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Abstract— In this paper, a behavioral model that includes the 
influence of etching defects on the sensitivity of MEMS 
convective accelerometers is presented. Starting from an existing 
behavioral model, new physically-based expressions have been 
derived to introduce etching defects in the simulation of thermal 
conduction in the sensor. In addition, a semi-empirical model has 
been introduced for thermal convection. Finally, a very good 
agreement is obtained between the behavioral model and FEM 
simulations. 
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I.  INTRODUCTION 

In the field of Micro-Electro Mechanical Systems (MEMS) 
manufacturing, alternate test methods based on electrical test 
stimuli raise interest to facilitate testing and to reduce its cost 
[1]. Fault injection model can be used for evaluating test 
coverage [2] or for optimizing test stimuli [3]. In the case of 
mechanically actuated structures, high-level models allowing 
the injection of manufacturing defects are increasingly accurate 
for representative studies [4]. However, such models do not 
exist for convective sensors. Presently, evaluation of the 
influence of geometrical and material properties in convective 
accelerometers is only possible through Finite Element 
Modeling (FEM) [5,6], which is very time consuming and 
deals with a limited number of physical domains. The 
development of more compact models would ease the study of 
alternate test methods and more generally manufacturability 
issues. 

In a previous study on MEMS convective accelerometers, 
we have shown that most of the parametric faults that affect the 
device specifications can be detected with electrical test 
measurements [5]. In particular, easily detected faults concern 
variations of both electrical and thermal resistances, and lateral 
geometrical parameters. Faults that escape to electrical tests are 
related to the convective behavior of the device. However, the 
correlations that may exist between the conductive and 
convective parameters were not taken into account in the model 
used for fault injection. In addition, the influence of the cavity 
depth was not included in this model, although it has been 
shown that this parameter significantly affects the device 
sensitivity [8]. It is therefore the objective of this paper to 
develop a high-level behavioral model to inject faults related to 
the cavity depth and to represent the potential correlations 
between conductive and convective phenomenon. 

In this paper, we first briefly describe the accelerometer 
together with its previously published high-level behavioral 

model. In the second part, we detail the model development 
considering the main blocks of the model (heater source, fluid 
conduction, fluid convection and transduction). Finally, in the 
last part, we validate this new semi-empirical model with FEM 
simulations for different set of parameters and we illustrate 
benefits of such a model for alternate testing of MEMS 
convective sensors.  

II. DEVICE UNDER TEST 

A. Device Description 

The device under test is a convective accelerometer 
obtained by Front-Side Bulk Micromachining (FSBM) of a 
CMOS die fabricated in a 0.8 µm technology from Austria 
Microsystems® (Fig.1). Main lateral dimensions are the half-
width of both the heater beam (r1) and the cavity (r2), and the 
distance between the heater and one detector (d). The three thin 
bridges are composed of the CMOS process back-end layers 
(oxide, polysilicon, aluminum, and nitride). In particular, 
polysilicon is used to implement resistors, for both heating (RH) 
and temperature sensing (RD1, RD2). The heater RH is powered 
with an electrical voltage (UH) to create a temperature gradient 
in the bottom (i.e. etched silicon) and top (i.e. package) 
cavities: the temperature is then maximum at the heater 
location and minimum at the cavities boundaries. 

 
Figure 1.  SEM picture of the prototype and geometrical parameters: 

r1=20µm, r2=350µm, d=175µm, h1=390µm 

In absence of acceleration, the temperature detectors (RD1, 
RD2) are located on identical temperature gradients for 
symmetry reasons. Under acceleration along the AA’-axis, the 
cavity temperature distribution deforms due to free convection 
and detectors may measure the differential temperature. Indeed, 
polysilicon resistivity exhibit high temperature dependence 
(Temperature Coefficient of Resistance, TCR=9×10-4/°C) and 
the thermal signal is easily converted into a voltage by means 
of a Wheatstone bridge. This voltage is then amplified by an 
instrumentation amplifier. For more details on sensor 
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manufacturing and characterization, please refer to previous 
works from some of the authors [6,9]. 

B. Device model 

For system-level and electronic interface circuit design, a 
behavioral model of the sensor was developed and 
implemented in both Matlab/Simulink® and Cadence® [10]. 
This model (Fig.2) is composed of four main blocks. First, the 
heater temperature (TH) is calculated from the external power 
supply (UH). Then, regarding fluid conduction, an analytical 
expression based on solving the heat conduction in a 
cylindrical geometry approximation is used to compute the 
common mode temperature (TCM) of the detectors. This 
expression involves lateral sensor dimensions (r1, r2 and d). 
Regarding fluid convection, the differential temperature (TD) 
resulting from an acceleration is calculated with an empirical 
expression that involves fitting parameters. Finally, regarding 
transduction, both detector resistances (RDi) are deduced from 
their TCR. This model was calibrated with silicon data and 
FEM simulation.  

 
Figure 2.  Block diagram of the sensor model 

 

C. Manufacturing defects and fault modeling  

Process scattering will affect some model parameters. For 
instance, the nominal value of the electrical resistances depends 
on polysilicon doping, thickness, width and length (a typical 3 
dispersion of about 20% is usually considered). In the same 
way, the resistance temperature coefficient TCR will be 
affected by doping concentrations. All these variations are 
global variations that affect every block of the model in the 
same way. In addition, process scattering will also introduces 
local variations that should be modeled as mismatch errors.  

Regarding lateral dimensions, these are parameters that are 
rather well-controlled in the manufacturing process. They are 
nevertheless subject to variations, but with a low dispersion. 
Note that the distance d between the heater and the detector 
bridge is set by the mask and therefore should not change from 
one fabricated device to another.  

Note that contrary to lateral dimensions, the cavity depth is 
a parameter that is very difficult to control. Indeed, it is very 
sensitive to the etching process (etching solution composition, 
etching time and etching solution movements). As the optical 
control is not an easy task during etching, the cavity depth is 
likely to be reduced if ideal conditions are not met during the 
etching step.  

III. BEHAVIORAL MODELING 

This section details the development of the behavioral 
model that includes the influence of the cavity depth, 
considering the 4 main blocks of the initial model, i.e. the 
heater source, fluid conduction, fluid convection and 
transduction. 

A. Heater source 

During normal operation, the heating bridge is powered 
with a dc voltage (UH) in order to set an initial temperature 
distribution in the cavity. The average heater temperature (TH) 
is directly linked to the electrical power (PH) with a linear 
relationship: 
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where TA is the ambient temperature, RH is the electrical 
resistance of the beam and RthH is the thermal resistance of the 
heater beam. 

The temperature dependence of the electrical resistance is 
taken into account in the power dissipation with: 

  H0HH TTCR1RR   

where TCR is the temperature coefficient given by the foundry 
and RH0 is the nominal value of the heater resistance at a 
reference temperature T0. This electrical resistance is obviously 
independent of the cavity depth but just depends on the size of 
the heating resistance and on the material properties. 

In contrast, the thermal resistance of the beam depends not 
only on the beam dimension but also on its geometrical 
environment. In order to evaluate the influence of the cavity 
depth on this parameter, we have performed a number of FEM 
simulations for different values of the cavity depth between 
35µm and 490µm and different values of the heater 
temperature from 350K to 600K, and we have recorded the 
heat transfer coefficient hH (in W.m-2.K-1). This coefficient 
writes: 


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where S=54.7×103 µm²  is the exchange surface between the 
beam and the fluid given by 2(2r1+e)L, with L the beam length 
and e the beam thickness.  

Figure 3 reports the heat transfer coefficient (hH) with 
respect to the cavity depth h1 for different heater temperatures 
TH. The higher the heater temperature is, the higher the heat 



transfer coefficient. This phenomenon is only due to the 
variation of air thermal conductivity which increases with 
temperature. 

 
Figure 3.  Heat transfer coefficient vs. cavity depth  

for different heater temperatures 

This dependence must be included in the model in order to 
enable the simulation of the device under different biasing 
conditions. Two behaviors can be distinguished: 

 for high values of the cavity depth, the heat transfer 
coefficient is constant, 

 for low values of the cavity depth, the heat transfer 
coefficient increases when the cavity depth decreases. 

This can be explained by the shape of the hot bubble 
created by the heater, as illustrated in figure 4. When the cavity 
depth is high enough, the lateral silicon walls of the cavity limit 
the size of the hot bubble. The size of this hot bubble is 
therefore not affected by the value of the cavity depth and the 
heat transfer coefficient just depends on the heater temperature 
and lateral dimensions. In contrast, for low values of the cavity 
depth, this parameter becomes the limiting factor and the size 
of the hot bubble tends to reduce. In this case, the heat transfer 
coefficient depends on the heater temperature, the heater width 
and the distance between the heater and the bottom of the 
cavity. The transition between these two behaviors occurs 
around h1=175µm, which corresponds to half the distance 
between the heater and the lateral cavity border (r2). Note that 
this threshold does not depend on the heater temperature. 

  

 
Figure 4.  Temperature profile within cavity for two different values 

 of the cavity depth – a) h1=490µm and b) h1=75µm 

From this analysis, we have derived an analytical model for 
the heat transfer coefficient. This model relies on the 
assumption that we have a radial heat flow in a cylindrical 

geometry. Considering the expression of air conductivity from 
100K to 600K:  3

3
2

210 1)( TTTT   with 0 the air 

conductivity extrapolated at 0K, and 1, 2 and 3 the 
coefficients of thermal variation of conductivity for air. 

Integrating the Fourier law for heat conduction 
)(grad Tair  in a cylindrical geometry, we can express: 
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where R1 and R2 correspond to the radius of the cylinders 
representing the heater and the hot bubble respectively.  

Note that this equation includes the dependence with 
respect to the heater temperature TH. To include the 
dependence with respect to the cavity depth, we have then 
established the radius of the equivalent cylinder R2=f(h1), 
which would give the heat transfer coefficient obtained by 
FEM simulations (Figure 5). First, we have determined the 
different values of hH for different values of the etching cavity 
(h1). Second, we have calculated the cylinder equivalent radius 
R2 to minimize the error using equation (4) to represent the 
values of hH previously determined for each value of h1. In that 
step, we consider a cylinder equivalent radius R1=16µm for the 
heater. This value is a trade-off between a cylinder with a 
perimeter equivalent to the heater bridge perimeter and a 
cylinder that contains the heater beam.  

 
Figure 5.  Size of the equivalent cylinder representing the hot bubble 

vs. cavity depth 

Finally, we express the equivalent radius of the hot bubble 
R2 to reflect a linear relationship for low values of h1 and a 
saturation at r2=350µm for high values of h1 with a transition at 
r2/2: 



4

4
24

1

1
22

2

r
h

h
rR









  

The order of the denominator polynomial has been chosen 
for adequate transition between both regions (Figure 5).   
 

B. Fluid conduction 

The initial temperature of both detectors, i.e. the common 
mode temperature TCM, is also controlled by heat conduction in 



the air. The same assumption of a radial heat flow in a 
cylindrical geometry can therefore be used. The relationship 
between the common mode temperature TCM and the heater 
temperature TH can then be obtained by solving heat 
conduction equation at a distance d from the heater: 
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In the same way than in the previous section, we have 
determined the size of the equivalent cylinder R2’ that gives the 
best fit between the common mode temperatures TCM calculated 
with equation (6) and measured in FEM simulations. Results 
are summarized in figure 6 for various cavity depth h1.  

 
Figure 6.  Size of the equivalent cylinder that governs the common mode 

temperature vs. cavity depth 

Similarly, we observe a linear relationship for low values of 
h1 and a saturation at r2=350µm for high values of h1, with a 
transition at r2/2. However, in the linear region, the reduction of 
the size of the equivalent cylinder is less important than in the 
previous case. This is due to the fact that the common mode 
temperature is measured on a specific axis (i.e. sensitive axis) 
whereas the total heat flow is an average effect along all the 
directions and is dominated by the smaller distance.  

As a result we have to consider, for the determination of the 
common mode temperature TCM, an equivalent cylinder with a 
radius R2’ different than the one used for the determination of 
the heat transfer coefficient. The relationship between this 
radius and the cavity depth can be analytically expressed by: 
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As illustrated in fig. 6, there is a good agreement between 
this expression and values established using FEM simulations. 

C. Fluid convection 

The sensor sensitivity is proportional to the differential 
temperature between both detectors in presence of acceleration 
along the sensitive axis. This temperature variation is due to 
free convection and can be analytically solved only for very 
simple geometries. For complex geometries FEM simulations 
are mandatory to calculate the differential temperature.  

 
Figure 7.  Differential temperature (ΔTD/2) vs. cavity depth for different 

heater temperatures (solid line: model, dots: FEM) 

Figure 7 shows the differential temperature TD-TCM =ΔTD/2 
according to the cavity depth h1 and to the heater temperature 
TH. Results are given for an acceleration of 1g along the 
sensitive axis and for the nominal distance d=175m. As for 
the heat transfer coefficient and for the same reasons, the 
differential temperature (ΔTD/2) saturates for high values of h1. 
For small depths, the differential temperature is proportional to 
h1 and the transition between the two regions occurs around 
h1=150µm. For a given depth, the differential temperature is 
proportional to (TH-TA)1.8. Equation 8 gives the semi-empirical 
expression established to represent this behavior, which 
involves some fitting parameters and sensor dimensions: 

 
a)TT(

)rr)(rr(

)rd)(rd(4

10150h

h
1084.10TT 8.1

AH
1221

21

4 464
1

16
CMD 










  

where 10.84×10-6 K-1.8/g is a constant linked to the thermo-
physical properties of air and to the height of the top cavity 
(10mm for these simulations).  

Figure 7 shows a good agreement between this expression 
and FEM simulations, with a relative error that remains 
below 6%.  

D. Transduction 

The role of the detectors is to convert thermal signal 
variations into electrical resistance variations thanks to the 
temperature sensitivity of polysilicon. Using a Wheatstone 
bridge, these resistance variations can then be translated into 
voltage variations for further conditioning. The electrical 
resistance of each detector RDi is simply given by: 
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where RDi0 is the nominal value of each detector resistance at 
reference temperature T0. , and Vbiasi is the biasing voltage of 
each detector.  

Note that this expression includes self-heating of the 
detectors, and therefore involves the thermal resistance of the 
detectors. This thermal resistance RthD depends on the cavity 
depth as it is influenced by the geometrical environment. 
However because the detectors have a high resistance value of 
50k, the self-heating impact is almost negligible. 
Consequently, we have not modeled the dependence of the 
cavity depth on the detector thermal resistance.  
 

IV. VALIDATION & EXPLOITATION 

A. Model validation 

Model validation with respect to FEM simulations is based 
on numerous experiments for different values of the etching 
cavity depth. First, we have compared the calculated heater 
thermal resistance with the value determined from FEM 
simulations. Results are summarized in figure 8.a. It can be 
seen that we have a very good agreement whatever the heater 
temperature, with a relative error that remains below 2%. 

 
Figure 8.  Comparison between behavioral model and FEM simulation for the 
heater thermal resistance RthH (a) and for the common mode temperature TCM 

(b) (solid line: model, dots: FEM) 

Then, we have calculated the detectors’ common mode 
temperature and we have reported these values together with 
results from FEM simulations (Fig.8.b). Here again a good 
agreement is observed whatever the heater temperature and h1 
are, with a relative error that remains below 4%. 

 

B. Model exploitation 

Interestingly, the common mode temperature (Fig.8.b) and 
the differential temperature (Fig.7) present very similar 
behaviors. As an illustration, figure 9 plots the differential 
temperature TD/2 resulting from a 1g acceleration vs. the 
common mode temperature TCM, measured in FEM simulations 
on devices with different cavity depths ranging from 35µm up 
to 490µm. It clearly appears that, for a given heater 
temperature, both temperatures are strongly correlated. This is 
very interesting because the differential temperature TD 
results from the application of acceleration and therefore 
directly relates to the device sensitivity, while the common 
mode temperature TCM just depends on the biasing conditions 
of the structure. In other words, it means that etching defects 

that affect the device sensitivity also affect the detectors’ 
common mode temperature in a similar way. Hence, verifying 
the common mode temperature in absence of acceleration may 
be a way to verify the device sensitivity to a given acceleration. 
However, it should be underlined that this result is obtained for 
a fixed heater temperature, and for a device with all parameters 
at nominal value except the cavity depth that varies from 35µm 
to 490µm. Practically, the heater temperature TH cannot be 
imposed but only the biasing voltage of the heater beam UH, 
and the device parameters obviously exhibit some dispersions. 

 
Figure 9.  FEM simulation results: differential temperature (ΔTD/2) due to a 

1g acceleration vs. common mode temperature 

To further explore this possibility, the behavioral model 
that includes the influence of the cavity depth can be very 
helpful. Indeed it is not realistic to perform Monte-Carlo FEM 
simulations, but on the contrary the behavioral model easily 
supports Monte-Carlo simulations at system-level. In this 
objective, we have performed experiments considering the 
following dispersions on the parameters’ model: 

 A Gaussian variation with a standard deviation of 3=20% 
on the value of the electrical resistances. This variation 
corresponds to the typical uncertainty given by the foundry 
and is a global variation, i.e. it affects all resistances in the 
same amount. 

 A Gaussian variation with a standard deviation of 3=2µm 
on the value of the geometrical parameters related to 
horizontal dimensions, i.e. the heater dimension r1 and the 
distance r2 between the heater and the border of the cavity. 
Indeed lateral dimensions are parameters that are rather 
well-controlled in the manufacturing process and therefore 
exhibit a low dispersion. Note that the distance d between 
the heater and the detectors is not subject to process 
variations due to mask self-alignment. 

 A Gaussian variation with a standard deviation of 3=10% 
on TCR has been set as it is well-known that this parameter 
is quite sensitive to doping fluctuations. 

 A uniform variation on the value of the cavity depth h1 
between 35µm and 490µm, since it is the objective to 
investigate the influence of this parameter. 

Potential asymmetries have also been introduced in the model. 
In particular, a mismatch error with a standard deviation of 
3=2% has been considered for the nominal value of the 
electrical resistance of the detectors RDi0 and the value of the 
reference resistors RREFi.  

a) b) 



Simulations have been performed on 1,000 runs and we 
have first observed the dispersion on the heater temperature 
(Fig.10.a) for a fixed biasing voltage UH=2V of the heater 
resistance. It clearly appears that the influence of the cavity 
depth on the heater thermal resistance has a significant impact 
on the achieved heater temperature. By taking into account this 
dispersion, the proposed model hence permits to achieve 
realistic fast system-level simulations, which would be 
extremely time-consuming in FEM since it requires 3D 
simulations involving both solid and fluidic elements. 

 
Figure 10.  Behavioral model Monte-Carlo simulation results: dispersion on 
the heater temperature with UH=2V (a) and differential temperature (ΔTD/2) 

due to a 1g acceleration vs. common mode temperature (b) 

Figure 10.b gives the differential temperature TD/2 
resulting from a 1g acceleration vs. the common mode 
temperature TCM, for a biasing of the heater beam at 2V. These 
results confirm that, even in presence of process variations, a 
rather good correlation exists between both temperatures. It is 
worth noting that the nominal value of the cavity depth is 
h1=390µm, which corresponds to an average heater 
temperature of about 540K when the heater beam is biased at 
2V, which in turns translates into a common mode temperature 
in the range of 360K to 380K. In this region, we can observe a 
linear relationship between the common mode temperature TCM 
and the differential temperature TD/2.  

More generally, the correlation that exists between the 
common mode temperature TCM and the differential 
temperature TD offers an attractive perspective towards a low-
cost test solution to verify the device sensitivity without the 
need for applying a calibrated acceleration. Indeed, the 
detectors’ common mode temperature does not depend on the 
acceleration and is therefore a parameter that may be evaluated 
using only an electrical test setup. 

 

V. CONCLUSION 

In this paper, we have developed a behavioral model that 
includes the influence of etching defects on the sensitivity of 
MEMS convective accelerometers. Indeed, if lateral 
dimensions are rather well-controlled during the manufacturing 
process, this is not the case for the cavity depth which is very 
sensitive to the etching process conditions. Moreover, this 
parameter influences both the conductive and convective 
behavior of the structure, resulting in a significant impact on 
the sensitivity of manufactured devices.  

Based on an existing behavioral model, we have established 
new physically-based expressions for the heater thermal 
resistance (which drives the actual heater temperature for a 
given biasing voltage) and for the common mode temperature 
of detectors. A semi-empirical expression has also been 
established for the differential temperature of detectors. All 
these expressions involve not only the lateral dimensions of the 
sensors but also the cavity depth h1, the latter being the more 
likely parametric fault in an industrial process. A very good 
agreement has been found between this behavioral model and 
FEM simulations. 

Finally, the proposed model allows the realistic simulation 
of a convective accelerometer with a single electrical input, i.e. 
the biasing voltage of the heater beam. It allows evaluating 
process scatterings using behavioral models as Monte-Carlo 
simulations are achievable in a reasonable CPU time compared 
to FEM simulations. It is therefore very useful to explore 
potential correlations between different parameters. In 
particular, we have established that a correlation between the 
common mode temperature of the detectors and the differential 
temperature of the detectors exists.  

Future work involves further exploration of such 
correlations in order to define alternate test procedures able to 
verify and/or estimate sensor sensitivity. Another perspective 
concerns the refinement of the model in order to include the 
influence of the package on the behavior of the final product.   
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