N
N

N

HAL

open science

Nonlinear Identification Method Corresponding to
Muscle Property Variation in FES - Experiments in

Paraplegic Patients

Mitsuhiro Hayashibe, Mourad Benoussaad, David Guiraud, Philippe Poignet,
Charles Fattal

» To cite this version:

Mitsuhiro Hayashibe, Mourad Benoussaad, David Guiraud, Philippe Poignet, Charles Fattal. Non-
linear Identification Method Corresponding to Muscle Property Variation in FES - Experiments in
Paraplegic Patients. BioRob: Biomedical Robotics and Biomechatronics, Sep 2010, Tokyo, Japan.
pp.401-406, 10.1109/BIOROB.2010.5628018 . lirmm-00502181

HAL Id: lirmm-00502181
https://hal-lirmm.ccsd.cnrs.fr/lirmm-00502181
Submitted on 13 Jul 2010

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.


https://hal-lirmm.ccsd.cnrs.fr/lirmm-00502181
https://hal.archives-ouvertes.fr

Nonlinear Identification Method Corresponding to Muscle Property
Variation in FES - Experiments in Paraplegic Patients

Mitsuhiro Hayashibe, Mourad Benoussaad, David Guiraud, Philippe Poignet, Charles Fattal

Abstract—A model-based Functional Electrical Stimulation In order to have more physiologically oriented interpre-
(FES) would be very helpful for the adaptive movement tation in FES muscle contraction, we prefer to use phys-
synthesis of spinal-cord-injured patients. The nonlinearity of iologically detailed muscle model. However, as the above
the neuromuscular system can be captured through modeling . e . . .
and identification process. However, there are still critical 'd?,nt'f'cat'on work has been carried out using rather sim-
limitations in FES: rapid muscle fatigue and time-varying Plified muscle models, not many authors have suggested an
property. In actual FES, in order to minimize the fatigue, extensive use of physiology based models which were de-
the intermittent stimulation is adopted. In this case, fatigue sjgned also for the experimental identification. An adaptation
and recovery occur in sequence. Thus, the time-varying muscle ¢ si,ch model which has both microscopic and macrosopic

response is really difficult to be predicted for FES force control. . . - .
In this paper, we propose an identification method to identify view of muscle physiology in FES was reported in [10],[11].

unknown internal states and the maximal force parameter Physiologically detailed modeling can lead a complexity of
which are inside the nonlinear differential equation. Among parameter identification in the nonlinear muscle dynamics.
the internal parameters of muscle model, maximal force Fm \\e proposed an experimental method to identify unknown
should be mainly changed corresponding to the current muscle jarna) states and parameters from the limited information.
condition. Muscle fatigue or recovery itself is difficult to be The identificati f th i d ics in stimulated
modeled and predicted, however observing the input-output SNGEAICAtONNOTIE O mear. ynam|cs |n stimulate
information from the muscle, the adaptive estimation will be ~ Skeletal muscle was presented for in-vivo rabbit test [12].
achieved to correspond to the varying muscle response effected  The nonlinearity of the neuromuscular system can be cap-
by a fatigue or unknown metabolic factor of human system. tured through modeling and identification process. However,
This identification method itself can be expected to be applied e should remind that there are other critical limitations
for general use in rehabilitation robotics. . ] . . . .
in FES: rapid muscle fatigue and time-varing property. The
I. INTRODUCTION synchronous mode of stimulation in which all the muscle

fibers are activated simultaneously causes fatigue to occur

_ The electrical stimulation to activate paralyzed mUS_C|emore rapidly in the activated paralyzed limb. A predictive
limb system and restore functional movements for subjecigtigue modeling for FES was proposed [13] and fatigue time
with Spinal Cord Injury (SCI) is termed Functional Electri-fnction was integrated in FES muscle modeling. Due to the
cal Stimulation (FES). FES has been succeeded to restQferences in fatigability of motor units within a muscle,
functional movements such as standing up and walkinge force-stimulation intensity relationship may change with
[1], [2] and it has been applied even in an implanteqyaiigue. As stated in [14], the understanding of the force-
manner [3]. Although FES technology has already Showgtmyjation intensity relationship during fatigue is still on
its great potential and advantage of improving mobility foryoing study. Thus, numerical fatigue function can contribute
SCl or post-stroke patient, it has not yet gained widespreqq the reduction of model estimation error, however it is
clinical use due to difficulties, such as nonlinearity of thg,; enough for an accurate force estimation effected by
neuromuscular system, rapid muscle fatigu_e and inaccurar%gue_ In actual FES, in order to minimize the fatigue,
control of muscle forces [4], [5]. These issues severelyq jntermittent stimulation is adopted. In this case, fatigue
limit FES for a prolonged use. The use of mathematicalng recovery occur in sequence. The history-dependency
model would improve the FES control by using optimizety the muscle response to FES becomes significant. The
operation for individual patients. A mathematical model mayyigue in continuous stimulation is still easier to be predicted
enable to describe the relevant characteristics of the patlenlg’ging evoked EMG, however recovery level is related to the
skeletal muscle and predict the precise force against certaijpject's metabolic and electrolytic factors. Thus, the time-
sumulamon. For.the model-based _control, |dgnt|f|cat|on_ I$5arying muscle response is really difficult to be predicted
essential to realize better FES motion synthesis. In previoks; 'FEs force control. As an alternative solution. on-line
works, identification of FES-induced quadriceps dynamicgyantation can be considered. Ferrarin [15] applied adaptive
was investigated in on-line [6],(7] , off-line [8], and black- zigorithm to cope with muscle fatigue and muscle activation
box modeling [9]. input was adjusted minimizing the modeling error.
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tigue or recovery itself is difficult to be modeled and prewhereh is the maximum elongation of the myosine spring,
dicted, however observing the input-output information fromy the normalized distance between actine binding site and
the muscle, the adaptive identification would be achived tmyosine headu(y, t) is a distribution function representing
correspond to the varying muscle response effected bytlae fraction of attached cross bridges relative to the normal-
fatigue or unknown metabolic factor of human system. ized positiony. Spéc represents the velocity of the actine
This paper is organized as follows. In Sec. II, our multifilament relative to the myosine filament.andg denote the
scale physiological muscle model is described. In Sec. llfate functions of attachment and detachment respectively.
we formulate a nonlinear identification corresponding to The existence of attachment-detachment cycle is depen-
muscle property changes in FES. We verify our approacdient on calcium concentratioi’a*?] in the sarcomere as
in Sec. IV by demonstrating muscle force prediction byvell as on the relative velocity between actin and myosin.
the identification using the latest response. Three palaplegi¢hen the velocity is high, the probability for crossbridges
patients have been recruited and the cross validation sholeaking is high. Thus, the chemical inpuft), introduced
the performance when the muscle response is largely effectey Bestel [20] that modifies the ability of the cross-bridges

by muscle fatigue. to attach or not, can be defined as follows:
u(t) = M. (6)U, + (1 = 11.(¢)) U,
II. PHYSIOLOGICAL MUSCLE MODEL I.(t) = 1 during contraction, 0 else @)
The mechanical representation of our model is based on a (f+9)(y,t) =u(t) + []

macroscopic Hill configuration [16]. Hence, its macroscopi¢;, and U, are the level of chemical kinetics under con-
property includes the property of so-called Hill-type modeltraction and relaxation phases respectively. Stiffness and
However, its contraction dynamics of the contractile elemefbrce generated by a muscle sarcomere can be obtained by

is more detailed than Hill-type model and it includes als@omputing the first and second moment of the distribution
the dynamics of the microscopic muscle physiology. A@(y,t)

with-mass mechanical model was used for the experimental ] ]

identification of in-vivo rabbit skeletal muscle [12]. In hu-B- Myofiber and muscle unit scale

man subjects, accurate force measurement directly from anThe maximum available cross bridges could vary depend-

isolated muscle is not accessible, thus simple Hill-Maxwelng on the relative length of the contractile element. It is

model is used as shown in Fig. 1. In this work, quadricepknown as the force-length relationshig;(€.)). Contrary

muscle is investigated, then pennation angle was assuniedHill model, we take into account this relation at the

to be negligible. The microscopic muscle physiology irmicroscopic scale.

our model is based on the two-state cross-bridge model of Let's definek. and F.. as stiffness and force for the whole

Huxley [17] and the distribution-moment model of Zahalakcontractile element, andv the number of all MUs. The

[18]. This model was originally proposed for FES control innumber of recruited fibers is written asV using recruitment

[11], and it was also applied for EMG-force estimation inratio o.. Considering that each fiber is composed of identical

healthy subjects [19]. Here, it is summarized briefly. sarcormeres in series, finally the desired model of contractile
element is a set of differential equations as below:

ke = —(u+ |éc|) ke + akpn I (£)U. 3)
We assume that all the sarcomeres are identical and they [, = —(u + |é.|)F. + aF,,I1.(t)U, 4 keLeoée.
contract and relax simultaneously so that the relationshi
y Where k., = SoNkofi(ce)/Leos Fn = Nkohfi(ee)/2. ko

between the two scales is proportionalSlis the sarcomere 4 : ¢ .
prop (Nm~1) is the maximum stiffness obtained when all the

length andL. is the length of contractile element, we Canavailable bridaes are attached in sarcomere scale
write (S — So)/So = (Le — Leo)/Leo = €c ¢ '

A. Sarcomere scale

where Sy, L. are the ones at rest position. C. Computation of the whole dynamics

Huxley proposed that a cross-bridge between actine fil- The dgynamics of contractile element coupled with the

aments and myosine heads could exist in two biochemicglngon in series should also meet the following equation:
states, attached and detached states. He postulated that one

myosine head could attach to only one actine site. Then, the Fe = ks(Log — Leoée) 4)
Qyn_amics of the fractiom(y, t) of the attached cross bridges\yhere k, is the tendon stifiness, is the original length
is given by of musculotendinous formation andits strain. In order to
on Sy . on have one solution for two equations #f, we must verify
i oy T fly. ) [T =n(y, )] — gy, )n(y,t) (1) that: ksLeo + keLeo — F. > 0. The differential of elongation
€. can be computed with the following equation:

Tendon Contractile Element . ksLOé —+ Fcu — OlFch(t)Uc (5)
Fs. i _Fc Ec =
—MWWWse— ksLeo + keLeo — Se. Fe
< Ls —>i— Le —_—> . . s
«— L — Se. is the sign ofs.. From the conditionksL.o + kcLco —

Fig. 1. Macroscopic muscle-tendon model. F. >0, S;, can be obtained from the sign of these terms:



ksLo€ + Feu — aF,I1.(t)U.. Then we can computléC and corresponding covariance matrix is similarly augmented to a
F. with (3). The internal state vector of this system should. by L matrix. In this form, the augmented state veckdr

be set ax = [ ke F. e ] and covariance matriP¢ can be defined as in (7)(8).
~a a N _ _7 T
.II.I.IIDENTIFIC.ATION M.ETHOD %0 = Blxg] = [xI I o] @)

A. Probfabnlsnc. Inferen(?e in Dynamic State-Space M9del P = B[(x? — %9)(x? — %2)T]

The differential equations of skeletal muscle dynamics are P 0 0
straightly given in (3) and (5). The input controls of the | r 0 ®)
model are the recruitment rate and the chemical control 0 6”“ R

ng

input u. These two controls can be computed from FES input

signal. The trigger of; signal can be calculated by the timingwhere P is the state covarianc®. is the process noise

of electrical stimulation considering the time delay causedovarianceR,, is the observation noise covariance.

by calcium dynamics. For the recruitment rate, it is defined In the process update, the 2L+1 sigma points are computed
by the current amplitudd and Pulse Width (PW). In this based on a square root decomposition of the prior covariance
work, we use samd for all stimulations. Isometric knee as in (9), wherey is scaling parameter that determines the
torques at optimal knee position is measured at differesspread of the sigma-points around prior mean. The aug-
PW. o is obtained from the normalized measured torquesiented sigma point matrix is formed by the concatenation of
against maximum torque. In this case, F. ¢. are time- the state sigma point matrix, the process noise sigma point
varying states and only, is accesible by the experimental matrix, and the measurement noise sigma point matrix, such
measurementL.o ks kn, Fy, are unknown parameters. Inthat X = [(x*)T (xv)T (X")T]T. w¢ andw!™ are the

this work, we use isometric force measurement for thgigma point weights.

identification of time-varying parameter in the model to

detect the muscle property change., k. are not time-  Xi—1 = [Xi_1 Xi_+7/Pi_y X_—7/Pi_i] 9)
varying parameter.s. The;e yqlues were obtalped from tlﬁeredicted mean and covariance are computed as in (11)(12)
literature [21].k,, is not significant parameter in the case

of isometric contraction. Thusk;, is set as the unknown and predicted observation is calculated like (14).

time-varying parameters to be estimated. Xl?l w1 = (X LX) (10)
This model is a nonlinear state-space model, and state- oL

varlable_s are not measur_able. Experimental data in human % = szm et (12)

subject includes some noises. Therefore, we need a sequen- —

tial probabilistic inference that estimates the hidden states oL

of a dynamic system from a series of noisy measurements. P, = wa(xfmq — X;)(ka\kq _ g;)T (12)

When the model is highly non-linear, Extented KF may et ’ ’ '

give particularly poor performance and an easy divergence.yklki1 - h(X;ﬁk_le?—J (13)

In skeletal muscle dynamics, its state-space is dramatically oL

chapged petv_veen gontrgcuon and reIaxann_phasg. Then Vi = wa”yi,k\kq (14)

partial derivatives will be incorrect due to the discontinuity. et

Therefore, we adopted Sigma-Point Kalman Filter (SPKF o )
based on derivativeless statistical linearization. The initiai"€ Predictions are then updated with new measurements

idea was proposed by Julier [22], and well described b9y first calculating the measurement covariance and state-
Merwe [23]. SPKF uses a determir,nstic sampling techniqurgleasurement cross correlation matrices, which are then used

known as the unscented transform to pick a minimal set ¢p determine the Kalman gain. Finally, updated estimate and

sample points (called sigma points) around the mean. TheSgvariance are decided through this kalman gain as below.

sigma points are propagated through the true nonlinearity. 2L
This approach results in approximations that are accurate Py, = Z%‘C(yi,k\kq 9 irpr —952)7 (15)
to at least the second order in Taylor series expansion. In i=0

contrast, EKF results only in first order accuracy. 2L

The general Kalman framework involves estimation of the Py, = > wf (X%, 1 — X)) Vikpe—1 — ¥5)"  (16)
state of a discrete-time nonlinear dynamic system, i=0 X

Xpi1 = f(Xk,Vk), Vi = h(Xk,, nk) (6) X = Xp + Kk(yk — Y )7 Ky = kaykuk (17)

_ Py, =P, —K,Py, K| (18)
where x;, represents the internal state of the system to be
estimated andy is the only observed signal. The processThese process update and measurement update should be
noise vy, drives the dynamic system, and the observatiorecursively calculated itk = 1, ..., co until the end point of
noise is given byn,. The filter starts by augmenting the statethe measurement. For the implementation, we used efficient
vector to L dimensions, where L is the sum of dimensions isquare-root forms which propagate the square-root of the
the original state, model noise and measurement noise. Tsiate covariance directly in Cholesky factored form.



Stimulation Force output
input

or accelaration output N RPN True value
Target force_ Model-based muscle 5 Estimated state
or accelaration stimulation controller ‘ 1 A

Model parameters

State estimates

SPKF based ‘
Adaptive estimator

Fig. 2. Concept of adaptive estimation for muscle property change.

B. State and Parameter estimater

A concept of adaptive estimation for muscle property
changes is shown in Fig. 2. The future stimulation controller £
for FES would need accurate estimates of the system states 03 ! *
as well as parameters in order to robustly control the para-

; ; A ; ig. 4. Top: estimated result for state. Red dash line shows true value
Iy_zed muscle corre_spondlng to Its time-varying prope_zrty. IrEnd blue line shows estimated state in the identification. Bottom: estimated
this paper, according to this concept, we try to verify th@arameters,,. F,. was changed for each stimulation corresponding to

feasibility of SPKF based adaptive estimator to realize stateuscle property change. The changefof, could be detected accurately
and parameter estimation in nonlinear dynamics which h&8! from the muscle force in Fig. 3.
multi-scale muscle physiology.

At first, estimation test was made to check the modetye joint torques around knee were recorded in isometric
observability using noise added simulation data for ONzondition with 2K H= sam

----- True value
Estimated parameter
| | | | | |

5 25 3
Time [s]

similar intensity was generated, however internal parametgr, ., subject. During the experiments, the pulse widlth

F, was changed for each stimulation corresponding 1@, modulated to have different level of muscle response.
muscle property change. The muscle force sequence wWase applied stimulation signal and the EMGK(H > sam-
filtered through SPKF based estimator continuously anﬁ’ling frequency) were recorded througdOPAC MP100
statee. and parametelt;,, were estimated. State. was acquisition system.

successfully obtained as you can see its true value in Fig. the measured torque was converted to force scale devided
4 and The change af;, also could be detected accuratelyyy, the moment arm which was obtained from the Hawkins

only from the muscle force observation updates. equation of muscle length at different joint angles [24]

- combined with the anthropometrical estimations of the limbs

\ ..... B e tion length [25] for each subject. The recruitment curvedonas
o obtained at the begining of the experiment by modulating
o PW. In the custom of FES, once PW modulation is chosen
=l as control input, fixed frequency is applied during the course

. of stimulation. The difference of frequency changes temporal
gl ‘ \ ‘ ‘ summation in muscle contraction. Normally, we used 20Hz
Sow 1 N i ] before tetanic frequency to minimize fatigue. However, when
£ 1 we check model reproduction ability, 30Hz and 15Hz were
L_ Lv applied for tetanic contraction and unfused contraction re-
g ! - : ‘z 5 — spectively. TABLE |

1.5
Time [s]

PATIENTS CHARACTERISTICS

Fig. 3. Estimation test to check the model observability using noise Subject | Age Weight| Height | Injury | Post injury
added simulation data to detect the internal parameter changes. Red solid (years)| (Kg) (m) level (years)
line: noise added simulation force, blue dash line: estimated force by ~BP (S1) | 46 85.6 1.75 T4 14
identification. The figure in bottom shows the error covariance. LT (S2) 37 72 1.75 T6 12

BD (S3) | 46 94 1.88 | T10 14

IV. EXPERIMENTAL RESULTS
A. Experimental Setup

B. Direct Validation

At first, to verify our identification method using the input-
Experiments were conducted on three male subjects, wiooitput relationship from experimental measurement in SCI
have complete paralysis ASIA A of lower extremity. Anpatients, direct validation was made to see its identification
authorization from the ethical committee and an agreemeperformance for the multi-scale physiological muscle model.
from each subject were obtained. The general informatioduscle force responses in one paraplegic patient (S1) are
about the subjects is summarized at Table I. The paraplegioven in Fig. 6 respectively in 15Hz and 20Hz stimulation
patients were seated on a chair with their hip flexed dtequency. The identification was executed by SPKF estima-
approximately90° and their shank fixed oBIODEX system. tor to obtain parametef;, with different initial values as



causes fatigue to occur more rapidly. Even if we try to use the
intermittent stimulation, it is really difficult to capture and
predict the muscle force effected by fatigue and recovery.
This history-dependency of the muscle response is also
subject-specific and daily changing. During the course of our
experimental protocol, we found that the muscle response is
in fact different even with same stimulation parameter as
in Fig. 9. In this subject, the muscle response varied with
Fig. 5. The experimental setup: the torques around knee joint are measufed Percent in maximum with the same stimulation. How
in isometric condition through the Biodex system. to modulate PW is actually different for each stimulation
S ) o . protocol, however the force plateau should be same level if
|n_ Fig. 7. Thg _stable |d§nt|f|cat|on result c_ould_ be O_bta'”e?here is no muscle property change. This case was especially
with every initial value in SPKF. The estimation with thegjgnificant, the other averaged subject also showed the force

identified model can be confirmed with the measured forcgecrease of 26 percent with the same experimental protocol.
as direct validation in Fig. 8. The normalized root mean

squared deviation (NRMSD) between the model estimations .
and measured values in force plateau was 4.87 percent in
average.

5 min of
intermittent
stimulation

10 min of e
23% decrease intermittent
stimulation 45% decrease

45s stim im

Fig. 9. Example of muscle force transition effected by fatigue with similar
condition of stimulation (PW=30@.S, 20Hz).

30s stim in total

Measured
- - - - Filtered by identification

time

Force [N]

However, we also found that muscle fatigue appears
basically as long-term characteristics change not as sudden
Fig. 6. Muscle force response in paraplegic patient in 15Hz and 20Hz afOI’C(.E drop. Thereforq, we -m?d (o identity the -mo-del using
its identification by SPKF. He input-output relationship in the temporal vicinity of the
oz target timing. Simply if we re-identify the model using the
last input-output relationship then the prediction with the
recently identified model would be possible to minimize
the effect of the time-varying muscle property. For each
stimulation frequence of 15Hz, 20Hz, 30Hz, the input-output
data in300u.S was identified to obtain latest parameter§f
and the identified model was applied to estimate the muscle
response i250u.S and 1505 as cross validation. These
different PW stimulations were carried out with the interval

of 1.5 minutes. Cross validation result can be seen as in Fig.
Fig. 7. Identification of parametef,, with different initial values. 10-12. Normalized RMS deviations for the cross validation
are shown in Table Il. If we remind muscle response is really
T B difficult to be predicted due to fatigue and also metabolic
] factors for each subject, this result suggests that the activated
] force prediction can be performed by adaptive identification
L even when the muscle response is largely effected by a

g’f ! ] muscle fatigue in FES. As same as first 2 subjects, the muscle
B i S e ] response was largely varied in S3 subject, however similar
‘ 74 quality of prediction could be performed.
TABLE I

Fig. 8. Direct validation: measured force and model estimation. NORMALIZED RMS DEVIATIONS FOR CROSSVALIDATION

Frequency PW300us | PW250us [ PW150us

C. Cross Validation oz 2:28 g:zg ;:ig
Next, we investigated the measured data in another subject 30Hz 6.87 8.93 2.47

(S2) for cross validation to see its model-based predictive

performance. As described in the introduction, major critical V. CONCLUSIONS

limitations in FES control are rapid muscle fatigue and time- Nonlinear identification method corresponding to muscle
varing property. The synchronous mode of stimulation iproperty change was proposed for FES control. Experimental
which all the muscle fibers are activated simultaneouslyalidation tests in SCI patients were carried out to confirm
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[3]

15Hz -

(4]

1 (5]
(6]

Fig. 10. Cross validation: measured force and model estimation in PW of
300uS, 250uS and150u.S and in 15Hz. The input-output data 300u.S

(largest one) was identified and the identified model was applied to estimate
the muscle response B50u.S and 150u.S. [

06
Time [s)

——— Measured
140 = = = = Estimated [

8]

20Hz |

El

[10]

Fig. 11. Cross validation: measured force and model estimation in PW of
300uS, 25008 and 15045 and in 20Hz.

08
Time [s]

- 11

(12]

[13]

Time [s]

Fig. 12. Cross validation: measured force and model estimation in PW of
30018, 25018 and 1508 and in 30Hz. [14]

the feasibility of the proposed method. Muscle respondés]
was changed in time when fatigue was appeared fast in
FES. However, it can be feasible solution to make adaptivgs;
estimation for internal parameter and to correspond to the
varying muscle response effected by a fatigue or UnknOV\ﬁlﬂ
metabolic factor of human system. Cross validation showed
the performance of force prediction even if the musclél8]
response is largely effected by a muscle fatigue in FES. Some
predictive errors are still remained as in Table Il, howevefg
it can be expected to be cancelled by feedback controller.
Even in the use of feedback control, it is still important t 20
assess the muscle fatigue condition for the patient in the use
of FES. Statistical analysis with more results is planned for
future work. 21]
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