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Abstract

A set of words is factorially balanced if the set of all the factors of its words is balanced.
We prove that if all words of a factorially balanced set have a finite index then this set is a
subset of the set of factors of one Sturmian word. Moreover, characterizing the set of factors
of a given length n of a Sturmian word by the left special factor of length n − 1 of this
Sturmian word, we provide an enumeration formula for the number of sets of words that
correspond to some set of factors of length n of a Sturmian word.

1 Introduction

Since the works of Morse and Hedlund [11], due to their numerous properties and applications,
balanced words were given a lot of attention, especially the case of binary aperiodic balanced
words, called Sturmian words (see for instance surveys and studies in [1, 4, 6, 9, 12, 15]). In
this note, balanced sets of binary words rather than balanced words themselves are considered.
In particular, we deal with sets of words such that the set of all the factors of all the words is
balanced. Such sets, that we call factorially balanced, are introduced in Section 2. In Section 3,
we prove that a finite set of binary words is a subset of the set of factors of a Sturmian word
if and only if it is factorially balanced. The “only if” part of this result is very well known as
a fundamental property of Sturmian words. As far as we know, the “if” part has never been
stated except in the case of sets of cardinality one (a finite word is balanced if and only if it is
the factor of a Sturmian word – see for instance [8, 14]).

In Section 4, we focus on uniform sets of words, that is on finite sets of words whose elements
have all the same length. We provide an enumeration formula of uniform factorially balanced
sets of binary words. For this we first prove that the set of factors of a given length n of a
Sturmian word is characterized by the left special factor of length n− 1 of this Sturmian word.

In Section 5, the infinite case is considered and a characterization of factorially balanced sets
of words is given using the additional notion of finite index. Results of Sections 3 and 5 are
unified in the conclusion.
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2 Factorially balanced sets of words

We assume that readers are familiar with combinatorics on words, quoting that for basic (possibly
omitted) definitions we follow [9].

In this paper, we are interested on sets of finite words over the binary alphabet A = {a, b},
and, for any word u over A and letter α, |u| and |u|α denote respectively the length of u and
the number of occurrences of α in u. Let us recall that a set of words X is balanced if for
all words u and v over A, |u| = |v| implies that ||u|a − |v|a| ≤ 1. A finite or infinite word is
balanced if its set of factors is balanced, and it is well known that Sturmian words correspond
to infinite aperiodic balanced words (see [9, Theorem 2.1.5]). A classical alternative definition is
that Sturmian words are infinite words having exactly n+1 factors of length n for each integer
n ≥ 0.

Note that in the case of Sturmian words, the sets usually considered are factorial sets, i.e.,
sets which contain all the factors of all their words. However, in the general case the notion
of balanced set of words given above is not well adapted because the sets are not necessarily
factorial. For instance any infinite set of words of different lengths, or, any uniform finite sets of
words with all words containing the same number of occurrences of a given letter are balanced.

So we consider here a restriction of the notion of balanced sets of words. A set of words X
is factorially balanced if its set of factors is balanced.

The following remark will be used several times (explicitely or not) in the rest of this paper.

Remark 2.1. Every set of factors of a factorially balanced set of words is also a factorially
balanced set of words.

Of course a balanced factorial set of words is factorially balanced, thus all the results on
Sturmian words applied with this notion. In particular we can reformulate the following useful
Propositions 2.1.2 and 2.1.3 of [9] in term of factorially balanced set of words.

Proposition 2.2. [9, Prop. 2.1.2] For any factorially balanced set X of words over A and for
any integer n ≥ 0, Card(X ∩An) ≤ n+ 1.

Proposition 2.3. [9, Prop. 2.1.3] For any set X of words over A, the set X is not factorially
balanced if and only if there exists a palindrome word w such that awa and bwb are factors of
X.

For any word (finite or infinite) w, F(w) denotes the set of all the finite factors of w. This
notion extends to sets of words: if X is a set of words, F(X) denotes the set of all the finite
factors of words of X.

Let us recall that a finite word u is a left special factor of a (finite or infinite) word w over
A if both au and bu are factors of w. A remarkable property of Sturmian words is that every
Sturmian word s contains exactly one left special factor of each length (see for instance [5, Prop.
3.1]). The next property is rather straightforward and it is perhaps already known (it can be
seen as a slight improvement of [9, Lemma 2.2.35]), but to the best of our knowledge it is new.

Lemma 2.4. Let u ∈ A∗ be a word such that there exists a Sturmian word s with {aub, bua} ⊂
F(s). Then one (and only one) of the two words aua, bub is a factor of s.

Proof. Since s is Sturmian, it is balanced thus aua and bub cannot be both factors of s.
The word u is the left special factor of s of length |u|, thus the left special factor of s of

length |u|+ 1, say v, must have u as a prefix, so v = ua or v = ub. If v = ua then av = aua is a
factor of s, otherwise v = ub and bub is a factor of s.
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3 Characterization of factorially balanced finite sets of words

In this section we characterize finite sets of words that are subsets of the set of factors of a
Sturmian word: they are factorially balanced sets of words. The infinite case will be studied in
Section 5.

Theorem 3.1. Let S be a finite set of binary finite words. There exists a Sturmian word s such
that S ⊂ F(s) if and only if S is factorially balanced.

Before proving this result, let us recall a few examples of Sturmian words. The most famous
one is the Fibonacci word, denoted F, which is the fixed point of the morphism ϕ defined
by ϕ(a) = ab and ϕ(b) = a. Two other morphisms play an important role in the theory of
Sturmian words, namely E and ϕ̃ defined by E(a) = b, E(b) = a, ϕ̃(a) = ba, ϕ̃(b) = a. Indeed,
a morphism preserves Sturmian words (the image of any Sturmian word by such a morphism is
still Sturmian) if and only if the morphism is obtained by composition of the morphisms ϕ, E,
ϕ̃ (this was originally proved in [10], see also[9, Th. 2.3.7]). Hence for any integer k ≥ 0, words
(ϕ ◦ E)k(F) and ϕ ◦ (ϕ ◦ E)k(F) are examples of Sturmian words, that contain respectively as
a factor words ak and (ab)k.

Proof of Theorem 3.1. As mentioned in the introduction, the “only if” part of this theorem is
well known since Morse and Hedlund’s works [11], hence we only prove the “if” part.

Let S be a factorially balanced finite set of words. We prove by induction on ||S|| :=
∑

w∈S |w|
that there exists a Sturmian word s such that S ⊂ F(s). As mentioned in the introduction, this
result is already known when Card(S) = 1, therefore, we assume that Card(S) ≥ 2.

At least one of the two words aa and bb does not belong to F(S) because S is factorially
balanced. When it is the case for both words aa and bb, there exists an integer k such that S ⊂
F((ab)k), and the theorem is verified with s = ϕ◦(ϕ◦E)k(F). Now, assume the result holds when
aa ∈ F(S) and consider a factorially balanced finite set S′ with bb ∈ F(S′). Then S := E(S′)
is factorially balanced with aa ∈ F(S), so that, by our previous assumption, there exists a
Sturmian word s such that S ⊂ F(s). Consequently S′ = E(S) ⊂ E(s) which is a Sturmian
word since E preserves Sturmian words: the theorem is thus verified for S′. Consequently, from
now on we assume that aa ∈ F(S).

Let us denote S2 the set (S ∩ aA∗) ∪ a(S ∩ bA∗) that is the set obtained from S keeping all
words beginning with the letter a and adding an a in front of each word of S beginning with
the letter b. Of course S ⊆ F(S2).

Fact 3.2. The set S2 is factorially balanced.

Proof. Assume by contradiction that S2 is not factorially balanced. By Proposition 2.3, there
exists a word x such that both words axa and bxb are factors of S2. As S is factorially balanced,
at least one of these two words is not a factor of S. By construction of S2, we get bxb ∈ F(S),
and so axa 6∈ F(S). Still by construction of S2, this means that x is a non-empty word beginning
with the letter b. This implies that both words aa and bb are factors of F(S) contradicting the
fact that it is factorially balanced.

Now observe that all words in S2 begin with the letter a and do not contain the factor bb, so
that any word u in S2 can be uniquely written either u = ϕ(v)a when u ends with a, or u = ϕ(v)
(with v ending with a) when u ends with b. Therefore, there exist two (unique) sets of words
S3 and S4 such that words of S3 end with the letter a, and S2 = ϕ(S3) ∪ ϕ(S4)a.

Fact 3.3. The set S3 ∪ S4 is factorially balanced.
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Proof. Assume by contradiction that S3 ∪ S4 is not factorially balanced. By Proposition 2.3,
there exists a word x such that both words axa and bxb are factors of S3 ∪ S4. Then words
abϕ(x)ab and aϕ(x)a are factors of S2. More precisely since bxb ends with the letter b, either
bxb is a factor of a word of S3 without being a suffix of this word or bxb is a factor of a word in
S4. Observing that both ϕ(a) and ϕ(b) begin with the letter a, aϕ(x)aa is thus a factor of S2,
which contradicts Fact 3.2.

Now, continuing the proof of Theorem 3.1, observe that if a ∈ S, since aa ∈ F(S), we have
F(S \ {a}) = F(S) thus F(S \ {a}) is factorially balanced. In this case by inductive hypothesis
there exists a Sturmian word s with S \ {a} ⊂ F(s): since a is factor of all Sturmian words, we
also have S ⊂ F(s) and the theorem holds for set S. Therefore, from now on we assume that
a 6∈ S.

Assume that b ∈ S. If there exists another word in S containing the letter b then, as
previously seen, we can find a Sturmian word s such that S ⊂ F(s), which shows that the
theorem holds for set S. Otherwise there exists an integer k such that F(S) ⊆ {ak, b}, and
consequently S ⊂ F((ϕ ◦ E)k(F)). From now on we also assume that b 6∈ S.

As neither word a nor word b belongs to S, we can observe that to each word u in S

corresponds one and exactly one word v in S3 ∪ S4 such that, for some word w, one of the
following four cases holds:

• u = awa and u = ϕ(v)a (when u ∈ S ∩ aA∗ and v ∈ S4);

• u = awb and u = ϕ(v) (when u ∈ S ∩ aA∗ and v ∈ S3);

• u = bwa and au = ϕ(v)a (when u ∈ S ∩ bA∗ and v ∈ S4);

• u = bwb and au = ϕ(v) (when u ∈ S ∩ bA∗ and v ∈ S3).

In all cases |v| < |u|, which implies that ||S3∪S4|| < ||S||. By Fact 3.3 and inductive hypothesis,
there exists a Sturmian word s′ such that S3 ∪ S4 ⊂ F(s′). Thus Theorem 3.1 holds since s :=
ϕ(s′) is a Sturmian word (let us recall that ϕ preserves Sturmian words) and S ⊆ F(S2) ⊂ F(s)
(observe that F(ϕ(S4)a) ⊂ F(s) follows from the fact that both ϕ(a) and ϕ(b) begin with the
letter a).

This result admits the following interesting corollary.

Proposition 3.4. Let u ∈ A∗ be any word and let X ⊂ A∗ be a set of words of length at most
|u|+ 1. Then the following conditions are equivalent.

a) There exists a Sturmian word s such that (X ∪ {aub, bua}) ⊂ F(s).

b) There exists a Sturmian word s′ such that (X ∪ {aub, bua, aua}) ⊂ F(s′).

c) There exists a Sturmian word s′′ such that (X ∪ {aub, bua, bub}) ⊂ F(s′′).

Actually, Lemma 2.4 shows that one of the two words s′ and s′′ could be taken equal to s.

Proof. It is straightforward that b) and c) both imply a). Assume that a) holds. By Theorem 3.1,
(X∪{aub, bua}) is a factorially balanced set of words. By Remark 2.1, the setX∪{au, ua, bu, ub}
is factorially balanced. Let α ∈ {a, b}. Observe that the set Zα := {aub, bua, αuα} is a balanced
set. Set Xα := X∪Zα. We have F(Xα) = F (Y )∪Zα, and this union is disjointed since elements
of F(Y ) are of length at most |u|+ 1, and those of Zα of length |u|+2. Since F (Y ) and Zα are
balanced, F(Xα) is also balanced, or equivalently Xα is factorially balanced. By Theorem 3.1,
both b) and c) hold.
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4 Enumerating uniform factorially balanced sets of binary words

In this section we consider, for an integer n ≥ 0, n-uniform sets of words, that is, sets that
contain only words of the same length n. Such a set is necessarily finite. More precisely we are
interested in sets of words that could correspond exactly to the set of words of length n of some
Sturmian word. We set Ssturm(n) := {F (s) ∩ An | s Sturmian}, that is, Ssturm(n) is the set of
all the sets of factors of length n of each Sturmian word.

From Theorem 3.1, we know that any factorially balanced n-uniform set S is a set of factors
of a Sturmian word. This does not mean that every factorially balanced n-uniform set of words
belongs to some Ssturm(n), but each factorially balanced n-uniform set of words is a subset of
some F ∈ Ssturm(n). Since any Sturmian word has exactly n + 1 factors for each length n, we
have the following characterization.

Fact 4.1. For any integer n ≥ 0, a set S of words belongs to Ssturm(n) if and only if S is a
factorially balanced set of words of length n with cardinality n+ 1.

The rest of this section is devoted to the proof of the next result, which is an answer to a
question originally asked by Christophe Reutenauer [3]. Let φ denote the Euler’s totient function
φ that associates to each integer n ≥ 1 the number of positive integers less than or equal to n

and relatively prime to n.

Theorem 4.2. 1 For every integer n ≥ 1, Card(Ssturm(n)) =
∑n

i=1
φ(i).

For any integer n ≥ 0, set Slspec(n) := {u ∈ An | au and bu balanced }. This set denotes all
potential left special factors of balanced words. To use this with Theorem 3.1 we would need
the set {au, bu} to be factorially balanced. Actually the two conditions are equivalent as proved
below.

Lemma 4.3. For any word u over A, the words au and bu are balanced if and only if the set
{au, bu} is factorially balanced.

Proof. The “if” part corresponds to the definition. Assume that the set {au, bu} is not factorially
balanced. By Proposition 2.3, there exists a word x such that words axa and bxb are factors of
{au, bu}. As it is not possible that these two words simultaneously occur as prefixes of words
au and bu, at least one of axa and bxb is a factor of u. This implies that both words axa and
bxb are factors of au or of bu, showing that one of this word is not balanced.

We are now ready to state our cornerstone for the proof of Theorem 4.2.

Proposition 4.4. For every integer n ≥ 1, there exists a bijection from the set Ssturm(n) into
the set Slspec(n − 1).

In other terms, the set of factors of a given length n of a Sturmian word is characterized by
only one word, its left special factor of length n− 1. It is known that such a special factor exists
and is unique (see for instance [5, Prop. 3.1]).

Before proving Proposition 4.4, we start by the following observation.

Fact 4.5. For S ∈ Ssturm(n), there exists a unique word u in Slspec(n−1) such that {au, bu} ⊆ S.

Proof. Indeed by choice of S, there exists a Sturmian word s such that F(s) ∩ An = S. This
Sturmian word has a unique left special factor u of length n − 1. In particular u is the unique
word such that {au, bu} ⊆ S, which implies that both words au and bu are balanced (see
Lemma 4.3).

1Christophe Reutenauer recently informed us [13] that Juhani Karhumäki and Luca Q. Zamboni have also
announced to him the result of Theorem 4.2.
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From now on we denote by LSn the function from Ssturm(n) to Slspec(n− 1) that associates
to each set S in Ssturm(n) the word u considered in the previous fact.

Fact 4.6. For all integers n ≥ 1, the function LSn is injective.

Proof. Let S1, S2 ∈ Ssturm(n) such that LSn(S1) = LSn(S2): we denote by u this left special
word of length n− 1, and for all integers i between 1 and n, we denote by ui the prefix of u of
length i − 1. Since sets S1 and S2 are factorially balanced and since {au, bu} ⊆ S1 ∩ S2, for all
integers i between 1 and n, and for all words v ∈ F(S1 ∪ S2) ∩ Ai, we have ||v|a − |aui|a| ≤ 1
and ||v|a − |bui|a| ≤ 1, which implies |v|a ∈ {|ui|a, |ui|a +1}. Consequently the set F(S1 ∪ S2) is
balanced. By Proposition 2.2, Card(S1 ∪ S2) = Card(F(S1 ∪ S2) ∩An) ≤ n+ 1. As by Fact 4.1
Card(S1) = Card(S2) = n+ 1, we deduce that S1 = S2.

Fact 4.7. For all integers n ≥ 1, the function LSn is surjective.

Proof. This is a direct consequence of a result proved by de Luca [6] (see Corollary 1). However,
in order to be self-contained we give here a direct proof of this result.

For any word u such that au and bu are balanced, from Lemma 4.3 the set {au, bu} is
factorially balanced thus, by Theorem 3.1 there exists a Sturmian word s such that {au, bu} ⊂
F(s).

Proof of Proposition 4.4. Facts 4.6 and 4.7 prove that the function LSn is bijective.

Corollary 4.8. For all integers n ≥ 1, Card(Ssturm(n)) = Card(Slspec(n − 1)).

Proof of Theorem 4.2. Actually Theorem 4.2 is a direct corollary of Corollary 4.8, and of a result
by de Luca and Mignosi [7] stating that the number of words w of length n such that aw and
bw are balanced is

∑n+1

i=1
φ(i).

5 The infinite case

In previous sections we have considered finite sets that can be sets of factors of some Sturmian
words. A question remains after Section 3: can we characterize infinite sets of words that are
sets of factors of some Sturmian words? The following examples show that the answer cannot
be a simple extension of Theorem 3.1.

Example 5.1. The set {anban | n ≥ 0} is factorially balanced, but there exists no (right) infinite
balanced word having all words of this set as factors. However one can observe that this set is a
subset of factors of the balanced biinfinite word ωabaω.

Remember that Sturmian words are words with n + 1 factors of length n for every integer
n. Therefore, one may consider adding a condition on the number of factors of each length in
the set.

Example 5.2. The set {an, akban−k | n ≥ 0, 0 ≤ k ≤ n−1} is a factorially balanced set (the set
is factorial) containing exactly n + 1 factors of length n for all integers n ≥ 1, but there exists
no balanced infinite word (neither biinfinite word) that contains this set as a subset of factors.

The previous example is not satisfactory since factors containing the letter b occur only at
most once in each factor of the considered set. Let us recall that an infinite word w is uniformly
recurrent if for every integer n ≥ 0 there exists an integer N such that each factor of w of length
at least N contains all factors of length n of w. Sturmian words are uniformly recurrent (see
[9]). We extend the definition of uniform recurrence to infinite sets of finite words: an infinite
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set of finite words S is uniformly recurrent if for every integer n ≥ 0 there exists an integer N

such that each factor of S of length at least N contains all factors of length n of S. Next lemma
provides a characterization of infinite sets of words that are subsets of the sets of factors of a
Sturmian word.

Proposition 5.3. Let S be an infinite set of binary finite words. There exists a Sturmian word s

such that S ⊆ F(s) if and only if S is uniformly recurrent and, for all n ≥ 0, Card(F(S)∩An) =
n+ 1.

Proof. We have already mentioned that the “only if” part holds. Now if S is uniformly recurrent,
one can construct an infinite sequence of words (un)n≥0 such that u0 is a letter, and for all n ≥ 1,
un is a prefix of un+1 and un contains all factors of S of length at most n (this is possible thanks
to uniform recurrence). This sequence of words tends to a unique infinite word w having all
words un has prefixes. Consequently, any factor of w is a factor of one word of the sequence
and so is a factor of S: F(S) = F(w). The word w is Sturmian since it has exactly n+1 factors
of length n for all n ≥ 0.

Examples at the beginning of the section show that the hypothesis “S factorially balanced”
cannot substitute any of the two conditions in the previous proposition. Of course a direct
consequence of the previous lemma is that, for any infinite set S of binary finite words, there
exists a Sturmian word s such that S ⊆ F(s) if and only if S is factorially balanced and uniformly
recurrent, and, for all n ≥ 0, Card(F(S)∩An) = n+1, but the hypothesis “S factorially balanced”
is purely artificial here. In order to get a stronger characterization of those infinite factorially
balanced sets of words that are subsets of factors of a Sturmian word, let us recall that a factor
u of an infinite word w has a finite index in w if there exists an integer k such that uk is not a
factor of w. This definition naturally extends to indexes of factors of an infinite set of words.
A basic result on indexes of Sturmian word is:

Proposition 5.4. (See [2]) Every nonempty factor of a Sturmian word has a finite index.

We are ready to state our characterization on infinite sets.

Theorem 5.5. Let S be an infinite set of binary finite words. There exists a Sturmian word s

such that S ⊆ F(s) if and only if S is factorially balanced and each nonempty word of F(S) has
a finite index in F(S).

Let us denote Pref(S) the set of prefixes of words in a set S. Next lemma will be useful.

Lemma 5.6. (König’s lemma – see for instance [9, Prop. 1.2.3]) If S is an infinite set of words,
there exists an infinite word w having all its prefixes in Pref(S).

Proof of Theorem 5.5. We have already mentioned that the set F(s) of factors of a Sturmian
word is factorially balanced, and so is any of its subsets (see Remark 2.1). Since each factor of
s has finite index in s, if S ⊆ F(s) then any factor of S is also of finite index in F(S).

Assume from now on that S is an infinite factorially balanced set of finite words, all of its
factors having a finite index in F(S). Using König’s lemma, we get an infinite word s such
that all its prefixes are prefixes of words of S. As any factor of s is a factor of a prefix of s
and so a factor of s, s is balanced. If it is not aperiodic, then there exist words x (possibly
empty) and y (not empty) such that s = xyω, and consequently we have a contradiction with
the fact that y should be of finite index in S. Thus s is an aperiodic balanced word, that
is a Sturmian word. Moreover F(s) ⊆ F(S). As by Proposition 2.2, for all integers n ≥ 0,
Card(F(S) ∩An) ≤ n+ 1 = Card(F(s) ∩An), we get F(s) = F(S) and so S ⊆ F(s).
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6 Conclusion

In our study of factorially balanced sets, we have considered separately the finite case (Section 3)
and the infinite case (Section 5) because, in the infinite case, there exist factorially balanced
sets of words which are not subsets of the set of factors of some sturmian word.

However, in every finite set of finite words each factor is trivially of finite index. Thus we
can add, in the statement of Theorem 3.1, the (unnecessary) condition of finite index in order
to unify Theorems 3.1 and 5.5 in the following general result claimed in the abstract.

Theorem 6.1. Let S be a set of binary finite words. There exists a Sturmian word s such that
S ⊆ F(s) if and only if S is factorially balanced and each nonempty factor of S has a finite index
in S.
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