A. Kralj and T. Bajd-boca-raton, Functional Electrical Stimulation: Standing and Walking After Spinal Cord Injury, 1989.

R. Kobetic, R. J. Triolo, and E. B. Marsolais, Muscle selection and walking performance of multichannel FES systems for ambulation in paraplegia, IEEE Transactions on Rehabilitation Engineering, vol.5, issue.1, pp.23-29, 1997.
DOI : 10.1109/86.559346

D. Guiraud, T. Stieglitz, K. P. Koch, J. L. Divoux, and P. Rabischong, An implantable neuroprosthesis for standing and walking in paraplegia: 5-year patient follow-up, Journal of Neural Engineering, vol.3, issue.4, pp.268-275, 2006.
DOI : 10.1088/1741-2560/3/4/003

K. W. Durfee, Chapter 33 Control of standing and gait using electrical stimulation: influence of muscle model complexity on control strategy, Prog. Brain Res, vol.97, pp.369-381, 1993.
DOI : 10.1016/S0079-6123(08)62296-7

R. Riener, Model-based development of neuroprostheses for paraplegic patients, pp.877-894, 1999.

H. J. Chizeck, S. Chang, R. B. Stein, A. Scheiner, and D. C. Ferencz, Identification of electrically stimulated quadriceps muscles in paraplegic subjects, IEEE Transactions on Biomedical Engineering, vol.46, issue.1, pp.51-61, 1999.
DOI : 10.1109/10.736755

T. Schauer, N. Negard, F. Previdi, K. J. Hunt, M. H. Fraser et al., Online identification and nonlinear control of the electrically stimulated quadriceps muscle, Control Engineering Practice, vol.13, issue.9, pp.1207-1219, 2004.
DOI : 10.1016/j.conengprac.2004.10.006

H. M. Franken, P. H. Veltink, R. Tijsmans, G. H. Nijmeijer, and H. B. Boom, Identification of quadriceps-shank dynamics using randomized interpulse interval stimulation, IEEE Transactions on Rehabilitation Engineering, vol.3, issue.2, pp.182-192, 1995.
DOI : 10.1109/86.392369

F. Previdi, Identification of black-box nonlinear models for lower limb movement control using functional electrical stimulation, Control Engineering Practice, vol.10, issue.1, pp.91-99, 2002.
DOI : 10.1016/S0967-0661(01)00128-9

R. Riener, J. Quintern, E. Psaier, and G. Schmidt, Physiological based multi-input model of muscle activation, Neuroprosthetics From Basic Research To Clinical Applications, pp.95-114, 1996.

H. Makssoud, D. Guiraud, and P. Poignet, Mathematical muscle model for functional electrical stimulation control strategies, IEEE International Conference on Robotics and Automation, 2004. Proceedings. ICRA '04. 2004, pp.1282-1287, 2004.
DOI : 10.1109/ROBOT.2004.1308001

URL : https://hal.archives-ouvertes.fr/lirmm-00108855

M. Hayashibe, P. Poignet, D. Guiraud, and H. Makssoud, Nonlinear identification of skeletal muscle dynamics with Sigma-Point Kalman Filter for model-based FES, Conf. on Robotics and Automation, pp.2049-2054, 2008.
URL : https://hal.archives-ouvertes.fr/lirmm-00196062

J. Ding, A. S. Wexler, and S. A. Binder-macleod, Mathematical models for fatigue minimization during functional electrical stimulation, Journal of Electromyography and Kinesiology, vol.13, issue.6, pp.575-588, 2003.
DOI : 10.1016/S1050-6411(03)00102-0

L. Chou and S. A. Binder-macleod, The effects of stimulation frequency and fatigue on the force???intensity relationship for human skeletal muscle, Clinical Neurophysiology, vol.118, issue.6, pp.1387-1396, 2007.
DOI : 10.1016/j.clinph.2007.02.028

M. Ferrarin, F. Palazzo, R. Riener, and J. Quintern, Model-based control of FES-induced single joint movements, IEEE Transactions on Neural Systems and Rehabilitation Engineering, vol.9, issue.3, pp.245-257, 2001.
DOI : 10.1109/7333.948452

F. E. Zajac, Muscle and tendon: properties, models, scaling and application to biomechanics and motor control, CRC Critic. Rev. in Biomed. Eng, vol.17, pp.359-411, 1989.

A. F. Huxley, Muscle structure and theories of contraction, Progress in Biophysics and Biophysical Chemistry, vol.7, pp.255-318, 1957.

G. I. Zahalak, A distribution-moment approximation for kinetic theories of muscular contraction, Mathematical Biosciences, vol.55, issue.1-2, pp.89-114, 1981.
DOI : 10.1016/0025-5564(81)90014-6

M. Hayashibe, D. Guiraud, and P. Poignet, EMG-to-force estimation with full-scale physiology based muscle model, 2009 IEEE/RSJ International Conference on Intelligent Robots and Systems, 2009.
DOI : 10.1109/IROS.2009.5354644

URL : https://hal.archives-ouvertes.fr/lirmm-00429594

J. Bestel and M. Sorine, A differential model of muscle contraction and applications, In schloessmann Seminar on Mathematical Models in Biology Chemistry and Physics, 2000.

S. L. Delp, Surgery simulation: a computer graphics system to analyze and design musculoskeletal reconstructions of the lower limb, 1990.

S. J. Julier and J. K. Uhlmann, New extension of the Kalman filter to nonlinear systems, Signal Processing, Sensor Fusion, and Target Recognition VI, 1997.
DOI : 10.1117/12.280797

R. Merwe and E. Wan, Sigma-Point Kalman Filters for Probabilistic Inference in Dynamic State-Space Models, Machine Learning, 2003.

D. Hawkins and M. Hull, A method for determining lower extremity muscle-tendon lengths during flexion/extension movements, Journal of Biomechanics, vol.23, issue.5, pp.487-494, 1990.
DOI : 10.1016/0021-9290(90)90304-L

P. De-leva, Adjustments to Zatsiorsky-Seluyanov's segment inertia parameters, Journal of Biomechanics, vol.29, issue.9, pp.1223-1230, 1996.
DOI : 10.1016/0021-9290(95)00178-6