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Towards an interval-valued estimation of the density
Bilal Nehme and Olivier Strauss

Abstract—This paper presents a theoretical and practical the convex set of all Parzen Rosenblatt estimations obtained
novel approach for computing the probability density function  with kernel having comparable shapes and comparable band-
underlying a set of observations. The estimator we propose is igihs. This work is restricted to symmetric bounded kernel

an extension of the conventional Parzen Rosenblatt method that havi first derivati i e the k | that " di
leads to a very specific interval-valued estimation of the density. ''aviNg a lirst derivalive, 1.e. the kernel that are mostly used in

Within this approach, we make use of the convenient represen- this context. We also propose a practical, exact and low cost
tation of a set of usual (summative) kernels by a maxitive kernel implementation of the computation of this interval-valued
(i.e. a possibility distribution) to derive an exact computation pdf.

with a very low complexity of an interval-valued estimation. —* Thig haner is organized as follows: section Il introduces
The considered set of kernels is particularly convenient since it L

contains kernels having comparable shapes and bandwidth. We Some necessary prellmlnary ?Oncepts and reformulates the
prove that the obtained imprecise probability density function ~Parzen Rosenblatt estimator in a way that can lead to our
contains a set of precise density functions estimated using the interval-valued estimator. In section Il we show how to built
standard method with kernels belonging to the considered set. our interval-valued estimator based on a particular kernel.
Section IV presents the discrete algorithm leading to an exact

I. INTRODUCTION , ) S ;
computation of the interval valued probability in any point

In the last ten years, there has been an increasing intergst, reference interval. Section V illustrates the proposed
for imprecise probability in decision making. This framework . a1.valued estimation

has been mainly developed in the context of epistemic
probabilities to handle the difficulty of representing ill known [l. PRELIMINARIES

information by mean of precise subjective probabilities. This preliminary section aims at presenting different math-

In the more objective context of real_ d_ata processmg,_th@maﬂcal tools that will be used to construct the imprecise
framework is barely used due to the difficulty of computin df estimator we propose. In the rest of the pafewill

or specifying the imprecise probability of any event assoChy the intervalle,min, emaz] 0f IR, P(Q) the collection of
ated to an observation process (e.g. measurement, Sensﬁlg’Lebesgue measurable subsets (f K(Q) the set of
imaging, etc.). Yet, such a knowledge could lead to NeW,mmative kernels i) and s : © — IR a bounded

robust 'method for analyzing, fllterlng.or comparing data. . Ly function associated to a distribution in the meaning of
In this context of real data processing, probability dens't)échwartz [9]

function (pdf) plays a central role. Assuming a particular

form of this density able, for example, comparing two setg. Summative and maxitive kernel

of d_ata_via a particular distance (e.g. Mahalanobis di_st{:mce)Kernels are functions frorfd to IR that are often used in

or filtering the data to remove spurious random variationg;ya| processing and non-parametric statistics to defining
If not, this density has to be estimated from a finite samplg weighted neighborhood around a locatione €. The

of observations supposedly independent and identically digitinction between summative and maxitive kernels has

tributed. . . ... been introduced by [4] to handle an imprecise knowledge
There are two classical ways to achieve such an estimatioy:

. . ) h the proper tool to be used in a data processing context.
parametric and nonparametric, depending on whether or not

a particular model can be assumed for the density [10],
[11]. Here, we concentrate on nonparametric approachqﬁ

Among the different non parametric approaches [12], the

A summative kernelis a positive real valued functior
"Q), verifying the summativity property:

most popular is the so-called Parzen Rosenblatt method. This / k(u)du = 1. (1)
popularity comes from its easy computation and the easy Q
interpretation of the density it provides [13]. A summative kernek can be seen as a probability distri-

In this paper, we propose an extension of the Parz§fion inducing an additive confidence measure (probability)
Rosenblatt approach which leads to an interval-valued propﬁ defined by:

ability density function [2]. Due to its construction, this
interval-valued probability has a particular meaning: it is VA € P(Q), P.(A) :/ K (u)du.
A
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with A > 0. A is called the bandwidth ofx%. By Proof n{ andn, are defined byn{(u) = % and
constructionyu € Q, k(u) = 9(u _ dr= (u
(u) = K7 (u). 7z () = A0,
A maxitive kernel is a real functionr from Q to [0,1], 7A and ny are positive by construction and follow the
verifying the maxitivity property: summativity condition:
= 1
328”(“) b @ /ﬂZ(u)du = —+/ drf (w)du = 1,
Q apn JQ
A maxitive kernel can be seen as a possibility distributioné d
inducing two dual non-additive confidence measure$loa n 1
possibility measurél, and a necessity measul&;, defined / N(w)du = — [ dej(u)du = 1.
by: ap Jo
VA € P(Q), 11, (A) = supm(x) (possibility), Since, b_y ConSt_rUCtiOd“X = apnx anddr, = axn,, the
€A expression (3) is proved.
. U
N7 (A) =1—-1I,(A° ty), . : _ :
(4) (A7) (necessity) K being symmetrlcaJAr = a, = aa and the two summative
with A° being the complementary set 6f kernelsn{ andn, can be derived from a unique summative
A maxitive kernelr% can be defined by translating a gener|d<eme| nai Vu € Q, ni(u) = na(§ —u) andny (u) =
maxitive kernelr in z € Q by: na(4 + u). Thus the derivative of the summative kernel
" /-;A € K'(Q) can be rewritten by:
Vu € Q,mh (u) = w(~——), R R
. . . Yu € Q, —d = — —u)—nal= ,
with A > 0. A is called the bandwidth ofr}. By ve ralu) = aa <77A( 2 u) = nal 2 + u))
constructionyu € Q, w(u) = 79 (u). (4)

A maxitive kernelr is said to dominate a summative With aa = fsz max(0, —dra(u))du.
kernel x [4] if the possibility measurdl, dominates the ‘
probability measureP,, i.e.: Property 2: Let a = [, max(0, —dx(u))du, then, for all

A >0:
VA € P(Q), P.(A) <II.(A).

a
In that sense, a maxitive kernel defines a set of summative apn = Z' 5)
kernels denoted\(7) and defined by:
Proof First remark thatlka (u) = xzdk(%). Thus
M) = { k € K(Q),such that }
< <
VA e P( ) (A) P, (A) = HTI'(A) an _/ max O dliA du — / max K(Z))duv

B. Derivative of a symmetric summative kernel

1
In most data processing applications, the kernel used —A/ max(0, — 7 dr(u))du = Z/ max(0, —dr(u))du,
are unimodal and symmetric with a bounded support and a °
having a first derivative. The symmetry will be an important  —'A"
property that will be used in the construction of our new
estimator. In the rest of the pap&f(©2) will denoted the
subset of unimodal symmetric kernels &) having a

bounded support and a first derivative.
C. Derivative in the sense of distributions

Let ko € K'(2). The Jordan deconlpositicln of its  Convolution is a mathematical way of combining two
first derivativedra is given by: —dra = driy —drx, Wit functions to form a third function. The convolution of
dix = max(0, —dra) anddr , = max(0,dka). function s by a summative kernet, denoteds,., is given
by:
Property 1: Let ka € K'(2). The derivative of a summa-
tive kernelxa can be written as the linear combination of (z) = / s(u)k(z — u)du = / s(u)R® (u)du = (s, K°)
Q

two summative kernelg{ and;: Q ©)

Vu € Q, —dka(u) = afnk(v) — axnx (u), (3) «* being the functionx translated inz, and (.,.) being
where af and a, are two constants defined bythe dot product defined fof; functions. If the summative
af = [ drk(u)du anday = [, drx (u)du. kernelx is derivable, it can be seen as a test function. It is

thus possible to linkis, the derivative ofs in the sense of
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distribution, todk, the derivative of in the sense of function Proof According to (6), we have, for alt €

by: 1 n
(en3) = [ 307 )k (w)du,
(ds, k") :/ ds(u)k® (u)du = —/ s(u)dr® (u)du 2 7=
! ! L [ = iy
— _ (s dK®) . =— i (u)kA (u)du,
(s, di”) 2, A
D. From precise to imprecise kernel based expectation 1~ o~
. . _ _ 3 =EZF»A(%)= wn (2)-
In this section, we introduce summative and maxitive i=1

based expectation operators of a functiorAn expectation O

based on a summative kerngl cc')i.ncides with the gsual The estimationng in every pointz € Q can be interpreted
expectation based on the probability measkreassociated as the precise expectation of the empirical distributign
with «. It is defined by: according to a neighborhood efdefined by the summative
kernelka:
Eq(s) = dP, = du. 7 n _ _ z
)= [ sape= [ sty @) () = Eng (n) = {en, K4) (13)

The expectation based on a maxitive kermelhas been Let F, be the empirical distribution function defined by:

introduced in [3]. It uses the conventional extension of the 1 &
expectation operator, called the Choquet integral [1], lzasl Ve e,  By(r) = " ZH(QC — i), (14)
an interval-valued output. It is defined by: =1

H being the Heaviside function defined b¥(z) = 1 if

E.(s) = [E.(s),Ex(s)] , (8) x>0 and0 elsewhere.

e, being the derivative of’,, in the sense of distributions, the
with E_(s) = Cn, (s) andE.(s) = Cr,(s),Cn,(s) (resp. Parzen Rosenblatt estimator can be rewritten, foradl 2,
Cn, (s)) being the Choquet integral of with respect to as:
the possibility measurdl, (resp. the necessity measure 4, o oy Ty z
N,). This imprecise valued expectation operator respects the ’#2 (z) = {en, Ka) = (B, K7) = (En, —dra) . (15)
following interesting properties derived from the dominat ~ Theorem 1l:Let ka € K'(€2), whose Jordan decompo-

properties defined in section II-A : sition of its first derivativedka is: Vu € Q, —drka(u) =
B aa (na(§ —u) —na(5 +u)), with aa € RT andna €
Vy € E.(s),3x € M(m)/E.(s) =y, (9) K(Q), then, for allz € Q:
and E?A ('r) =an Ep, (E:;_ - Eﬁ+)7
Vi € M(r),En(s) € E,(s). (10) With Yu € Q, E7™ (u) = Ep(z + 2 —w)and E**(u) =
E,(x— % +u).

This property has been proved in [3].
Proof According to (15), we have, for alt € IR:

E. Reformulation of the Parzen Rosenblatt estimator J?n () = — Bguz (By)
KA KA\ )
In this section, we propose a reformulation of the classical B +oeo d > J
Parzen Rosenblatt estimator. This reformulation will be th ) ko= ) En(u)du,
basis of the new operator we propose. +o0 A
Let (z1,...,z,) be a sample of. i.i.d. observations drawn —aA(/ WA(E —u+a)E,(u)du
from a population having an unknown pdgf The Parzen +Oo‘°°
_Ros_enblatt kernel estimate [6], [8] ¢fin every pointx € Q 7/ na(= +u— 2) By (uw)du),
is given by: —o0 2
+o0 A

~ 1 z—ux 1 — :CLA(/ Na(v)En(z + — — v)dv

no(z) = — = — 2 (x;). (11 —o0 2

I{A(I) nA ;K( A ) nA ;HA(I) ( ) Yoo A

i [ @B - G+ o),
Property 3: The estimationf;’, in every pointz € 2 can - +oo
be rewritten as the dot product kernel§ with the empirical =an (/ na(v) (B2~ (v) — E§+(v))dv> ,
measures,,: —o0
~ _ T — T+
:A (.%') = <em ”IA>7 (12) =aa EWA (En - By )

with e, = 3" | 6% and§” is the impulse Dirac trans- O

lated inz;.
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[1l. | MPRECISE ESTIMATION OF DENSITY is a step function whose step positions are known. It leads

In this section, we propose an interval-valued estimatiolf n exact computation of, . (x) for anyz € €.
of f, the pdf underlying a set of observatiofis;, ..., z,). Let AEy = Ep~ — Ep+. According to (8), the interval-
This new operator is based on defining a particular s¥glued estimation of, given by (16), can be rewritten by:
of summative kernels and using the know domination _ .
properties of the maxitive kernels to derive a very specific i[,m] (z) = an E, (AE}),
interval-valued estimation. This interval-valued estiioa

contains all the Parzen Rosenblatt estimators obtaineu wit =aa [(CNM(AE,f),(CHM (AE,?)} , (18)
kernels belonging to this set. This set of summative kernel
is defined as follows: with an € R, Cn,, (AEY) (resp.Cy,, (AE})) being

) the Choquet integral oA EZ with respect to the possibility
_ ) v eK(),36 € M(ma),such that measurdl, . (resp. the necessity measukg., ).
D(m,a,A) A A ) . A . . A .
—dv(u) = aa (£(5 —u) —&(3 +u)) Since E,, is a step functionAE? is also step function
defined by:
wherea € R (aa = &), 7 is a bounded maxitive kernel .
andA € IR*' is a bandwidth. Choosing randomiy a and Yu e Q, AE(u) 1 Z(H(x Cr A )
’ n T 2

A can lead to an empty s@(x,a, A). ’ n
If 7,a and A are chosen such that there is a summative A
kernel ka € K'(Q) such that:Vu € Q, —dka(u) = —H(w @i = 5 +u)),

an (Na(5 —u) —na(5 +u)), withna € £(Q),aa € RT A

1 fu>z—x;+

and for w being a maxitive kernel that dominates then, 1| ) g’
the subsetD(w,a,A) is not empty since it containsa = Z +1 fu<z—o+ 5,
by construction. Moreover, this set contains kernels whose =1 0 otherwise.

bandwidth cannot exceefl (since the bandwidth of its two
derivatives are limited by3) and cannot be lower thag. ,
This last configuration corresponds to the uniform kernel dret {w] }ie{o,u

By constructionAE? has at mos{2n + 1) different values.
2041} be the set of2n + 2) value derived

length 2 from the set of observations, by:
5
, .
Let ka € K () _be ‘a summative kernel, whose Jordan i Ep— if i e {1,...,n},
decomposition of its first derivative i§u € Q, —dra(u) = wi =4 A it (19)
an (na(5 —u) —na($ +u)), with ax € R* andna € 2 H e @i, Mic{ntl,.., 20},

K(Q). Letw be the most specific maxitive kernel dominatingi, WE = Emin ANAWE, | = Emas-
1 [4]- o . o Let © = {0,...,2n} and(.) be the permutation that sorts
Definition 1: The interval-valued estimation of the pdf, e ,,= in ascending order, i.av?, < w?, <

whose empirical distribution i%,,, is defined, for all: € @ £,0m"the set ofw® we can def(i%)e(gn I 1)7intervglqslwé
by: v :

by: W = {[w@),w'@ﬂ)[}ie@. By construction, AE? is

constant on each interval’?.

The specificity of the interval-valued estimation, defingd b€t @, be the constant value akE}; on W defined by:
(16), is due to the following property:

T

—-=n

I @) =asE (B~ EY). (16)

n | -1 ich-Zx—xk—i-%,

Property 4: Let be the interval-valued estimation, . )

then, ?or ;/”LL‘ € Q:im} o = %Z +1 e <z-a+ 3, (20)
N . k=1 0 otherwise.
Vo € D(m,a,A), fg(x) € £, (@). (17) _ _
Proof According to (10), we have: ¢; being the median value of eadh’.
Then,AE? can be rewritten in:

VE € M(na),Be(B:~ - Eit) € B, (B2~ — E3Y), .
multiplying by aa the expression (17) is proved. VueQ, AEL(u) =Y aplw:(u), (21)
The reverse inclusion defined by: i=0

VY € [l (),3 & € M(ma) andp € K'(Q) SAUCh that 1, peing the indicator function offt € P(2) defined by:
—de(u) = aa (§(5 —u) —&(5 +uw) andy = f2(x), is  Ta(u) =1if u € A and0 elsewhere.
not proved from now. The computation of the interval-valued estimation, defined
by (18), involves two Choquet integrals. Due to the step-
wise nature of the function to be integrated, the continuous
This section aims at proposing a practical and efficie@hoquet integral can be computed by a discrete Choquet
computation of the interval-valued estimation proposed imtegral involving a possibility distribution on thgV}, o .
section Ill. Such a computation is based on the fact fiat Let ua be the discrete possibility distribution induced &n

IV. COMPUTATION AND ALGORITHM
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by the continuous possibility distributianon €2 and defined Data: the observationgz; }16{1 , the considered

by: locations{y,} ,, ., the | maxitive kernek,
the bandW|dtI7ﬂ or the multiplicative factoaa
Vk € O, s = ey (WE). @2 | Resuit {[£ 00 T}
begin

for j=1topdo
« Compute the set of2n + 2) values

Let a,, = be the (2 1) real values ofAE?, .
@ (o), €O (2n +1) vat " } (expression (19)).

defined by (20) Let(.) be the permutation that sorts the| {wf}i6{07...,2n+1

of, in ascending order, i.eal)) < ot < ...a". Let * S%rt the{wilic(o,...2n 11y 1N InCreasing
-~ — order.
A the(2 1 t f Ay = .
E( )( } (2:‘)3} &(2n + 1) subsets ob defined by:A;) « Compute thg2n + 1) intervals
The two continuous Choquet integrals AfE¥ with respect {wir }16{0 .2n}
to the continuous possibility measufe., (resp. necessity - Compute the{ar }, 1 .,
measureN,,) on Q can be computed by the two discrete (expressmri\ (20)). _
Choquet integrals ofi,, with respect to the discrete possibil- « Sort the{a, } in increasing order aar;d
ity measurdl,,, (resp. necessity measuhg,,) on ©. Such apply the same permutation to the.
a computation is given by: « Compute the{siiatic(o,....2n)
(expression (22)).
« ComputeCy,, , (o) andCy,, (an):
‘ 2 ‘ IT 0, fE;A](yj)HO
Cu,, (AEZ) =Cu,, (an) = > (o) =l (A, for i = 2n to 1 down to1l do
i=1 I = max(I1, i )
(23) A i i—1
and f[nA](yJ) f[HA](yj) + (an - Qy )H

end

T&A] (y;) Zn CLATFM] (y;)
2n M0, fi (y;) <0
Cw,, (AE) = Cu, () = D (@) —ali ™) Nyus (Agy). for i = 1 to 2n do

i=1 IT = max(IL, pip) ) )
(24) W) = 17 w9) + (ag, — a7
. . —n . end
Computing the interval valued on a locationz € Q n N n _
_—[“A] f[’,i ](yj) - aAi[H ](yj)
can be decomposed msteps: end A

end

Step 1. Compute the set of(2n + 2) values

{wf}ie{o,..,znﬂ} by means of (19). Algorithm 1: Computation of{f[ ](yj)}

j€{lp}
Step 2.Sort the{w?} and compute thé2n + 1) intervals V. EXPERIMENT
We by: WF = {[wé),wﬁﬂ)[ ' . In this experiment we propose to illustrate Property 4
i€{0,.,2n} defined in section Ill. Property 4 says that, if is a

i symmetric summative kernel with a bounded support and
usitefzz%)comp“te the constant valugsy; },_ ., by having a first derivative, then, the precise estlma’;g

g ' defined by (11), is included in the imprecise estlmﬁ[Ie
defined by (16).

Step 4. Compute the two discrete Choquet integral$y this experiment, the symmetric summative kernel we use
Cn,, (an) andCy,, (@) by means of (23) and (24). is defined orQ by:

1 |
Step 5.Multiply the result obtained in step 4 byx. Vo € Q, ka(z) = 5 (1+ COS(%))H%A,A](@-

The summative kernel involved in the Jordan decomposition

The estimation of the pdf is usually computed gn (4) of the derivative ofi is given by:

regularly spaced points df2. Let {yj}je{1 ) be those

points, the following algorithm uses the procedure desctib
previously to compute the interval valued estimations of 2A
the pdf: [i&A](yj)j&A](yj)} }je . The constant valueia involved in this decomposition is

{Leep} equal to %. We then construct the most specific maxitive

|z| 7

Vo e Q, na(z) = (cos( A ))]1[7%7%](33).
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kernel dominating)a [4] by:

x|
A

Vo € Q, ma(z) = (1 — sin(

recently [5] this kind of method can lead to a quantification
of the identification error.
A great amount of work remains to answer different

guestions:

To achieve this experiment, we have dral®0 observations
{zitic(1,.. 1000y from a simulated process whose pdf is a
mixture of two Gaussian distributions with mear{resp.8)
and variancd (resp.4). The reference intervd? = [—5, 20]

is divided in 500 equally spaced sample[syl}le{1 500}

The value of the bandwidti\ has been set td since

it seems to be adapted to this pdf with this number of
observations.

0.35

03

Density estimate

0251 Upper estimate

0.2

Precise estimate

0.15F

Lower estimate
0.1

0.05F

[1
o [2]

Fig. 1. Superposition, foA = 1, of the specific imprecise estimazt—zf;A]

K]

and the precise estimapéQA.

Fig. 1 shows the superposition of the precise estimaté!
QA and the specific imprecise estlmaﬁ . The precise [5]
estimate is plotted in black, the lower (resp upper) edeéma
is plotted in red (resp. blue). As can be seen in Fig. 1,

for each value{y;} s00y Of the reference interval, (g
fﬁA(yi) € i[ﬁA](yi)' 7]
VI. CONCLUSION (8]

In this paper, we have presented a new way for estimatin%
the pdf underlying a finite set of observations with a pragtic [1;
implementation. One of the main characteristic of this-esti
mator is that its output is interval-valued. By construatio [11]
this interval-valued probability density estimation istiiag 12
else but the convex set of all the densities that should have
been obtained by using the conventional Parzen-Rosenbl&#
technique with different kernels belonging to a particuat.

This set of kernel has a certain interest, since it is the ket o
all the derivable kernels having a symmetric bounded shape
with a bandwidth belonging to a limited interval. Derivable
symmetric bounded kernels are among the most used in this
context. Thus this set can be instrumental to represent an
imprecise knowledge on the shape or bandwidth that has to
be used to compute a precise density. Moreover, as shown

ie{1,...,

3119

« does this estimator converge and in which sense? For

example, how many samples are needed to guarantee
a 90% inclusion of the true density in the estimated
imprecise density? Does this interval-valued estimate
converge to a precise-valued estimate ? From our first
attempt it seems that this property is not true,

« does the median of this interval valued pdf have a
particular meaning? Does it converge to the true density
when the bandwidth tends t6 and the number of
observations tends to infinity?

can the imprecision of each interval-valued pdf esti-
mation can be considered as a quantification of the
estimation error? Can this approach being compared
with the traditional method consisting in estimating
confidence intervals of a precise-valued pdf estimation
[71?

is it possible to define a robust distance value between
the pdf underlying two sets of observations based on
this imprecise estimate?

Future work should also concentrate on practical use of this
new density estimate.
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