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Towards an interval-valued estimation of the density

Bilal Nehme and Olivier Strauss

Abstract— This paper presents a theoretical and practical
novel approach for computing the probability density function
underlying a set of observations. The estimator we propose is
an extension of the conventional Parzen Rosenblatt method that
leads to a very specific interval-valued estimation of the density.
Within this approach, we make use of the convenient represen-
tation of a set of usual (summative) kernels by a maxitive kernel
(i.e. a possibility distribution) to derive an exact computation
with a very low complexity of an interval-valued estimation.
The considered set of kernels is particularly convenient since it
contains kernels having comparable shapes and bandwidth. We
prove that the obtained imprecise probability density function
contains a set of precise density functions estimated using the
standard method with kernels belonging to the considered set.

I. I NTRODUCTION

In the last ten years, there has been an increasing interest
for imprecise probability in decision making. This framework
has been mainly developed in the context of epistemic
probabilities to handle the difficulty of representing ill known
information by mean of precise subjective probabilities.

In the more objective context of real data processing, this
framework is barely used due to the difficulty of computing
or specifying the imprecise probability of any event associ-
ated to an observation process (e.g. measurement, sensing,
imaging, etc.). Yet, such a knowledge could lead to new
robust method for analyzing, filtering or comparing data.

In this context of real data processing, probability density
function (pdf) plays a central role. Assuming a particular
form of this density able, for example, comparing two sets
of data via a particular distance (e.g. Mahalanobis distance)
or filtering the data to remove spurious random variations.
If not, this density has to be estimated from a finite sample
of observations supposedly independent and identically dis-
tributed.
There are two classical ways to achieve such an estimation:
parametric and nonparametric, depending on whether or not
a particular model can be assumed for the density [10],
[11]. Here, we concentrate on nonparametric approaches.
Among the different non parametric approaches [12], the
most popular is the so-called Parzen Rosenblatt method. This
popularity comes from its easy computation and the easy
interpretation of the density it provides [13].

In this paper, we propose an extension of the Parzen
Rosenblatt approach which leads to an interval-valued prob-
ability density function [2]. Due to its construction, this
interval-valued probability has a particular meaning: it is
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the convex set of all Parzen Rosenblatt estimations obtained
with kernel having comparable shapes and comparable band-
widths. This work is restricted to symmetric bounded kernel
having a first derivative, i.e. the kernel that are mostly used in
this context. We also propose a practical, exact and low cost
implementation of the computation of this interval-valued
pdf.

This paper is organized as follows: section II introduces
some necessary preliminary concepts and reformulates the
Parzen Rosenblatt estimator in a way that can lead to our
interval-valued estimator. In section III we show how to built
our interval-valued estimator based on a particular kernel.
Section IV presents the discrete algorithm leading to an exact
computation of the interval valued probability in any point
of a reference interval. Section V illustrates the proposed
interval-valued estimation.

II. PRELIMINARIES

This preliminary section aims at presenting different math-
ematical tools that will be used to construct the imprecise
pdf estimator we propose. In the rest of the paperΩ will
be the interval[emin, emax] of IR,P(Ω) the collection of
all Lebesgue measurable subsets ofΩ, K(Ω) the set of
summative kernels inΩ and s : Ω → IR a bounded
L1 function associated to a distribution in the meaning of
Schwartz [9].

A. Summative and maxitive kernel

Kernels are functions fromΩ to IR that are often used in
signal processing and non-parametric statistics to defining
a weighted neighborhood around a locationu ∈ Ω. The
distinction between summative and maxitive kernels has
been introduced by [4] to handle an imprecise knowledge
on the proper tool to be used in a data processing context.

A summative kernel is a positive real valued functionκ
of Ω, verifying the summativity property:∫

Ω

κ(u)du = 1. (1)

A summative kernelκ can be seen as a probability distri-
bution inducing an additive confidence measure (probability)
Pκ defined by:

∀A ∈ P(Ω), Pκ(A) =
∫

A

κ(u)du.

A summative kernelκx
∆ can be defined by translating a

generic summative kernelκ in x ∈ Ω by:

∀u ∈ Ω, κx
∆(u) =

1
∆

κ(
u− x

∆
),

WCCI 2010 IEEE World Congress on Computational Intelligence 
July, 18-23, 2010 - CCIB, Barcelona, Spain FUZZ-IEEE

978-1-4244-8126-2/10/$26.00 c©2010 IEEE 3114



with ∆ > 0. ∆ is called the bandwidth ofκx
∆. By

construction,∀u ∈ Ω, κ(u) = κ0
1(u).

A maxitive kernel is a real functionπ from Ω to [0, 1],
verifying the maxitivity property:

sup
u∈Ω

π(u) = 1. (2)

A maxitive kernel can be seen as a possibility distribution,
inducing two dual non-additive confidence measures onΩ: a
possibility measureΠπ and a necessity measureNπ, defined
by:

∀A ∈ P(Ω), Ππ(A) = sup
x∈A

π(x) (possibility),

Nπ(A) = 1−Ππ(Ac) (necessity),

with Ac being the complementary set ofΩ.
A maxitive kernelπx

∆ can be defined by translating a generic
maxitive kernelπ in x ∈ Ω by:

∀u ∈ Ω, πx
∆(u) = π(

u− x

∆
),

with ∆ > 0. ∆ is called the bandwidth ofπx
∆. By

construction,∀u ∈ Ω, π(u) = π0
1(u).

A maxitive kernel π is said to dominate a summative
kernel κ [4] if the possibility measureΠπ dominates the
probability measurePκ, i.e.:

∀A ∈ P(Ω), Pκ(A) ≤ Ππ(A).

In that sense, a maxitive kernel defines a set of summative
kernels denotedM(π) and defined by:

M(π) =
{

κ ∈ K(Ω), such that
∀A ∈ P(Ω), Nπ(A) ≤ Pκ(A) ≤ Ππ(A)

}
.

B. Derivative of a symmetric summative kernel

In most data processing applications, the kernel used
are unimodal and symmetric with a bounded support and
having a first derivative. The symmetry will be an important
property that will be used in the construction of our new
estimator. In the rest of the paperK′(Ω) will denoted the
subset of unimodal symmetric kernels ofK(Ω) having a
bounded support and a first derivative.

Let κ∆ ∈ K′(Ω). The Jordan decomposition of its
first derivativedκ∆ is given by:−dκ∆ = dκ+

∆ − dκ−∆, with
dκ+

∆ = max(0,−dκ∆) anddκ−∆ = max(0, dκ∆).

Property 1: Let κ∆ ∈ K′(Ω). The derivative of a summa-
tive kernelκ∆ can be written as the linear combination of
two summative kernelsη+

∆ andη−∆:

∀u ∈ Ω,−dκ∆(u) = a+
∆η+

∆(u)− a−∆η−∆(u), (3)
where a+

∆ and a−∆ are two constants defined by
a+
∆ =

∫
Ω

dκ+
∆(u)du anda−∆ =

∫
Ω

dκ−∆(u)du.

Proof η+
∆ and η−∆ are defined by:η+

∆(u) = dκ+
∆(u)

a+
∆

and

η−∆(u) = dκ−∆(u)

a−∆
.

η+
∆ and η−∆ are positive by construction and follow the

summativity condition:∫
Ω

η+
∆(u)du =

1
a+
∆

∫
Ω

dκ+
∆(u)du = 1,

and ∫
Ω

η−∆(u)du =
1

a−∆

∫
Ω

dκ−∆(u)du = 1.

Since, by constructiondκ+
∆ = a+

∆η+
∆ anddκ−∆ = a−∆η−∆, the

expression (3) is proved.
�

κ∆ being symmetric,a+
∆ = a−∆ = a∆ and the two summative

kernelsη+
∆ andη−∆ can be derived from a unique summative

kernel η∆: ∀u ∈ Ω, η+
∆(u) = η∆(∆

2 − u) and η−∆(u) =
η∆(∆

2 + u). Thus the derivative of the summative kernel
κ∆ ∈ K′(Ω) can be rewritten by:

∀u ∈ Ω,−dκ∆(u) = a∆

(
η∆(

∆
2
− u)− η∆(

∆
2

+ u)
)

,

(4)

with a∆ =
∫
Ω

max(0,−dκ∆(u))du.

Property 2: Let a =
∫
Ω max(0,−dκ(u))du, then, for all

∆ > 0:

a∆ =
a

∆
. (5)

Proof First remark thatdκ∆(u) = 1
∆2 dκ( u

∆). Thus

a∆ =
∫

Ω

max(0,−dκ∆(u))du =
∫

Ω

max(0,− 1
∆2

dκ(
u

∆
))du,

=∆
∫

Ω

max(0,− 1
∆2

dκ(u))du =
1
∆

∫
Ω

max(0,−dκ(u))du,

=
a

∆
.

�

C. Derivative in the sense of distributions

Convolution is a mathematical way of combining two
functions to form a third function. The convolution of
function s by a summative kernelκ, denotedŝκ, is given
by:

ŝκ(x) =
∫

Ω

s(u)κ(x− u)du =
∫

Ω

s(u)κx(u)du = 〈s, κx〉 ,
(6)

κx being the functionκ translated inx, and 〈., .〉 being
the dot product defined forL1 functions. If the summative
kernelκ is derivable, it can be seen as a test function. It is
thus possible to linkds, the derivative ofs in the sense of
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distribution, todκ, the derivative ofκ in the sense of function
by:

〈ds, κx〉 =
∫

Ω

ds(u)κx(u)du = −
∫

Ω

s(u)dκx(u)du

= − 〈s, dκx〉 .

D. From precise to imprecise kernel based expectation

In this section, we introduce summative and maxitive
based expectation operators of a functions. An expectation
based on a summative kernelκ coincides with the usual
expectation based on the probability measurePκ associated
with κ. It is defined by:

Eκ(s) =
∫

Ω

sdPκ =
∫

Ω

s(u)κ(u)du. (7)

The expectation based on a maxitive kernelπ has been
introduced in [3]. It uses the conventional extension of the
expectation operator, called the Choquet integral [1], andhas
an interval-valued output. It is defined by:

Eπ(s) =
[
Eπ(s), Eπ(s)

]
, (8)

with Eπ(s) = CNπ(s) and Eπ(s) = CΠπ(s), CΠπ (s) (resp.
CNπ(s)) being the Choquet integral ofs with respect to
the possibility measureΠπ (resp. the necessity measure
Nπ). This imprecise valued expectation operator respects the
following interesting properties derived from the domination
properties defined in section II-A :

∀y ∈ Eπ(s), ∃κ ∈M(π)/Eκ(s) = y, (9)

and

∀κ ∈M(π), Eκ(s) ∈ Eπ(s). (10)

This property has been proved in [3].

E. Reformulation of the Parzen Rosenblatt estimator

In this section, we propose a reformulation of the classical
Parzen Rosenblatt estimator. This reformulation will be the
basis of the new operator we propose.
Let (x1, . . . , xn) be a sample ofn i.i.d. observations drawn
from a population having an unknown pdff . The Parzen
Rosenblatt kernel estimate [6], [8] off in every pointx ∈ Ω
is given by:

f̂n
κ∆

(x) =
1

n∆

n∑
i=1

κ(
x− xi

∆
) =

1
n∆

n∑
i=1

κx
∆(xi). (11)

Property 3: The estimationf̂n
κ∆

in every pointx ∈ Ω can
be rewritten as the dot product kernelsκx

∆ with the empirical
measureen:

f̂n
κ∆

(x) = 〈en, κx
∆〉 , (12)

with en = 1
n

∑n
i=1 δxi and δxi is the impulse Dirac trans-

lated inxi.

Proof According to (6), we have, for allx ∈ Ω:

〈en, κx
∆〉 =

∫
Ω

1
n

n∑
i=1

δxi(u)κx
∆(u)du,

=
1
n

n∑
i=1

∫
Ω

δxi(u)κx
∆(u)du,

=
1
n

n∑
i=1

κx
∆(xi) = f̂n

κ∆
(x).

�
The estimationf̂n

κ∆
in every pointx ∈ Ω can be interpreted

as the precise expectation of the empirical distributionen

according to a neighborhood ofx defined by the summative
kernelκ∆:

f̂n
κ∆

(x) = Eκx
∆
(en) = 〈en, κx

∆〉 . (13)

Let En be the empirical distribution function defined by:

∀x ∈ Ω, En(x) =
1
n

n∑
i=1

H(x− xi), (14)

H being the Heaviside function defined by:H(x) = 1 if
x ≥ 0 and0 elsewhere.
en being the derivative ofEn in the sense of distributions, the
Parzen Rosenblatt estimator can be rewritten, for allx ∈ Ω,
as:

f̂n
κ∆

(x) = 〈en, κx
∆〉 = 〈dEn, κx

∆〉 = 〈En,−dκx
∆〉 . (15)

Theorem 1:Let κ∆ ∈ K′(Ω), whose Jordan decompo-
sition of its first derivativedκ∆ is: ∀u ∈ Ω,−dκ∆(u) =
a∆

(
η∆(∆

2 − u)− η∆(∆
2 + u)

)
, with a∆ ∈ IR+ and η∆ ∈

K(Ω), then, for allx ∈ Ω:

f̂n
κ∆

(x) = a∆ Eη∆(Ex−
n − Ex+

n ),

with ∀u ∈ Ω, Ex−
n (u) = En(x + ∆

2 − u) and Ex+
n (u) =

En(x− ∆
2 + u).

Proof According to (15), we have, for allx ∈ IR:

f̂n
κ∆

(x) =− Edκx
∆
(En),

=
∫ +∞

−∞
−dκ∆(u− x)En(u)du,

=a∆(
∫ +∞

−∞
η∆(

∆
2
− u + x)En(u)du

−
∫ +∞

−∞
η∆(

∆
2

+ u− x)En(u)du),

=a∆(
∫ +∞

−∞
η∆(v)En(x +

∆
2
− v)dv

−
∫ +∞

−∞
η∆(v)En(x − ∆

2
+ v)dv),

=a∆

(∫ +∞

−∞
η∆(v)(Ex−

n (v)− Ex+
n (v))dv

)
,

=a∆ Eη∆(Ex−
n − Ex+

n ).

�
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III. I MPRECISE ESTIMATION OF DENSITY

In this section, we propose an interval-valued estimation
of f , the pdf underlying a set of observations(x1, . . . , xn).
This new operator is based on defining a particular set
of summative kernels and using the know domination
properties of the maxitive kernels to derive a very specific
interval-valued estimation. This interval-valued estimation
contains all the Parzen Rosenblatt estimators obtained with
kernels belonging to this set. This set of summative kernel
is defined as follows:

D(π, a, ∆) =
{

ν ∈ K′(Ω), ∃ξ ∈M(π∆), such that
−dν(u) = a∆

(
ξ(∆

2 − u)− ξ(∆
2 + u)

) }
,

wherea ∈ IR+(a∆ = a
∆ ), π is a bounded maxitive kernel

and∆ ∈ IR∗+ is a bandwidth. Choosing randomlyπ, a and
∆ can lead to an empty setD(π, a, ∆).
If π, a and ∆ are chosen such that there is a summative
kernel κ∆ ∈ K′(Ω) such that:∀u ∈ Ω,−dκ∆(u) =
a∆

(
η∆(∆

2 − u)− η∆(∆
2 + u)

)
, with η∆ ∈ K(Ω), a∆ ∈ IR+

and for π being a maxitive kernel that dominatesη, then,
the subsetD(π, a, ∆) is not empty since it containsκ∆

by construction. Moreover, this set contains kernels whose
bandwidth cannot exceed∆ (since the bandwidth of its two
derivatives are limited by∆2 ) and cannot be lower that∆2 .
This last configuration corresponds to the uniform kernel of
length ∆

2 .
Let κ∆ ∈ K′(Ω) be a summative kernel, whose Jordan
decomposition of its first derivative is:∀u ∈ Ω,−dκ∆(u) =
a∆

(
η∆(∆

2 − u)− η∆(∆
2 + u)

)
, with a∆ ∈ IR+ and η∆ ∈

K(Ω). Let π be the most specific maxitive kernel dominating
η [4].

Definition 1: The interval-valued estimation of the pdf,
whose empirical distribution isEn, is defined, for allx ∈ Ω
by:

f
n

[κ∆]
(x) = a∆ Eπ∆

(Ex−
n − Ex+

n ). (16)

The specificity of the interval-valued estimation, defined by
(16), is due to the following property:

Property 4: Let f
n

[κ∆]
be the interval-valued estimation,

then, for allx ∈ Ω:

∀ϕ ∈ D(π, a, ∆), f̂n
ϕ (x) ∈ f

n

[κ∆]
(x). (17)

Proof According to (10), we have:

∀ξ ∈ M(π∆), Eξ(Ex−
n − Ex+

n ) ∈ Eπ∆
(Ex−

n − Ex+
n ),

multiplying by a∆ the expression (17) is proved.
The reverse inclusion defined by:
∀y ∈ f

n

[κ∆]
(x), ∃ ξ ∈ M(π∆) and ϕ ∈ K′(Ω) such that

−dϕ(u) = a∆

(
ξ(∆

2 − u)− ξ(∆
2 + u)

)
and y = f̂n

ϕ (x), is
not proved from now.

IV. COMPUTATION AND ALGORITHM

This section aims at proposing a practical and efficient
computation of the interval-valued estimation proposed in
section III. Such a computation is based on the fact thatEn

is a step function whose step positions are known. It leads
to an exact computation off

n

[κ∆]
(x) for any x ∈ Ω.

Let ∆Ex
n = Ex−

n − Ex+
n . According to (8), the interval-

valued estimation off , given by (16), can be rewritten by:

f
n

[κ∆]
(x) = a∆ Eπ∆

(∆Ex
n),

= a∆

[
CNπ∆

(∆Ex
n), CΠπ∆

(∆Ex
n)

]
, (18)

with a∆ ∈ IR+, CΠπ∆
(∆Ex

n) (resp.CNπ∆
(∆Ex

n)) being
the Choquet integral of∆Ex

n with respect to the possibility
measureΠπ∆ (resp. the necessity measureNπ∆ ).
Since En is a step function,∆Ex

n is also step function
defined by:

∀u ∈ Ω, ∆Ex
n(u) =

1
n

n∑
i=1

(H(x − xi +
∆
2
− u)

−H(x− xi − ∆
2

+ u)),

=
1
n

n∑
i=1


−1 if u ≥ x− xi + ∆

2 ,

+1 if u ≤ xi − x + ∆
2 ,

0 otherwise.

By construction∆Ex
n has at most(2n + 1) different values.

Let {wx
i }i∈{0,...,2n+1} be the set of(2n + 2) value derived

from the set of observations, by:

wx
i =

{
∆
2 + xi − x, if i ∈ {1, . . . , n},
∆
2 + x− xi−n, if i ∈ {n + 1, . . . , 2n}, (19)

with wx
0 = emin andwx

2n+1 = emax.
Let Θ = {0, . . . , 2n} and (.) be the permutation that sorts
the wx

i in ascending order, i.e.wx
(0) ≤ wx

(2) ≤ . . . wx
(2n+1).

From the set ofwx
i , we can define(2n + 1) intervalsW x

i

by: W x
i =

{
[wx

(i), w
x
(i+1)[

}
i∈Θ

. By construction,∆Ex
n is

constant on each intervalW x
i .

Let αi
n be the constant value of∆Ex

n on W x
i defined by:

αi
n =

1
n

n∑
k=1


−1 if ci ≥ x− xk + ∆

2 ,

+1 if ci ≤ xk − x + ∆
2 ,

0 otherwise.

(20)

ci being the median value of eachW x
i .

Then,∆Ex
n can be rewritten in:

∀u ∈ Ω, ∆Ex
n(u) =

2n∑
i=0

αi
n1lW x

i
(u), (21)

1lA being the indicator function ofA ∈ P(Ω) defined by:
1lA(u) = 1 if u ∈ A and0 elsewhere.
The computation of the interval-valued estimation, defined
by (18), involves two Choquet integrals. Due to the step-
wise nature of the function to be integrated, the continuous
Choquet integral can be computed by a discrete Choquet
integral involving a possibility distribution on the{W x

i }i∈Θ.
Let µ∆ be the discrete possibility distribution induced onΘ

3117



by the continuous possibility distributionπ on Ω and defined
by:

∀k ∈ Θ, µk∆ = Ππ∆(W x
k ). (22)

Let αn =
{
αi

n

}
i∈Θ

be the(2n + 1) real values of∆Ex
n,

defined by (20). Let(.) be the permutation that sorts the
αi

n in ascending order, i.e.α(0)
n ≤ α

(1)
n ≤ . . . α

(2n)
n . Let{

A(i)

}
i∈Θ

be the(2n + 1) subsets ofΘ defined by:A(i) =
{(i), . . . , (2n)}.
The two continuous Choquet integrals of∆Ex

n with respect
to the continuous possibility measureΠπ∆ (resp. necessity
measureNπ∆ ) on Ω can be computed by the two discrete
Choquet integrals ofαn with respect to the discrete possibil-
ity measureΠµ∆ (resp. necessity measureNµ∆ ) on Θ. Such
a computation is given by:

CΠπ∆
(∆Ex

n) = CΠµ∆
(αn) =

2n∑
i=1

(α(i)
n −α(i−1)

n )Πµ∆(A(i)),

(23)
and

CNπ∆
(∆Ex

n) = CNµ∆
(αn) =

2n∑
i=1

(α(i)
n −α(i−1)

n )Nµ∆(A(i)).

(24)

Computing the interval valuedf
n

[κ∆]
on a locationx ∈ Ω

can be decomposed in5 steps:

Step 1. Compute the set of (2n + 2) values
{wx

i }i∈{0,...,2n+1} by means of (19).

Step 2.Sort the{wx
i } and compute the(2n+1) intervals

W x
i by: W x

i =
{
[wx

(i), w
x
(i+1)[

}
i∈{0,...,2n}

.

Step 3.Compute the constant values
{
αi

n

}
i∈{0,...,2n} by

using (20).

Step 4. Compute the two discrete Choquet integrals
CΠµ∆

(αn) andCNµ∆
(αn) by means of (23) and (24).

Step 5.Multiply the result obtained in step 4 bya∆.

The estimation of the pdf is usually computed onp
regularly spaced points ofΩ. Let {yj}j∈{1,...,p} be those
points, the following algorithm uses the procedure described
previously to compute thep interval valued estimations of
the pdf:

{[
fn

[κ∆]
(yj), f

n

[κ∆](yj)
]}

j∈{1,...,p}
.

Data: the observations{xi}i∈{1,...,n} , the considered
locations{yj}j∈{1,...,p}, the maxitive kernelπ,
the bandwidth∆ and the multiplicative factora∆

Result:
{[

fn

[κ∆]
(yj), f

n

[κ∆](yj)
]}

j∈{1,...,p}
begin

for j = 1 to p do
• Compute the set of(2n + 2) values
{wx

i }i∈{0,...,2n+1} (expression (19)).
• Sort the{wx

i }i∈{0,...,2n+1} in increasing
order.

• Compute the(2n + 1) intervals
{W x

i }i∈{0,...,2n}.
• Compute the

{
αi

n

}
i∈{0,...,2n}

(expression (20)).
• Sort the

{
αi

n

}
in increasing order and

apply the same permutation to theW x
i .

• Compute the{µi∆}i∈{0,...,2n}
(expression (22)).

• ComputeCΠµ∆
(αn) andCNµ∆

(αn):

Π← 0, f
n

[κ∆](yj)← 0
for i = 2n to 1 down to1 do

Π = max(Π, µi∆)
f

n

[κ∆](yj) = f
n

[κ∆](yj) + (αi
n − αi−1

n )Π
end
f

n

[κ∆](yj) = a∆f
n

[κ∆](yj)
Π← 0, fn

[κ∆]
(yj)← 0

for i = 1 to 2n do
Π = max(Π, µi∆)
fn

[κ∆]
(yj) = fn

[κ∆]
(yj) + (αi

n − αi−1
n )Π

end
fn

[κ∆]
(yj) = a∆fn

[κ∆]
(yj)

end
end

Algorithm 1 : Computation of
{
f

n

[κ∆]
(yj)

}
j∈{1,...,p}

.

V. EXPERIMENT

In this experiment we propose to illustrate Property 4
defined in section III. Property 4 says that, ifκ∆ is a
symmetric summative kernel with a bounded support and
having a first derivative, then, the precise estimatef̂n

κ∆
,

defined by (11), is included in the imprecise estimatef
n

[κ∆]
defined by (16).
In this experiment, the symmetric summative kernel we use
is defined onΩ by:

∀x ∈ Ω, κ∆(x) =
1

2∆
(1 + cos(

|x|π
∆

))1l[−∆,∆](x).

The summative kernel involved in the Jordan decomposition
(4) of the derivative ofκ∆ is given by:

∀x ∈ Ω, η∆(x) =
π

2∆
(cos(

|x|π
∆

))1l[−∆
2 , ∆

2 ](x).

The constant valuea∆ involved in this decomposition is
equal to 1

∆ . We then construct the most specific maxitive

3118



kernel dominatingη∆ [4] by:

∀x ∈ Ω, π∆(x) = (1− sin(
|x|π
∆

))1l[−∆
2 , ∆

2 ](x).

To achieve this experiment, we have drawn1000 observations
{xi}i∈{1,...,1000} from a simulated process whose pdf is a
mixture of two Gaussian distributions with mean3 (resp.8)
and variance1 (resp.4). The reference intervalΩ = [−5, 20]
is divided in 500 equally spaced samples{yi}i∈{1,...,500}.
The value of the bandwidth∆ has been set to1 since
it seems to be adapted to this pdf with this number of
observations.

Precise estimate

    

D
en

si
ty

 e
st

im
at

e

  
  

    Ω

 Upper estimate

    

 Lower estimate

    

Fig. 1. Superposition, for∆ = 1, of the specific imprecise estimatef
n

[κ∆]

and the precise estimatêfn
κ∆

.

Fig. 1 shows the superposition of the precise estimate
f̂n

κ∆
and the specific imprecise estimatef

n

[κ∆]
. The precise

estimate is plotted in black, the lower (resp. upper) estimate
is plotted in red (resp. blue). As can be seen in Fig. 1,
for each value{yi}i∈{1,...,500} of the reference interval,

f̂n
κ∆

(yi) ∈ f
n

[κ∆]
(yi).

VI. CONCLUSION

In this paper, we have presented a new way for estimating
the pdf underlying a finite set of observations with a practical
implementation. One of the main characteristic of this esti-
mator is that its output is interval-valued. By construction,
this interval-valued probability density estimation is nothing
else but the convex set of all the densities that should have
been obtained by using the conventional Parzen-Rosenblatt
technique with different kernels belonging to a particularset.
This set of kernel has a certain interest, since it is the set of
all the derivable kernels having a symmetric bounded shape
with a bandwidth belonging to a limited interval. Derivable
symmetric bounded kernels are among the most used in this
context. Thus this set can be instrumental to represent an
imprecise knowledge on the shape or bandwidth that has to
be used to compute a precise density. Moreover, as shown

recently [5] this kind of method can lead to a quantification
of the identification error.

A great amount of work remains to answer different
questions:

• does this estimator converge and in which sense? For
example, how many samples are needed to guarantee
a 90% inclusion of the true density in the estimated
imprecise density? Does this interval-valued estimate
converge to a precise-valued estimate ? From our first
attempt it seems that this property is not true,

• does the median of this interval valued pdf have a
particular meaning? Does it converge to the true density
when the bandwidth tends to0 and the number of
observations tends to infinity?

• can the imprecision of each interval-valued pdf esti-
mation can be considered as a quantification of the
estimation error? Can this approach being compared
with the traditional method consisting in estimating
confidence intervals of a precise-valued pdf estimation
[7]?

• is it possible to define a robust distance value between
the pdf underlying two sets of observations based on
this imprecise estimate?

Future work should also concentrate on practical use of this
new density estimate.
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