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Abstract

Statistical consistency in phylogenetics has traditionally referred to the ac-
curacy of estimating phylogenetic parameters for a fixed number of species
as we increase the number of characters. However, it is also useful to con-
sider a dual type of statistical consistency where we increase the number
of species, rather than characters. This raises some basic questions: what
can we learn about the evolutionary process as we increase the number of
species? In particular, does having more species allow us to infer the ances-
tral state of characters accurately? This question is particularly important
when sequence evolution varies in a complex way from character to charac-
ter, as methods applicable for i.i.d. models may no longer be valid. In this
paper, we assemble a collection of results to analyse various approaches for
inferring ancestral information with increasing accuracy as the number of
taxa increases.
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1. Introduction

As Elliott Sober discussed two decades ago [15], there is a fundamental
asymmetry between reconstructing a past state from a present observation,
and predicting its future state. Moreover, this holds even when the state
evolves according to a time-reversible process (processes which, when they
are in equilibrium, behave the same whether run forward or backward in
time). For instance, consider any continuous Markov process on two states,
with arbitrary transition rates (generally unequal) between the two states.
If we observe the state of the process at the present time t, then the ‘best’
estimate of the initial state at time 0 is always the present state, but the
‘best’ estimate of its state at some future time t′ > t depends on the actual
transition rates (which may be unknown) [15].

When we move beyond two states in a Markov process, the current state
is no longer guaranteed to always be the ‘best’ estimate of the ancestral state,
even for reversible processes, as we describe below. Ancestral state estimation
assumes a further dimension when we move from the linear evolution of a
state through time to the bifurcating evolution of states in a tree that results
in their observed values at the leaves. The presence of many leaves helps us to
estimate the ancestral state more accurately, but these leaves do not provide
independent information about the root state due to correlations arising from
the partial overlap of the paths in the tree as one moves from the root to the
leaves. The mathematical, statistical and computational aspects of ancestral
state estimation on a tree have been explored by a number of authors (e.g.
[5, 8, 11, 12, 13, 14, 22]) and the inference of ancestral states is an important
question in biology [9].

Our interest here is in site-specific models. These are especially relevant
with proteins, where each site has specific biochemical constraints (e.g. small
and hydrophobic, aromatic, helix-former, etc). As we are interested in site-
specific models, the details of the substitution model are mostly unknown.
For example, the relative or absolute branch length may not be known ex-
actly, though we may have some upper bound on them. Also, the equilibrium
frequencies at the site may not be known. This is the case in the CAT model
for proteins ([7]; see also [6]). This model is a mixture of F81-like models,
where each site follows a Poisson model with specific amino acid frequen-
cies defined by the biochemical constraints acting on that site. However, we
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shall see that dealing with unknown equilibrium frequencies imposes strong
limitations when the aim is to estimate ancestral character states, especially
when the branch lengths are unknown. Thus, we will also envisage special
cases where equilibrium frequencies are known or even all identical.

In most cases (e.g. when the branch lengths are unknown), we are thus
unable to use standard likelihood calculations based on the pruning algorithm
to compute the most likely character state at the tree root. Thus, we will
discuss and study simple decision rules to predict the state at the tree root.
Parsimony is an example of such a rule, where the branch lengths are not
used. Another example is the majority rule that involves selecting the state
that is most frequent at the tree leaves to estimate the root state. For
models in which the equilibrium frequencies are not uniform across states,
more complex inference rules are required. We shall see that under suitable
assumptions on the tree topology and branch lengths and/or on the model,
these simple rules are statistically consistent as we increase the number of
taxa.

We treat four general cases, each depending on the properties of the
model. We start with the simplest model, the symmetric Poisson model in
which all transition rates between distinct rates are equal (in the case of four
states, this is the well-known Jukes-Cantor model). We then consider two
overlapping generalizations (‘monotone’ and ‘conservative’) and finally we
deal with the general model, for which stronger assumptions on the tree are
required.

1.1. Preliminaries

Consider a rooted phylogenetic tree T (possibly non-binary) with n leaves
and a set S of possible states that each vertex can be in. For a single-
site assignment of states at the leaves of T , assume that the assignment
has evolved under a GTR (general time-reversible) model from a particular
character state s0 at the root, with a normalized rate matrix Q = ΠS (where
Π = diag(π) contains the equilibrium frequencies, and S is a symmetric
matrix of ‘exchangeabilities’). The process acts on each edge e according to
some associated branch length le.

We assume that T and S (and perhaps π) are given, and, in addition,
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we may either know le or have some bounds on them (e.g. the sum of the
lengths from the root to any tip is, at most, some given value l). We would
like to use this input to estimate the ancestral state s0 ∈ S at the root of the
tree.

The ability to estimate s0 accurately depends on a tradeoff between what
we know about the underlying parameters (e.g. the site rate parameter µ, the
branch lengths le, and the properties of Q such as the equilibrium distribution
π) and how ‘well behaved’ the underlying Markov process is.

In particular, we seek a method M that is statistically consistent in the
following sense: Suppose that the character states at the leaves have evolved
from an unknown state at some ancestral root vertex under some Markov
model. Then M is statistically consistent as an estimator of the root state,
from character state data at the leaves of the tree, if the probability that
M returns the correct ancestral state is at least 1 − g(n, ξ) where g is some
function which tends to zero as max{ 1

n
, ξ} tends to zero, n is the number of

leaves of the tree, and ξ is a parameter describing constraints on the branch
lengths of the tree.

A natural choice of such a method, when Q is completely specified (in-
cluding the equilibrium distribution π) and the branch lengths (le) are also
known exactly, is to take the maximum posterior probability (MPP) ancestral
state (this selects the state with the largest posterior probability; the MPP
method can be shown to confer the largest expected correct reconstruction
probability amongst all methods). For a symmetric model with flat priors
the MPP estimate of the root state is the same as the maximum likelihood
(ML) estimate, but in general the two approaches differ.

When the model is (partly) unknown, the ML and MPP approaches may
not be possible (since they require both the tree topology and estimates of
the model parameters). But in these cases, simpler approaches exist. For
example, for a simple symmetric model (e.g. Jukes-Cantor) and a star tree
with unknown branch lengths that are bounded above (le ≤ l < ∞), we can
estimate the ancestral state accurately by selecting the majority state (the
consistency of this approach is justified by large deviation theorems for sums
of independent random variables).
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However, even for symmetric models, it is clear that simply allowing n
to grow is not sufficient to allow for accurate inference of the ancestral state
s0; for example, we could have just two long edges incident with the root,
and lots of very short edges that join the other endpoints of these edges to
numerous taxa. In this case, the substitution process behaves almost as on
a two-taxon tree and we have little information on the root when the two
branches become too long. Thus we seek relevant and reasonable constraints
on the distribution of le values for this accurate estimation to be possible.

Moving away from symmetric models, selecting the majority state at the
leaves as an estimate of the ancestral state is not generally a sound strategy,
even for a star tree, since the process after a long period of time will favour
the state with the highest equilibrium frequency, regardless of the state at
the root.

Although we deal with the inference of a state at a single site, the results
are still relevant to the more general question of ancestral reconstruction of
a sequence (of length k) from sequences of length k observed at the leaves
of the tree. Assuming independent site evolution, the problem of ancestral
state estimation remains the same (i.e. each site is solved independently).
If, on the other hand, sites evolve with dependencies, but subject to some
Markov process, then the sequences of length k (small) may be treated as
single character states in a larger state space.

2. Case I: Root state estimation without detailed knowledge of le

under a symmetric Poisson model

Under the symmetric r-state Poisson model, the maximum likelihood esti-
mate of the root state, in the case where the branch lengths (le) are unknown
and are regarded as nuisance parameters to be optimized, is the maximum
parsimony (MP) estimate (Theorem 6 of [21]). In this setting, we can reliably
estimate the root state, provided the taxon sampling is sufficiently dense that
no edges are too long. This was suggested by the simulations in [14] and we
establish two formal results now for the case when r = 2.

Proposition 2.1. Consider any rooted binary phylogenetic tree T . Evolve
a single site under the two-state symmetric Poisson model. Let l+ be the
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maximum branch length over all edges. Provided that l+ < 1
2
log(4

3
), the

probability P ∗ that the maximum parsimony (MP) reconstruction of the root
state is the true state (toss a fair coin if the two states are equally favored)
satisfies:

P ∗ ≥ 1 − 4l+.

Proof. When l+ satisfies satisfies the bound described then, for each edge
e of T the probability that the endpoints of edge e are in different states
p(e) = 1

2
(1−e−2le) satisfies the inequality p(e) < 1

8
. It then follows from part

(ii) of Lemma 5.1 of [? ], that:

P ∗ ≥ 1

2
+ ∆g,

where:

∆g =

√

(1 − 4g)(1 − 8g)

2(1 − 2g)2
,

and where g = maxe{p(e)}. The result now follows from the inequalities:

√

(1 − 4g)(1 − 8g)

2(1 − 2g)2
≥ 1

2
(1 − 8g), and g ≤ l+.

Unfortunately, in a Yule tree of fixed height, the expected value of l+
does not converge to zero as the speciation rate λ tends to infinity. This may
seem surprising, since the expected length of a randomly selected edge in
the tree converges in length to 0 as λ grows; however, the expected number
of edges increases with λ, and the probability that at least one of them is
‘long’ turns out to be positive. Simulations suggest that the expected value
of l+ converges to a value close to 60% of the height of the tree; the following
result, the proof of which is provided in the Appendix, establishes a smaller
lower bound.

Proposition 2.2. Suppose a random rooted binary tree Tλ is generated by
a Yule (pure birth) process with speciation rate λ acting for time t. Let
l+ = l+(λ) denote the length of the longest edge in T . Then E[l+(λ)] does
not converge to 0 as λ → ∞.
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Thus we cannot directly apply Proposition 2.1 to Yule trees. Neverthe-
less, we can precisely determine the probability with which MP will correctly
reconstruct the root state of a Yule tree under a symmetric Poisson substitu-
tion model on two states. In particular, provided the speciation rate passes
a critical threshold (six times the substitution rate), then even for large trees
where many leaves are far from the root, ancestral reconstruction becomes
accurate. Moreover, as the ratio of speciation rate to substitution rate tends
to infinity, we can correctly infer the root state with probability tending to
1.

2.1. MP root estimation for Yule trees under the two-state model

Consider a pure-birth Yule tree that starts with a single (root) lineage at
time 0 and is grown until time t, with speciation rate λ. Suppose we also
have a binary character that evolves from some ancestral state at the root
of the tree towards the leaves by undergoing substitution along the edges of
the tree at rate µ according to a symmetric Markov process. Thus, we have
a random tree (with a random number of leaves at time t) and a random
binary character observed at the leaves. Let Pt denote the probability that,
on the tree produced by this Yule process at time t, the maximum parsimony
estimate for the state at the root of the tree, derived from the observed
states at the leaves of the tree, matches the true root state (in the case that
both states are equally parsimonious at the root, select one state with equal
probability).

Theorem 2.3. Consider a random binary tree generated by a pure-birth
Yule process with speciation rate λ for time t, and a binary character that
evolves on this tree according to a symmetric Poisson model with substitution
rate µ. Then the probability Pt that MP reconstructs on this tree the correct
ancestral state from the states observed at the leaves is described as follows,
where ρ = µ/λ.

(i) If λ > 6µ, then for all t ≥ 0:

lim
t→∞

Pt =
1

2
(1 +

√

(1 − 6ρ)(1 − 2ρ)) > 1 − 3ρ.

In particular, limt→∞ Pt → 1 as ρ → 0.
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(ii) If λ < 6µ we have:

lim
t→∞

Pt =
1

2
.
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Figure 1: The limiting value limt→∞ Pt as a function of ρ for ρ ≤ 1/6.

Proof. Let 0 and 1 denote the two states that undergo substitution on the
Yule tree. Since the Markov process is symmetric we may suppose, without
loss of generality, that 0 is the initial character state at time t = 0. From
the (random) evolved states on the leaves, estimate the root state using
the maximum parsimony criterion (i.e. select the root state that minimizes
the total number of substitutions required to describe the evolution of the
character on the tree). There may be a unique reconstructed root state
(which may be the same or opposite to the true initial state) or both states
may be equally parsimonious. Let St (resp. Dt) be the probability that 0
(resp. 1) is the unique most parsimonious root state reconstructed from the
observed states at the leaves. Let Et = 1 − St − Dt be the probability that
both states are equally parsimonious. We have:

Pt = St +
1

2
Et =

1

2
+

1

2
(St − Dt). (1)
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We can generate a system of non-linear first-order differential equations for
(St, Dt, Et) as follows. Consider that in the first δ period of time, the root
lineage can either:

• persist, without a substitution occurring,

• persist, with a substitution occurring, or

• it can speciate into two lineages.

This gives:

St+δ = (1 − µδ − λδ)St + µδDt + λδ(S2
t + 2StEt) + O(δ2).

Similarly,

Dt+δ = (1 − µδ − λδ)Dt + µδSt + λδ(D2
t + 2DtEt) + O(δ2),

Et+δ = (1 − µδ − λδ)Et + µδEt + λδ(E2
t + 2StDt) + O(δ2).

Rearranging these expressions and letting δ → 0 produces the differential
equation system:

dSt

dt
= −(λ + µ)St + µDt + λ(S2

t + 2StEt);

dDt

dt
= −(λ + µ)Dt + µSt + λ(D2

t + 2DtEt);

and
dEt

dt
= −λEt + λ(E2

t + 2StDt).

Notice that we can use the relationship St + Dt + Et = 1 to eliminate Et,
and by writing u = λt we obtain a two-dimensional autonomous differential
equation system for S = Su, D = Du:

dS

du
= f(S, D);

dD

du
= f(D, S),

where:
f(x, y) = (1 − ρ)x + ρy − 2xy − x2.
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From the starting condition (S, D) = (1, 0), at u = t = 0, we have:

S − D ≥ 0 (2)

S + D ≥ 1

2
(3)

These inequalities hold even when we condition on a given tree topology
(for which these stronger inequalities appear as Corollary 7.21 of in [17]; see
also [23], Theorem 3.1 and Corollary 3.1). Thus, (S, D) is confined to the
simply-connected, two-dimensional, compact region S, D ≥ 0, 1

2
≤ S + D ≤

1, S − D ≥ 0. The equilibrium values for (S, D) are obtained by solving the
system dS

du
= dD

du
= 0 which is equivalent to solving the pair of simultaneous

quadratic equations f(s, d) = 0, f(d, s) = 0. Subtracting the second of these
equations from the first gives:

(s − d)(1 − 2ρ − s − d) = 0. (4)

Thus, either s = d or s + d = 1 − 2ρ. If s = d, then the equation f(s, d) = 0
becomes s − 3s2 = 0, which has a unique solution satisfying constraint (3),
namely s = d = 1

3
.

In the other case, where s + d = 1 − 2ρ, f(s, d) = 0 becomes:

s2 − (1 − 2ρ)s + ρ(1 − 2ρ) = 0,

which has only one solution that satisfies constraint (2), namely:

s =
1 − 2ρ +

√

(1 − 6ρ)(1 − 2ρ)

2
; d =

1 − 2ρ −
√

(1 − 6ρ)(1 − 2ρ)

2
. (5)

Now, the eigenvalues of the Jacobian matrix for either equilibrium value (s, d)
are a ±

√
a2 − b where

a = (1 − ρ) − 2(s + d); b = a2 − (ρ − 2s)(ρ − 2d).

For the first equilibrium value (s, d) = (1
3
, 1

3
), both the Jacobian eigenval-

ues have strictly negative real parts – and so (s, d) is asymptotically stable
– if and only if ρ > 1

6
. For the second fixed point, given by Eqn. (5),

both eigenvalues have strictly negative real parts if and only if ρ < 1
6
. Fi-

nally, (S, D) has no limit cycle in the region described, by virtue of Dulac’s
criterion (with g(x, y) = 1/xy, for details see [19]). The results stated in
the Theorem 2.3 now follow from Eqn. (1) (and, for part (i), the inequality
1
2
(1+

√

(1 − 6ρ)(1 − 2ρ)) > 1−3ρ when ρ < 1/6) by the Poincaré-Bendixson
theorem.
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2.2. Remarks

Numerical analysis suggests that Pt is monotone decreasing with t; if so,
then for ρ < 1/6 we would have: Pt ≥ 1

2
(1 +

√

(1 − 6ρ)(1 − 2ρ)) > 1 − 3ρ
for all t > 0. This monotoniticy of Pt with t can be shown to be equivalent
to the condition that Et ≤ 2ρ for all t ≥ 0, and so a formal proof of this
inequality would be helpful.

It would also be interesting to obtain corresponding results to Theorem
2.3 for maximum parsimony applied to more general models - particularly
for symmetric models on more than two states (some limited results are
described in [18], Sections 9.4.1 and 9.5.1). Here we offer the following:

Conjecture 2.4. For the r-state symmetric Poisson model Proposition 2.1
generalizes to give a lower bound on P ∗ of 1 − cr · l+ for some constant
cr > 0. Similarly, Theorem 2.3 generalizes to give an analogous result, where
the critical ratio λ/µ = 6 is replaced by λ/µ = c′r for some constant c′r > 0.

3. Case II: Conservative GTR proceses

For any Markov process, we often write Pi(Xt = j) or pij(t) for the
conditional probability P(Xt = j|X0 = i) that Xt = j given that X0 = i. We
will say that a GTR model is conservative if, for every state i we have:

pii(t) > pij(t) for all t ≥ 0 and all j 6= i.

This is the ‘forward inequality’ described by Sober [15]. The Kimura two-
parameter (K2P) model (and every submodel, such as Jukes-Cantor) is an
example of a conservative process (see Fig. 2). In this model the substitution
probabilities are given as follow (for details see [20]):

pij(t) =











1
4
(1 + e−µt + 2e−µt(κ+1)/2), if i = j;
1
4
(1 + e−µt − 2e−µt(κ+1)/2), if i → j is a transition;

1
4
(1 − e−µt), if i → j is a transversion.

With a conservative model, the majority rule can be consistent for an-
cestral reconstruction. Assuming state i at the tree root, the probability of
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Figure 2: The three substitution probabilities for the Kimura 2ST model. This model is
conservative (but not monotone). In this example, κ = 4 and µ is chosen to be 2/3 so
that t corresponds to the expected number of substitutions. The curve descending from
1 is the function pii(t). The middle curve, which has a local maximum around 1.6 is the
probability of a transition (A ↔ G or C ↔ T ); the lower curve is the probability of a
transversion (Purine (A or G) ↔ Pyrimidine (C or T).

observing i at any tree leaf is higher than the probability of observing any
particular alternative state j. This holds true for whatever the root-to-leaf
distances and the tree topology. With a star tree, with an upper bound on
the root-to-leaf distances, the probability that this inference rule makes the
correct selection tends to 1 as the number of leaves grow (by the central limit
theorem for sums of independent random variables). We shall see that this
result still holds for a more general class of trees under mild assumptions.
We now describe this class of trees and their properties.
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3.1. Well-spread trees

Given a rooted phylogenetic X-tree and a leaf x in the leaf set X, let:

lx :=
∑

e∈P (ρ,x)

le,

the sum of the branch lengths on the path P (ρ, x) from the root of the tree
(ρ) to leaf x. Similarly, for distinct leaves x, y ∈ X, let:

lxy =
∑

e∈P (ρ,x)∩P (ρ,y)

le,

the total length of the shared path from ρ to the leaves x, y. Finally, define
the spread of T as:

s(T ) :=

∑

x,y min{lxy, 1}
n(n − 1)

.

Thus, provided lxy < 1 for all x, y, s(T ) is the average value of lxy over pairs
x, y. We say that T is well spread if s(T ) is small; more precisely, T is 1− β
spread if s(T ) ≤ β. In particular, a tree is a star tree if and only if it is
1-spread (since 1-spread is equivalent to the condition s(T ) = 0 which in
turn is equivalent to the condition lxy = 0 for all distinct pairs x, y and this
holds precisely if and only if the tree is a star tree).

Note that a well-spread tree must have a large number of edges close to
its root; an example is shown in Fig. 3.

(a) (b) (c)

Figure 3: (a) A well-spread tree; (b, c) Trees that are not well-spread.

It is easily shown that a sufficient condition for a tree to be 1− β spread
is that, for some ǫ, δ > 0 with ǫ + δ < β, the proportion of pairs of leaves
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whose paths from the root to those leaves overlap by a length of at least ǫ is
no more than δ. We use this observation to show that the spread of a Yule
pure-birth tree of fixed height t approaches 1 as the speciation rate grows.

Proposition 3.1. Consider a random Yule pure-birth tree T that has speci-
ation rate λ and fixed height t. Then for any β > 0, the probability that T is
1 − β spread converges to 1 as λ → ∞.

Proof. We may assume that T has a root of out-degree 2 (the length of a
single lineage shrinks to zero with probability 1 as λ grows). By Theorem
2(2) of [10], the expected proportion of pairs of leaves whose most common
ancestor lies r or more edges from the root of the tree has the geometric
probability (2/3)r. Given ǫ, δ > 0 with ǫ+δ < β first select a sufficiently large
value of r that (2/3)r ≤ δ. For any η > 0 we can now select a sufficient large
value of λ that the probability that all the (at most) 2r vertices separated
from the root by r edges have are within distance ǫ from the root is at least
1 − η. The result now follows.

We now introduce some further notation. For each state j ∈ S, let nj

denote the number of leaves of T that are in state j, and let ρi
j be the

expected proportion of leaves that are in state j, given that the root is in
state i. Thus nj is a random variable (whose distribution depends on the
root state i) while ρi

j is a value determined by the model parameters, j and
root state i.

The following Lemma is central to many of the results that follow in this
paper.

Lemma 3.2. Suppose that T is a rooted tree, with branch lengths, which
is 1 − β spread. Then for any continuous-time Markov process on T , the
following holds for all initial states i: For any s > 0, the probability of the
event that for all states j ∈ S:

∣

∣

∣

nj

n
− ρi

j

∣

∣

∣
< s

is at least 1 − f(n, β)/s2 where f(n, β) tends to 0 as max{ 1
n
, β} → 0.
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Proof. For x ∈ X = {1, . . . , n}, let θj
x be the random variable that takes

the value 1 if leaf x is in state j and 0 otherwise. We have
nj

n
= 1

n

∑n
x=1 θj

x

and ρi
j = 1

n

∑n
x=1 pij(lx). In particular, since pij(lx) = E[θj

x], linearity of
expectation gives:

E

[nj

n

]

= ρi
j .

Now:

Var
[nj

n

]

= n−2

(

∑

x∈X

Var[θj
x] +

∑

x,y∈X,x 6=y

Cov[θj
x, θ

j
y]

)

, (6)

and Var[θj
x] ≤ 1

4
, |Cov(θj

x, θ
j
y)| ≤ 1. Moreover, for any pair (x, y) we claim

that |Cov(θj
x, θ

j
y)| ≤ K min{1, lxy} for a constant K dependent only on the

model. To see this, let Nxy be the event that the root ancestral state (i)
does not change state anywhere along the shared path of length lxy. We have
P(Nxy) = exp(−clxy) for a constant c that is dependent only on the model and
the ancestral state i. Moreover, the random variables θj

x, θ
j
y are conditionally

independent, given Nxy. Routine algebra then shows that we can express
Cov[θj

x, θ
j
y] as lxy times a constant, plus terms of order l2xy. However, since in

addition Cov[θj
x, θ

j
y] ≤ 1, we have Cov[θj

x, θ
j
y] ≤ min{Klxy, 1} ≤ K min{lxy, 1}

for some sufficiently large constant K > 1. Thus, from 6, we have:

Var
[nj

n

]

≤
(

1

4n
+ Ks(T )

)

.

Let f1(n, β) = ( 1
4n

+Kβ) then, since s(T ) < β, and by Chebyshev’s inequality,
we have:

P

(

|nj

n
− ρi

j | ≥ s
)

≤ Var
[nj

n

]

s2
≤ f1(n, β)/s2.

Thus, if r = |S| denotes the number of possible states, and if we let f(n, β) :=
rf1(n, β) then we have:

P

(

∃j : |nj

n
− ρi

j | ≥ s
)

≤ f(n, β)/s2,

which converges to zero when both n → ∞ and β → 0.

Theorem 3.3. For a conservative model and a 1−β spread tree, with lx ≤ l
for each x, the probability that the majority state at the leaves is identical to
the ancestral state at the root is at least 1 − g(n, β, l) for a function g which
(for each value l) tends to zero as max{ 1

n
, β} → 0.
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Proof. Let
δl := min

i,j:i6=j
inf{pii(t) − pij(t) : t ∈ [0, l]}.

Since p is continuous, and [0, l] is compact, the conservative property implies
that δl > 0. Moreover, we have:

ρi
i − ρi

j ≥ δl for all j 6= i. (7)

Now by Lemma 3.2, the probability of the event that
∣

∣

nj

n
− ρi

j

∣

∣ < 1
2
δl for

all j is at least 1 − 4f(n, β)/δ2
l . Moreover, for this event, Inequality (7)

implies (by the triangle inequality) that ni

n
− nj

n
> 0 for all j 6= i; that is,

the ancestral state i is the majority state at the leaves. Thus the probability
that the ancestral state is the majority state is at least 1 − g(l, n, β) where
g(l, n, β) := 4f(n, β)/δ2

l has the required stated properties.

4. Case III: Monotone time-reversible proceses

Note that, for any general time-reversible (GTR) Markov process the
function pii(t) is always monotone decreasing to its equilibrium frequency πi

for each state i [2], that is:

pii(t) > pii(t
′) for all t < t′.

We will say the model is monotone if, for all distinct states i, j, we have:

pij(t) < pij(t
′) for all t < t′.

Thus a monotone model has the property that if we start in a particular state
i then the probability that we are in a different particular state j at time
t increases monotonically with t towards its equilibrium probability πj. In
particular, a monotone GTR model satisfies the ‘backward inequality’ from
[15] that pii(t) > pji(t) for all j 6= i and t ≥ 0, since pji(t) is monotone
increasing to πi while pii(t) is monotone decreasing to πi.

For any number of states, models such as the Felsenstein 1981 model (also
called the F81, Tajima-Nei, or Equal Input model) are monotone (but not
conservative, unless all equilibrium frequencies are equal). Also any two–
state Markov process is monotone (Fig. 4) and the implications of this for
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Figure 4: A two-state model with different equilibrium frequencies (0.75, 0.25) for the
states 0 and 1, respectively. The two decreasing curves are p00(t) (upper) and p11(t)
(lower). The two increasing curves are p10(t) (upper) and p01(t) (lower). This model is
monotone, but not conservative.

biological inference on the basis of a single observation (n = 1) were explored
in [15] and [16].

Amongst nucleotide substitution models, the K2P model is not monotone,
since if i 6= j represents a transition then:

pij(t) =
1

4
+

1

4
e−µt − 1

2
e−µt(κ+1

2
)

can behave as shown by the middle curve in Fig. 2, where κ is the transition-
transversion ratio (taken to be a default option of 4 here).

Despite K2P not being monotone, this model nevertheless satisfies Sober’s
‘backward inequality’ as it is a symmetric model (i.e. pij(t) = pji(t) for all t);
however more complex time-reversible continuous Markov processes can fail
this inequality. For example, consider a process on states 0, 1, 2, . . . , m with
equal and high transition rates from each value of k (less than m) to k + 1
and equal low transition rates from each k (greater than 0) to k−1. Then for
a suitably large value of m and choice of t = t1, we have p11(t1) < p01(t1). In
particular, observing state 1 at a particular (known) time t1 provides more
evidence that the initial state was 0 rather than 1.
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With monotone models, the majority rule can be misleading – when the
time t is larger than the time corresponding to the intersection point pii(t) =
pij(t), it is more likely to have j 6= i at any given leaf than to have i. However,
simple prediction rules still exist, which depend on whether the equilibrium
frequencies are known.

When the equilibrium frequencies are known, we use the fact that if i is
the ancestral state then the proportion of taxa in state i, ni

n
is expected to be

larger than πi (at least if the number of taxa is sufficient to avoid sampling
effects), while

nj

n
is expected to be less than πj for all j 6= i. This suggests a

modified majority rule: select as an ancestral state estimate the state i which
maximizes ni

n
− πi. Note that the branch lengths and even the tree topology

do not need to be known. Moreover, this decision rule becomes the simple
majority rule when the equilibrium frequencies are all equal.

However, with site specific models, we cannot assume that the equilibrium
frequencies are known, especially with proteins (as discussed earlier). In such
a case, we can use a second decision rule, based on the fact that pii(t) is
a decreasing function of t while pij(t) is increasing. This second decision
rule needs the root-to-leaf distances to be known and variable across taxa
(however the tree topology may be unknown). Let lj be the average distance
between the root and the taxa having state j, and let l−j be the average
distance between the root and the taxa having a state different to j. As the
distance of a leaf from the root increases, the probability that leaf is in the
ancestral state i should also decrease, while the reverse trend should hold for
any other state j. In other words, we select i to minimize li − l−i. Note that
for this rule to apply, we need the root-to-taxon distance to be sufficiently
heterogeneous. With a molecular clock-tree this rule is of no help. Moreover,
we do not need to know the site rates and the absolute branch lengths, and
the topology and branch lengths may be unknown, provided we still can
estimate the root-to-leaf distances.

We shall see that under mild assumptions, both rules for monotone models
are statistically consistent. We now describe the two procedures for monotone
models more precisely, depending on whether π is known or not. We then
state a theorem that provides conditions under which these estimators are
accurate.
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The two procedures are as follows:

• π known: Select the ancestral state i to maximize ni

n
− πi.

• π not known: Select the ancestral state i to minimize li − l−i.

We will show that the first estimator performs well provided the tree is
well spread and n is large. The second estimator requires, in addition, that
there be reasonable spread amongst the root-to leaf distances (i.e. that the
tree not be clocklike). First, we require a lemma which is a mild extension
of Chebyshev’s order inequality (the proof is given in the Appendix).

Lemma 4.1. Suppose that Y is a random variable taking values in [0, l] and
that f : [0, l] → R is a smooth function with f ′(y) ≥ c > 0 for all y ∈ [0, l].
Then:

Cov[Y, f(Y )] ≥ c · Var[Y ].

Similarly, if f ′(y) ≤ −c < 0 for all y ∈ [0, l] then Cov[Y, f(Y )] ≤ −c ·Var[Y ].

Theorem 4.2. Suppose we have a monotone GTR model and α > 0.

1. The first estimation procedure described above (for a known π) correctly
selects the true ancestral state with probability at least 1 − α provided
the following three conditions hold:

(i) lx ≤ l < ∞, for all x, and some l independent of n;

(ii) T is 1 − β spread for sufficiently small values of β, and

(iii) n is sufficiently large.

2. The second estimation procedure described above (for π not known)
correctly selects the true ancestral state with probability at least 1 − α
provided that, in addition to conditions (i) – (iii), the following two
conditions hold:

(iv) The variance of the lx values is greater or equal to some fixed value
v > 0 that is independent of n.

(v) πj 6= 0, 1, for any j ∈ S.

19



Proof. For part (1), let δ1 = mini,j:i6=j{πj −pij(l)}, δ2 = mini{pii(l)−πi} and
δl = min{δ1, δ2}. By the monotonicity property, we have δl > 0. If i is the
ancestral state then:

ρi
i ≥ πi + δl, and for any state j 6= i, ρi

j ≤ πj − δl. (8)

Now by Lemma 3.2, the probability of the event that
∣

∣

nj

n
− ρi

j

∣

∣ < δl for all j
is at least 1− f(n, β)/δ2

l . Moreover, for this event, Inequality (8) implies (by
the triangle inequality) that ni

n
−πi > 0 and for all j 6= i, we have

nj

n
−πj < 0,

in which case the correct ancestral state (i) will be selected by the decision
rule. Thus if we select a sufficiently small value of β and a sufficiently large
value of n that 1 − f(n, β)/δ2

l < α we obtain the result in Part (1).

For part (2), we show that if i is the ancestral state then, with high
probability, li − l−i < 0 and for all j 6= i, lj − l−j > 0. For any state j
(including i), consider the difference:

Dj := lj − l−j.

Recalling the definition of θj
x from the proof of Lemma 3.2 we have:

lj =

∑

x∈X lxθ
j
x

nj
and l−j =

∑

x∈X lx(1 − θj
x)

(n − nj)
,

and so:

Dj =
1
n

∑

x∈X lxθ
j
x − ( 1

n

∑

x∈X lx) · nj

n
nj

n
(1 − nj

n
)

. (9)

By assumption (v), Dj is well defined (i.e. n > nj > 0 in the denominator)
with probability converging to 1 as n grows. Let

l :=
1

n

∑

x∈X

lx, and let L :=
1

n

∑

x∈X

lxpij(lx).

Notice that we can write the numerator of Dj in the form:

(L − lρi
j) +

(

1

n

∑

x∈X

lxθ
j
x − L

)

+ l(ρi
j −

nj

n
). (10)

Now, let c1 = minj 6=i inf{dpij(t)

dt
: t ∈ [0, l]} and c2 = inf{−dpii(t)

dt
: t ∈ [0, l]},

and c = min{c1, c2}. By the monotone assumption, c > 0. We can now apply
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Lemma 4.1 as follows. Define a random variable Y by setting Y = lx for a
leaf x selected uniformly at random from the leaf set X, and let f(y) = pij(y).
Then, Cov[Y, f(Y )] = L − lρi

j and so, by Lemma 4.1, we have:

L − lρi
i ≤ −cv, and L − lρi

j ≥ cv for all j 6= i, (11)

where v > 0 is a lower bound on the variance of the lx values from condition
(iv). Note that E[ 1

n

∑

x∈X lxθ
j
x] = L, and since lx ≤ l for all x ∈ X, an

argument similar to that given in Lemma 3.2 implies that
∣

∣

1
n

∑

x∈X lxθ
j
x − L

∣

∣

can be made less than any δ > 0 by selecting β and 1
n

sufficiently small.
Moreover, the same applies for the difference

∣

∣

nj

n
− ρi

j

∣

∣ by Lemma 3.2. Thus,
from expression (10), the numerator of Dj can be made arbitrarily close to
the difference L− lρi

j by selecting β and 1
n

sufficiently small. It then follows
from Inequality (11) that the sign of Dj will be negative for j = i and positive
otherwise, as required (noting that c depends just on the model, not on β or
n). This completes the proof.

5. Case IV: Non-monotone and non-conservative models

Some simple and widely used models are neither monotone nor conserva-
tive. For example, the ‘HKY’ (Hasegawa, Kishino and Yano) model combines
both K2P and F81 ([20]); as with K2P, the transition probabilities first in-
crease and then decrease (non-monotony); because the equilibrium frequen-
cies may be unequal, the probability of observing the root state i at a leaf
may be less than the probability of observing state j when πi < πj .

With such models, the justifications provided for the statistical consis-
tency of the three simple rules above and parsimony no longer apply. How-
ever, when the model is fully known and the tree is clock-like, the ancestral
state can still be estimated using the frequencies of the states at the tree
leaves. We shall see that this method is statistically consistent.

We first state a general result concerning general Markov processes.

Lemma 5.1. Consider any continuous-time, irreducible Markov process, and
let Xt be the state at time t. Then for any given t ≥ 0, the probability
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Figure 5: HKY transition probabilities with standard parameter values (κ = 4,
purine=pyrimidine=0.5, G+C = 70%). The asymptotic values are the equilibrium fre-
quencies of G and C (0.35) and A and T (0.15). The two decreasing curves are pii(t) (e.g.
G → G and C→ C for the top-most curve). The two increasing curves with local maxima
are for transitions (e.g. A → G, T → C for the top-most increasing curve) while the two
monotone increasing curves are for transversions.

distribution on Xt determines both X0 and t. That is:

pij(t) = pi′j(t
′) for all j ∈ S ⇒ i = i′, t = t′.

Proof. Let ei be the vector that has 1 in position i and 0 otherwise, and
define ei′ analogously. Now, the vector pi(t) := [pij(t) : j ∈ S] satisfies
pi(t) = ei · exp(Qt); similarly we have pi′(t′) = ei′ · exp(Qt′). Suppose values
of t, t′ exist for which pi(t) = pi′(t′). Without loss of generality, we may
suppose that t ≥ t′. In this case we have:

(ei · exp(Q(t − t′)) − ei′) · exp(Qt′) = 0.

Moreover, since the process is irreducible, ei ·exp(Q(t−t′)) can equal ei′ only
if t = t′ and i = i′, so if this is not the case, we have w · exp(Qt′) = 0 for a
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non-zero vector w which implies that

det exp(Qt′) = 0.

But, by Jacobi’s identity, det exp(Qt′) = exp(tr(Q)t′) > 0. This completes
the proof.

From this Lemma, it follows that for the very special case of a star tree
with all edges of equal length we can use maximum likelihood to consistently
infer the ancestral state. This is because, in this very special case, the states
at the n leaves provide n i.i.d. samples of the process, and so the identifi-
ability conditions required to estimate both the ancestral state s0 and the
common edge length simultaneously hold (for similar reasons to the tailored
argument for the consistency of MLE in settings such as phylogenetic tree
reconstruction, described in Lemma 5.1 of [3]). Moving from star trees to
the more general class of well-spread trees, we have the following main result
of this section:

Theorem 5.2. Suppose we have a continuous-time irreducible Markov pro-
cess with rate matrix Q given, and let α > 0. Consider a rooted phylogenetic
tree on n leaves, for which the branch lengths le satisfy a molecular clock, i.e.
lx = l0 for all x, where l0 is less than some known value l. Assume also that
the tree is 1−β spread. Then we can estimate the ancestral state s0 correctly
with probability at least 1 − α provided that n is sufficiently large, and β is
sufficiently small.

Proof. We will establish this result by a procedure that selects the state i for
which the entire probability distribution pij(t) (as j varies) can be made the
‘closest’ to the empirical distribution

nj

n
for an optimal value of t. We will use

the l∞ metric to measure ‘closeness’ (although, in applications other metrics
may be preferable) so we will select the ancestral estimate i if i minimizes
the quantity:

inf
t∈[0,l]

max
j

∣

∣

∣

nj

n
− pij(t)

∣

∣

∣
.

First observe that, for any two states i,′ ∈ S with i 6= i′, if we let:

∆ii′ := inf
t,t′∈[0,l]

max
j∈S

{|pij(t) − pi′j(t
′)|},
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then ∆ii′ > 0 by Lemma 5.1, the compactness of [0, l] and the continuity of
p. Thus δl := mini,i′:i6=i′ ∆i,i′ is also strictly greater than zero. Notice that
δl is independent of n. Suppose that i is the true ancestral state and i′ is a
different state. By the molecular clock assumption, ρi

j = pij(l0). Thus, by

Lemma 3.2, the probability of the event that
∣

∣

nj

n
− pij(l0)

∣

∣ < 1
2
δl for all j is

at least 1 − 4f(n, β)/δ2
l . Moreover, for this event:

inf
t∈[0,l]

max
j

∣

∣

∣

nj

n
− pij(t)

∣

∣

∣
< inf

t′∈[0,l]
max

j

∣

∣

∣

nj

n
− pi′j(t

′)
∣

∣

∣

since the left-hand side is less than 1
2
δl and if t′ is the value that minimizes

the right-hand side then, by the triangle inequality for the l∞ metric:

max
j

∣

∣

∣

nj

n
− pi′j(t

′)
∣

∣

∣
≥ max

j
|pij(t) − pi′j(t

′)|−max
j

∣

∣

∣

nj

n
− pij(t)

∣

∣

∣
≥ ∆ii′−

1

2
δl ≥

1

2
δl.

Thus, the selection method will choose the correct ancestral state (i) with
probability at least 1 − 4f(n, β)/δ2

l and, as before, this can be larger than
1 − α by ensuring that 1

n
and β are sufficiently small.

When the tree is non-clock like, and the model and branch lengths are
known, we might use a standard ML approach based on the pruning algo-
rithm, though the precise conditions required for statistical consistency seem
less clear.

6. Simulations

To compare the convergence rate and the performance of the various
ancestral character reconstruction methods discussed in the previous sections,
we performed computer simulations under biologically realistic conditions
similar to [4].

We first generated a Yule tree with n = 25, 50, 100, 200, 400, 800 and
1600 leaves. This molecular-clock tree was then perturbed by multiplying ev-
ery branch length (independently) by (1 + X), where X was an exponential
variable with parameter 0.5. The factor (1+X) was used (as opposed to, say,
X) to avoid an excessive number of very small branches. The observed depar-
ture from the molecular clock, as measured by the ratio between the longest
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and shortest root-to-leaf lineages, was equal to ≈ 3.5 on average, a value
that is usual in published phylogenies. Finally, the whole tree was re-scaled
so that the average root-to-leaf distance was uniformly distributed between
0.1 (relatively low divergence) and 1.0 (high divergence). We generated 500
trees using this procedure (Yule process, molecular clock perturbation and
re-scaling) for each tree size n.

DNA-like sequences of 100 sites were evolved along these trees using the
HKY model with κ = 4.0 (default value in most software) and the equi-
librium frequencies of A, C, G and T being equal to 0.15, 0.35, 0.35 and
0.15, respectively (such G+C bias is observed in thermophilic bacteria and
archaea, while Plasmodium species have an even stronger A+T bias). The
same parameter values are used in Fig. 5. This HKY model was combined
with a discrete gamma distribution of parameter 1.0 with six rate categories.
We thus obtained 500 data sets of 100 sites for each tree size n.

Five ancestral character prediction methods were compared:

• ‘Parsimony’ (studied in Section 2);

• ‘Majority’ (studied in Section 3);

• ‘Modified majority’, when the equilibrium frequencies π are known
(studied in Section 4, cf. part (1) of Theorem 4.2);

• ‘Difference of average root-to-leaf distances’, when the equilibrium fre-
quencies π are unknown, but we know the root-to-leaf distances (stud-
ied in Section 4, cf. part (2) of Theorem 4.2);

• ‘Presence’, which involves drawing with equal probability one of the
character states that are present at the tree leaves. Indeed, it fre-
quently occurs (notably with small n) that not all four possible states
are observed at the tree leaves. Moreover, all previous prediction meth-
ods never output a character state that is not seen at the tree leaves.
The difficultly of the prediction problem thus depends on the number of
extant character states. In the extreme case where we observe a unique
extant character state, all tested methods achieve perfect predictions
unless hidden convergent substitutions (still possible but rare in our
experiments, see below). On the other hand, when the four character
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states are observed the chance is 1
4

to be correct by chance. ‘Presence’
is thus used to re-scale the performance of the various methods, de-
pending on the number of extant character states, which (among other
factors) impacts the hardness of the prediction problem.

All methods were run with perfect knowledge of the tree topology (‘Par-
simony’), equilibrium frequencies π (‘Modified majority’) or root-to-leaf dis-
tances (‘Difference of average root-to-leaf distances’). For each method and
each data set, we measured:

• The percentage of correct predictions;

• The rescaled percentage of correct predictions, using the results achieved
by ‘Presence’. Let P be the percentage of correct predictions of the
given method, and R be the percentage of correct predictions of ‘Pres-
ence’; the rescaled percentage of correct predictions is equal to (P −
R)/(1 − R) and measures the fraction of improvement brought by the
given method compared to random predictions.

Results averaged over 500 data sets are reported in Table 1 for each tree
size n. We see that:

• The percentage of correct predictions of ‘Presence’ clearly decreases
when n increases (∼ 0.5 and ∼ 0.25 for n = 25 and n = 1600, respec-
tively). A unique extant character state is observed for ∼ 20% of the
sites with n = 25, and for only ∼ 0.1% with n = 1600. In such a case
(unique extant character state) the percentage of correct predictions
is larger than 0.99, indicating that hidden convergent substitutions are
very rare. Overall, the percentage of correct random predictions is thus
inversely proportional to the number of extant character states, and,
in this respect, n = 1600 is twice harder than n = 25.

• The accuracy of all methods improves with increasing n. However, the
re-scaled percentage of correct predictions is required to see this effect
with ‘Difference of average root-to-leaf distances’, which is the method
with the slowest convergence rate. Overall the convergence rate is rela-
tively slow, as with 1600 taxa the best methods have ∼ 90% of correct
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predictions only. This could be due to several factors: (1) the predic-
tion problem is harder with 1600 taxa than with 25 (see the results of
‘Presence’) ; (2) some of the methods (namely ‘Parsimony’ and ‘Ma-
jority’, see below) are likely inconsistent for the larger values of the
average root-to-leaf distance; (3) the spread of trees converges slowly
to 0 (a required condition for the consistency of ‘Majority’, ‘Modified
majority’ and ‘Difference of average root-to-leaf distances’), as the av-
erage spread with 25 taxa is ∼ 0.14 while with 1600 taxa it still is
∼ 0.07 (Table 1).

• Surprisingly, ‘Parsimony’ is slightly behind ‘Majority’ and ‘Modified
majority’. This finding is also observed with Jukes-Cantor model (re-
sults not shown), and thus cannot be attributed to the chosen sub-
stitution model (HKY); it is likely due to the fact that some of the
simulated trees show a high divergence, a condition where ‘Parsimony’
tends to perform poorly (see Theorem 2.3).

• Both ‘Majority’ and ‘Modified majority’ are very close, while we ex-
pected the latter to be better because it makes use of the equilibrium
frequencies π. The explanation is likely related to the fact that in our
simulations the average root-to-leaf distance is uniformly distributed
in the 0.1 – 1.0 range, a condition where HKY is conservative in most
cases (HKY is conservative up to t ≈ 0.8, see Fig. 5) and thus ‘Major-
ity’ is often consistent. However, we see a small superiority of ‘Modified
majority’ with large n, when the estimations of the ni/n frequencies
become sufficiently reliable. Moreover, HKY is monotone and ‘Mod-
ified majority’ is consistent up to t ≈ 1.45 (Fig. 5), a value that is
larger than the consistency limit of ‘Majority’ (∼ 0.8) and the maxi-
mum expected root-to-leaf distance (1.0).

• Finally, the performance of ‘Difference of average root-to-leaf distances’
is rather low, but there is a clear improvement with large n. This con-
firms that root-to-leaf distances bring substantial information, which
could be combined with other standard approaches to enhance accuracy
in difficult cases.

All together, the most surprising outcome of these simulations is the per-
formance of the (very simple) ‘Majority’ approach. It must be emphasized
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Table 1: Average accuracy with simulated data. For each method we provide the per-
centage of correct predictions and (within parentheses) the re-scaled percentage of correct
predictions (see text for definition). 500 data sets with 100 sites each were used for each
number of taxa (n). Abbreviations are Spread: average spread of trees, Mod. Majority:
‘Modified majority’, Diff. Aver. Dist.: ‘Difference of average root-to-leaf distances’.

n Spread Parsimony Majority Mod. Majority Diff. Aver. Dist. Presence
25 0.141 0.820 (0.652) 0.832 (0.674) 0.824 (0.659) 0.609 (0.214) 0.499
50 0.128 0.841 (0.728) 0.852 (0.746) 0.846 (0.736) 0.570 (0.237) 0.433
100 0.115 0.853 (0.772) 0.863 (0.788) 0.860 (0.784) 0.539 (0.262) 0.371
200 0.104 0.864 (0.802) 0.870 (0.811) 0.871 (0.813) 0.521 (0.285) 0.326
400 0.092 0.873 (0.822) 0.880 (0.833) 0.886 (0.842) 0.522 (0.324) 0.289
800 0.080 0.885 (0.844) 0.885 (0.844) 0.896 (0.858) 0.537 (0.362) 0.270
1600 0.075 0.890 (0.852) 0.891 (0.853) 0.906 (0.873) 0.567 (0.410) 0.261

that ‘Majority’ does not use any additional knowledge (tree topology, root-
to-leaf distances or equilibrium frequencies), meaning that the gap could be
larger if the other methods (e.g. ‘Parsimony’) were used with only approxi-
mate knowledge (e.g. an inferred tree topology).

7. Discussion

In this paper, we have described and analysed five approaches for infer-
ring ancestral root state in taxon-rich trees: maximum parsimony, simple
majority rule, modified majority rule, difference of average root-to-leaf dif-
ferences, and best-fit of expected distribution of leaf states to the empirical
distribution. The methods are all relatively simple and easily implemented,
and require different model (and tree) assumptions in order to justify their
accuracy. They can be applied in settings where one does not have enough
information to carry out a full maximum likelihood analysis using the usual
pruning algorithm, and so may be more suitable for site-specific models,
where the process of evolution is likely to vary in a partially unknown way
from character to character.

The price one might expect to pay for a method that requires fewer as-
sumptions or detailed knowledge of underlying parameters is lower accuracy.
Nevertheless, we have described several results which show that these meth-
ods (particular to the type of model in question) can still return the correct
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ancestral state provided that the number of taxa (n) is sufficiently large, and
the tree is sufficiently well-spread. We have shown that for Yule trees with
a high speciation rate (as a token for high taxon coverage), we expect a tree
of fixed height to become increasingly well-spread as n grows. It is clear
that some type of assumption on the spread of the tree is necessary to avoid
having two long branches near the root and the majority of lineage splitting
well away from the root, in which case accurate root state inference is not
possible.

Except for maximum parsimony, the methods described do not use the
tree topology explicitly, but rely on just the distribution of states at the
leaves, and perhaps their distance from the root. Accordingly, such meth-
ods may be more robust to tree mis-specification. Of the class of models
described monotone models are perhaps the most relevant for application,
since most GTR models are likely to be monotone (and even conservative)
when restricted to amounts of evolutionary change that are commonly en-
countered for sequence evolution.

Our choice of methods to study in this paper has been guided by what
can be successfully analysed, and we are not advocating these methods above
others that might be considered; in particular, we make no claim that they
are ‘best possible’. Indeed, if one has sufficient information then more stan-
dard approaches such as maximum likelihood would be preferable. However,
the simplicity of these methods, and the fact that they are relatively robust
to model mis-specification may make them a useful complement to more so-
phisticated approaches. For future studies, it would be worthwhile to explore
the performance of these approaches on biological data-sets, comparing them
with other alternative approaches that have been advocated. It would also be
worth developing statistical tests to determine whether differences observed
in the data by our approaches are significant or not.
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9. Appendix: Proof of Proposition 2.2 and Lemma 4.1

For the proof of Proposition 2.2 let n = eλt/2. Then the expected number
of taxa at time t/2 is n and is n2 at time t. Let Nu be the number of
individuals at time u. Let E1 be the event that N t

2
lies between 1

2
n and 3

2
n,

let E2 be the event that Nt < 2n2, and let E be the conjunction of E1, E2.
We first establish the following:

CLAIM: For some δ > 0, P(E) ≥ δ, for all sufficiently large λ.

We have P(E) = P(E2|E1) · P(E1). Now, the fact that Nt/2/e
λt/2 has a

limiting distribution as λ tends to infinity (an exponential distribution with
a mean of 1) implies that P(E1) ≥ δ′ > 0 for a fixed δ′ > 0 (we can take for δ′

any number smaller than e−
1

2 − e−
3

2 for large enough values of λ). Moreover,
E[Nt|E1] ≤ 3

2
n2, since E[Nt|Nt/2 = k] = keλt/2 = kn ≤ 3

2
n2 for any k ≤ 3n/2.

However:

E[Nt|E1] ≥ 2n2 · P(Nt ≥ 2n2|E1) = 2n2(1 − P(E2|E1)).

Thus, P(E2|E1) ≥ 1
4
, and so, P(E) ≥ 1

4
δ′ =: δ > 0 as claimed.

Suppose the number of individuals at time t/2 is m; label them 1, 2, . . . , m.
For individual i, let ni be the number of descendants at time t. Thus

∑m
i=1 ni

is the total number of individuals at time t. Now we use a well-known prop-
erty of the (discrete) Yule distribution – for a binary tree with ni leaves, the
probability that the root is incident with a leaf is exactly 2/ni. Now indi-
vidual i ∈ {1, . . . , m} is not the root of a binary tree, but if the binary tree
below i has the property just described, then either the edge i lies on, or an
edge in the binary tree below it, has a length of at least t/4. Also if ni ≤ 2
then once again we must have at least one edge with a length of at least t/4.

For any particular value of m that satisfies event E1, let p be the prob-
ability that none of the m individuals gives rise in this way to an edge of
length at least t/4. Then p is bounded above (by independence) as follows:

p ≤
m
∏

i=1

(1 − 2

ni
), (12)
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where the ni values satisfy constraints implied by E:

m
∑

i=1

ni ≤ 2n2, and m ≥ 1

2
n,

as well as our assumption ni ≥ 2 for all i. Maximizing the term on the
right-hand side of (12) subject to the constraint

∑m
i=1 ni ≤ 2n2, we have:

p ≤ (1 − 2m

2n2
)m ∼ e−m2/n2 ≤ e−0.25.

Thus, with probability at least δ(1− e−0.25) there is an edge in the Yule tree
having length at least t/4. This completes the proof of Proposition 2.2.

Proof of Lemma 4.1. Suppose f ′(y) ≥ c > 0 for all y ∈ [0, l] and that
Y is discrete taking finite values l ≥ y1 ≥ y2 ≥ · · · ≥ yn ≥ 0 (other cases
are similar), and let p(y) = P(Y = y). Then evaluating the following double
sum by expanding out terms gives us the identity:

∑

i,j

(yi − yj)(f(yi) − f(yj))p(yi)p(yj) = 2Cov[Y, f(Y )]. (13)

However we can also write this double sum in the form:

2
∑

i,j:i>j

(yi − yj)(f(yi) − f(yj))p(yi)p(yj) ≥ 2c
∑

i,j:i>j

(yi − yj)
2p(yi)p(yj), (14)

where the inequality holds since, for yi ≥ yj the condition f ′(y) ≥ c for all
y ∈ [0, l] implies that f(yi) − f(yj) ≥ c(yi − yj) by the mean value theorem.
Now,

2c
∑

i,j:i>j

(yi − yj)
2p(yi)p(yj) = c

∑

i,j

(yi − yj)
2p(yi)p(yj) = 2cVar[Y ].

Applying this to Eqns. (13) and (14) gives the result claimed.
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