assumption that they are monomorphic becomes invalidated.
When it happens, the compiler performs code patching by substituting the optimized
code by the backup code.

6.2 Embedded Runtime Systems

There is a large number of runtime systems that target embedded systems, especially
for Java.

Interpreters. Sun’s KVM [KVM00] and Microsoft’s TinyCLR are based on an
interpreter — TinyCLR is the execution engine behind the .Net Micro Framework
[TM07]. Sun’s JavaCard targets low-end embedded systems such as smart cards and
converts the Java bytecode to a more compact format prior to execution [BBE+99].
It does not supports dynamic loading.

Dynamic compilers. The KVM has been replaced by Sun’s CLDC HotSpot, which
compiles hot spot methods at runtime [CLD05]. There is little information on its
implementation. Armed E-Bunny [DMT05] and Dalvik VM [CB10] — the execution
engine for Google’s Android platform — also use a mix between interpretation and
adaptive compilation. Microsoft’s Compact Framework targets high-end embedded
systems, and is based on the CLR which only uses dynamic compilation [WSW+02].
As the generated code is placed in RAM, a technique called code pitching consists of
removing a subset of this code when there is a lack of memory.

Ahead-of-time compilers. Sun’s CLDC HotSpot and Microsoft’s CLR can also
support ahead-of-time compilation. However, the optimizations proposed in this pa-
per are not directly applicable in their case, as they must support dynamic load-
ing. JamaicaVM uses ahead-of-time compilation, except for dynamically loaded code

24 · Olivier Sallenave, Roland Ducournau

which is interpreted [Sie02]. Similarly, Excelsior JET uses ahead-of-time compila-
tion and dynamic compilation for the code which is dynamically loaded [MLG+02].
Excelsior JET also proposes a global optimization mode where RTA and dead code
elimination are used.

Similar implementations. Type analysis and coloring are also implemented in
FLEX [AR03], which includes various optimizations for Java programs, and FijiVM,
an ahead-of-time compiler for Java which generates C code and uses 0-CFA rather
than RTA [PZV09]. However, coloring is only used for interface methods. Our work
is different in that language-specific features such as array covariance are considered
in the type analysis (see Section 3.2). Moreover, we implement all virtual methods in
the same table using coloring, and use static references to fill holes.

Other implementations. Proprietary implementations such as Aonix’s Perc Pico
[Aon] and I2ST’s MicroJVM [Mic] claim to execute Java with the same efficiency as
optimized C code. It would be interesting to have more details on these implementa-
tions, as there is little information available.

7 Conclusion and Future Work

This paper describes the global techniques that we use in our Msil-to-C static com-
piler, which targets low-end embedded systems. The type analysis that we use is an
extension of RTA [Bac97] which takes into account array covariance, generics and
delegates. It is used jointly with an intraprocedural control flow analysis. Runtime
structures are computed using the coloring technique [Duc11a]. Our coloring imple-
mentation takes advantage of the information generated by RTA. Indeed, runtime
structures contain only necessary data such as polymorphic methods and type IDs
for subtype test targets.

Our experimental results show a noticeable reduction of the programs under the
CWA, therefore it confirms that global compilation is an appropriate strategy for
implementing object-oriented languages on embedded systems. A significant amount
of the code size can be removed, and most virtual calls can be replaced with static
calls. Moreover, array covariance has almost no overhead and delegate calls can be as
efficient as static calls in some circumstances. Array store check elimination should
be considered for Java programs as well.

The coloring implementation technique offers the efficiency of the single subtyping
implementation. The drawback of this technique being the insertion of empty entries
in the method tables, it can be attenuated by replacing these entries with some static
fields when possible. Since interfaces cannot introduce fields, there are no empty
entries in the object layouts. Therefore coloring is an appropriate implementation
technique for .Net and Java as multiple subtyping concerns only interfaces.

Efficient Compilation of .NET Programs for Embedded Systems · 25

Future Work

Further work will implement generics by taking advantage of the CWA. There are two
common implementation schemes for generics; one consists of specializing the code
among the instantiations of a generic class (heterogeneous, like in C++) whereas
the other is based on type erasure and prevents performing operations that depend
on the runtime type (homogeneous, as in Java) [OW97]. In the CLR, generics are
implemented using a mixed scheme which tries to combine the benefits of both imple-
mentations [KS01]. So far, our extended RTA takes generics into account in order to
make the call graph complete. It remains to exploit the results of the type analysis in
order to determine which generic instances must be compiled, and according to which
implementation scheme.

We will also optimize null checks, range checks, and implement exception handling.
In order to add multithread support, we may use FreeRTOS [Fre] as our runtime does
not include any operating system yet. We will also investigate an efficient garbage
collection scheme that satisfies real-time constraints.

We chose RTA as a type analysis algorithm because it gives very good results at
low cost. An interprocedural control flow analysis like CFA might however give better
results, especially for delegates, and will be considered for implementation [Shi91].

References

[AFG+04] M. Arnold, S. J. Fink, D. Grove, M. Hind, and P. F. Sweeney. A survey
of adaptive optimization in virtual machines. In Proc. of the IEEE,
93(2), 2005. Special issue on program generation, optimization, and
adaptation, 2004. doi:10.1109/JPROC.2004.840305.

[Aon] http://www.atego.com/products/aonix-perc-pico/.

[AR03] C. S. Ananian and M. C. Rinard. Data size optimizations for Java pro-
grams. In LCTES ’03, pages 59–68. ACM, 2003. doi:10.1145/780732.
780741.

[Bac97] D. F. Bacon. Fast and Effective Optimization of Statically Typed
Object-Oriented Languages. PhD thesis, University of California, Berke-
ley, December 1997.

[BBE+99] M. Baentsch, P. Buhler, T. Eirich, F. Höring, and M. Oestreicher.
JavaCard - from hype to reality. IEEE Concurrency, pages 36–43, Oc-
tober 1999. doi:10.1109/4434.806977.

[BW88] H. J. Boehm and M. Weiser. Garbage collection in an uncooperative
environment. Softw. Pract. Exper., pages 807–820, September 1988.
doi:10.1002/spe.4380180902.

[CB10] B. Cheng and B. Buzbee. A JIT compiler for Android’s Dalvik VM. In
Google I/O ’10. Google, 2010.

[CLD05] The CLDC HotSpot implementation virtual machine. White paper. Sun
Microsystems, Inc. 2005.

[Coh91] N. H. Cohen. Type-extension type tests can be performed in constant
time. ACM Trans. Program. Lang. Syst., pages 626–629, 1991. doi:
10.1145/115372.115297.

http://dx.doi.org/10.1109/JPROC.2004.840305
http://www.atego.com/products/aonix-perc-pico/
http://dx.doi.org/10.1145/780732.780741
http://dx.doi.org/10.1145/780732.780741
http://dx.doi.org/10.1109/4434.806977
http://dx.doi.org/10.1002/spe.4380180902
http://dx.doi.org/10.1145/115372.115297
http://dx.doi.org/10.1145/115372.115297

26 · Olivier Sallenave, Roland Ducournau

[DMP09] R. Ducournau, F. Morandat, and J. Privat. Empirical assessment of
object-oriented implementations with multiple inheritance and static
typing. In OOPSLA ’09, pages 41–60. ACM, 2009. doi:10.1145/
1640089.1640093.

[DMSV89] R. Dixon, T. McKee, P. Schweizer, and M. Vaughan. A fast method
dispatcher for compiled languages with multiple inheritance. In OOP-
SLA ’89, pages 211–214. ACM, 1989. doi:10.1145/74878.74900.

[DMT05] M. Debbabi, A. Mourad, and N. Tawbi. Armed E-Bunny: a selective
dynamic compiler for embedded java virtual machine targeting ARM
processors. In SAC ’05, pages 874–878. ACM, 2005. doi:10.1145/
1066677.1066876.

[DP11] R. Ducournau and J. Privat. Metamodeling semantics of multi-
ple inheritance. Sci. Comput. Program., pages 555–586, July 2011.
doi:10.1016/j.scico.2010.10.006.

[Dri01] K. Driesen. Efficient Polymorphic Calls. Kluwer Academic Publishers,
2001.

[Duc11a] R. Ducournau. Coloring, a versatile technique for implementing object-
oriented languages. Softw., Pract. Exper., pages 627–659, May 2011.
doi:10.1002/spe.1022.

[Duc11b] R. Ducournau. Implementing statically typed object-oriented program-
ming languages. ACM Comput. Surv., pages 18:1–18:48, April 2011.
doi:10.1145/1922649.1922655.

[Fre] http://www.freertos.org/.
[IKY+00] K. Ishizaki, M. Kawahito, T. Yasue, H. Komatsu, and T. Nakatani. A

study of devirtualization techniques for a Java just-in-time compiler.
In OOPSLA ’00, pages 294–310. ACM, 2000. doi:10.1145/354222.
353191.

[JPS07] J. Jagger, N. Perry, and P. Sestoft. C# Annotated Standard. Morgan
Kaufmann, 2007.

[KM10] D. Kerr-Munslow. Advantages and pitfalls of moving from an 8 bit
system to 32 bit architectures. In ERTS2 ’10, 2010.

[KS01] A. Kennedy and D. Syme. Design and implementation of generics for
the .NET Common Language Runtime. In PLDI ’01, pages 1–12. ACM,
2001. doi:10.1145/378795.378797.

[KVM00] J2ME building blocks for mobile device. White paper. Sun Microsys-
tems, Inc. 2000.

[Mic] http://www.is2t.com/.
[MLG+02] V. Mikheev, N. Lipsky, D. Gurchenkov, P. Pavlov, V. Sukharev,

A. Markov, S. Kuksenko, S. Fedoseev, D. Leskov, and A. Yeryomin.
Overview of Excelsior JET, a high performance alternative to Java
virtual machines. In WOSP ’02. ACM, 2002. doi:10.1145/584369.
584387.

[MM00] E. Meijer and J. Miller. Technical overview of the Common Language
Runtime. Technical report, Microsoft Research, 2000.

[Mon] http://www.mono-project.com/Mono:Runtime.

http://dx.doi.org/10.1145/1640089.1640093
http://dx.doi.org/10.1145/1640089.1640093
http://dx.doi.org/10.1145/74878.74900
http://dx.doi.org/10.1145/1066677.1066876
http://dx.doi.org/10.1145/1066677.1066876
http://dx.doi.org/10.1016/j.scico.2010.10.006
http://dx.doi.org/10.1002/spe.1022
http://dx.doi.org/10.1145/1922649.1922655
http://www.freertos.org/
http://dx.doi.org/10.1145/354222.353191
http://dx.doi.org/10.1145/354222.353191
http://dx.doi.org/10.1145/378795.378797
http://www.is2t.com/
http://dx.doi.org/10.1145/584369.584387
http://dx.doi.org/10.1145/584369.584387
http://www.mono-project.com/Mono:Runtime

Efficient Compilation of .NET Programs for Embedded Systems · 27

[MR04] J. S. Miller and S. Ragsdale. The Common Language Infrastructure
annotated standard. Addison-Wesley, 2004.

[OW97] M. Odersky and P. Wadler. Pizza into Java: Translating theory into
practice. In POPL ’97, pages 146–159. ACM, 1997. doi:10.1145/
263699.263715.

[Pro02] C. W. Probst. A Demand Driven Solver for Constraint-Based Control
Flow Analysis. PhD thesis, Universität des Saarlandes, October 2002.

[PW90] W. Pugh and G. E. Weddell. Two-directional record layout for multiple
inheritance. In PLDI ’90, pages 85–91. ACM, 1990. doi:10.1145/
93542.93556.

[PZV09] F. Pizlo, L. Ziarek, and J. Vitek. Real time Java on resource-
constrained platforms with Fiji VM. In JTRES ’09, pages 110–119.
ACM, 2009. doi:10.1145/1620405.1620421.

[Shi91] O. Shivers. Control-Flow Analysis of Higher-Order Languages -or-
Taming Lambda. PhD thesis, Carnegie Mellon University, 1991.

[Sie02] F. Siebert. Bringing the full power of Java technology to embedded
realtime applications. In MSy ’02, 2002.

[Tin] http://tinygc.sourceforge.net/.

[TM07] D. Thompson and C. Miller. Introducing the .NET Micro Framework.
Technical report, Microsoft Corporation, 2007.

[TP00] F. Tip and J. Palsberg. Scalable propagation-based call graph con-
struction algorithms. In OOPSLA ’00, pages 281–293. ACM, 2000.
doi:10.1145/354222.353190.

[VB04] A. Varma and S. S. Bhattacharyya. Java-through-C compilation: An
enabling technology for Java in embedded systems. In DATE ’04. IEEE
Computer Society, 2004.

[VHK97] J. Vitek, R. N. Horspool, and A. Krall. Efficient type inclusion tests. In
OOPSLA ’97, pages 142–157, 1997. doi:10.1145/263700.263730.

[WSW+02] A. Wigley, M. Sutton, S. Wheelwright, R. Burbidge, and R. Mcloud.
Microsoft .NET Compact Framework: Core Reference. Microsoft Press,
2002.

[ZCC97] O. Zendra, D. Colnet, and S. Collin. Efficient dynamic dispatch without
virtual function tables: The SmallEiffel compiler. In OOPSLA ’97,
pages 125–141. ACM, 1997. doi:10.1145/263698.263728.

About the authors

Olivier Sallenave is Research and Development Engineer at Cor-
tus, a company which designs and licenses ultra low-power 32-bit
processor cores. He is currently completing his PhD thesis at
the University of Montpellier. This thesis focuses on the efficient
implementation of object-oriented languages for low-end embed-
ded systems. Contact him at olivier.sallenave@cortus.com,
or visit http://www.lirmm.fr/~sallenave.

http://dx.doi.org/10.1145/263699.263715
http://dx.doi.org/10.1145/263699.263715
http://dx.doi.org/10.1145/93542.93556
http://dx.doi.org/10.1145/93542.93556
http://dx.doi.org/10.1145/1620405.1620421
http://tinygc.sourceforge.net/
http://dx.doi.org/10.1145/354222.353190
http://dx.doi.org/10.1145/263700.263730
http://dx.doi.org/10.1145/263698.263728
mailto:olivier.sallenave@cortus.com
http://www.lirmm.fr/~sallenave

28 · Olivier Sallenave, Roland Ducournau

Roland Ducournau is Professor of Computer Science at the Uni-
versity of Montpellier. In the late 80s, while with Sema Group, he
designed and developed the YAFOOL language, based on frames
and prototypes and dedicated to knowledge based systems. His
research topic focuses on class specialization and inheritance, es-
pecially multiple inheritance. His recent work is dedicated to the
design and assessment of scalable constant-time techniques for im-
plementing object-oriented languages. Contact him at roland.
ducournau@lirmm.fr, or visit http://www.lirmm.fr/~ducour.

Acknowledgments We would like to thank: David Kerr-Munslow for his careful
reviews, Floréal Morandat, who helped to put together the first version of this paper
(thanks to his LATEX skills), and the reviewers for their time and suggestions. This
material is based upon work partially supported by the Association Nationale de la
Recherche et de la Technologie.

View publication stats

mailto:roland.ducournau@lirmm.fr
mailto:roland.ducournau@lirmm.fr
http://www.lirmm.fr/~ducour
https://www.researchgate.net/publication/260107282

	Introduction
	Compiler Overview
	Compilation Scheme
	Optimizations
	Garbage Collection and Libraries

	Type Analysis
	Rapid Type Analysis
	Array Covariance
	Generics
	Delegates
	Analysis Details

	Implementation Technique
	Single Subtyping Implementation
	Coloring Implementation
	Optimizations

	Tests and Results
	Target Programs
	Results
	Discussion

	Related Work
	Related Techniques
	Embedded Runtime Systems

	Conclusion and Future Work
	Bibliography
	About the authors

