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Abstract.—Amino acid substitution models are essential to most methods to infer phylogenies from protein data. These
models represent the ways in which proteins evolve and substitutions accumulate along the course of time. It is widely
accepted that the substitution processes vary depending on the structural configuration of the protein residues. However,
this information is very rarely used in phylogenetic studies, though the 3-dimensional structure of dozens of thousands of
proteins has been elucidated. Here, we reinvestigate the question in order to fill this gap. We use an improved estimation
methodology and a very large database comprising 1471 nonredundant globular protein alignments with structural anno-
tations to estimate new amino acid substitution models accounting for the secondary structure and solvent accessibility of
the residues. These models incorporate a confidence coefficient that is estimated from the data and reflects the reliability
and usefulness of structural annotations in the analyzed sequences. Our results with 300 independent test alignments show
an impressive likelihood gain compared with standard models such as JTT or WAG. Moreover, the use of these models
induces significant topological changes in the inferred trees, which should be of primary interest to phylogeneticists. Our
data, models, and software are available for download from http://atgc.lirmm.fr/phyml-structure/. [Amino-acid substi-
tutions; maximum likelihood; partition models; replacement rate matrices; structural annotation of proteins; topological
impact.]

It is widely recognized that evolutionary divergence
of protein structures occurs much less rapidly than di-
vergence of protein sequences (e.g., Chothia and Lesk
1986). Structural constraints act on the protein sites,
which in turn impact amino acid substitutions. Notably,
secondary structure and solvent accessibility have been
shown to have a strong influence on amino acid re-
placement processes (e.g., Koshi and Goldstein 1995;
Thorne et al. 1996; Goldman et al. 1998). For example,
buried sites are mostly hydrophobic and tend to re-
main hydrophobic along the course of time, meaning
that substitutions in the buried parts of the proteins
most often occur between hydrophobic amino acids.
This type of information is only partly captured by
standard models of amino acid substitution, which are
based on the use of substitution rate matrices such
as PAM (Dayhoff et al. 1972), JTT (Jones et al. 1992),
WAG (Whelan and Goldman 2001), or LG (Le and
Gascuel 2008). These matrices contain replacement rates
between every amino acid pair. These rates were esti-
mated from very large databases, without differentiat-
ing among the various site structural configurations,
thus resulting in an average model for average sites
and proteins. Site-dependent models were thus esti-
mated for several structural categories based on solvent
accessibility and secondary structure, showing clear
distinctions among categories, most notably between
exposed and buried sites (Goldman et al. 1998; Holmes
and Rubin 2002). For example, our recent results (Le,
Lartillot, et al. 2008) indicate that highly exposed sites
evolve 3–4 times faster than buried sites, on average.

These studies on the variability of evolutionary pro-
cesses across structural categories greatly improved our

understanding of protein evolution. However, they are
rarely used today in protein phylogenetics, despite the
fact that substitution models are essential in most ap-
proaches to phylogenetic inference (e.g., in the estima-
tion of evolutionary distances or the calculation of tree
likelihoods; see textbooks: Felsenstein 2003; Bryant et al.
2005; Yang 2006). There are several reasons that these
structure-based models have not been widely used.
First, only a few 3-dimensional (3D) structures were
available in the 1990s. Thus, these models do not use
any information on the actual structure of the studied
proteins. Each site is assumed to belong to each possi-
ble structural category, and the total site likelihood is
the weighted average of all possibilities using a mix-
ture approach (e.g., Le, Lartillot, et al. 2008) or a more
sophisticated hidden Markov model representing the
dependence of structural states along the sequences
(Thorne et al. 1996; Goldman et al. 1998). Second, when
the 3D structure(s) is known for one (or a few) of the
studied proteins, the structural annotations for the
whole protein set may not be reliable. These annota-
tions are inferred by homology from known structures,
but structure is not fully conserved along evolution.
Furthermore, structural annotation procedures rely on
numerical thresholds (e.g., to classify buried/exposed
sites) and definitions (e.g., using psi and phi angles for
the secondary structures), which are somewhat arbi-
trary and induce uncertainties in the assignments of
sites to structural categories. Third, previously imple-
mented structure-based models did not incorporate any
gamma distribution of rates across sites (Yang 1993),
which is now an important component in most sequ-
ence evolution models. All these likely explain the low
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impact of these approaches in phylogenetics. Another
factor might be the complexity of the calculations using
software and computers of that time.

Today, a number of 3D protein structures are avail-
able. The protein data bank (PDB; Berman et al. 2000)
contains more than 50,000 proteins. Moreover, us-
ing sequence homology, we are able to infer likely
structures for a number of homologous proteins. The
homology-derived structures of proteins (HSSP) data
bank (Schneider et al. 1997) contains more than 2 million
sequences, that is, ∼35% of UniProt. In this paper, we
claim that this information should be used in phylo-
genetics to build more accurate trees. We use a very
large database (extracted from HSSP) of globular pro-
tein alignments to estimate new amino acid replacement
matrices for various site structural configurations based
on solvent accessibility and secondary structure. We
use these matrices in simple substitution models that
account for 1) site structural configurations, 2) the fact
that structural annotations may not be fully reliable, and
3) the variability of rates across sites. We introduce fast
methods and programs to estimate our models and infer
phylogenetic trees using these models. The performance
of these models and programs is assessed using 300 in-
dependent test alignments. We show that using our
structural models greatly augments the likelihood val-
ues of inferred trees. Moreover, the tree topology is often
different in comparison with standard models (e.g., JTT,
WAG, or LG). In the following, we describe our data
sets, then the models and their estimation and imple-
mentation, and finally the experiments and results. Sup-
plementary material is provided in an online Appendix
available from: http://www.sysbio.oxfordjournals.org.
Our data, replacement matrices, detailed results for all
test alignments, and software are downloadable from
http://atgc.lirmm.fr/phyml-structure/.

DATA SETS

To estimate our models, we used a large database of
multiple globular protein alignments. It was extracted
from HSSP, which comprises∼50,000 alignments of pro-
tein families. Each alignment is obtained by aligning a
(seed) protein with known 3D structure in the PDB to
all its sequence homologues in Uniprot. The secondary
structure and solvent accessibility of the seed protein
are calculated using DSSP (Kabsch and Sander 1983)
and are likely to be representative of the structure of all
homologues in the alignment.

HSSP is highly redundant and contains a number
of gaps. We thus performed an intensive cleaning of
HSSP to extract independent alignments and, within
each of the alignments, to select sequences and sites cor-
responding to well-aligned, nongapped regions. More-
over, we discarded membrane proteins (based on their
presence in the membrane protein data bank Raman
et al. 2006), as they show quite specific patterns of amino
acid replacement (Jones et al. 1994). We obtained this
way a database comprising 1771 nonredundant align-
ments, with an average of ∼56 sequences and ∼254 sites

per alignment, ∼27 million amino acids in total and
very few gaps (<0.1%). Moreover, each of these align-
ments contains the seed protein of the original HSSP
alignment and thus (relatively) reliable annotations on
the solvent accessibility and secondary structure of each
of the sites. Using these annotations, we classified each
site as extended (E), alpha-helix (H), or other (S, T, B, G,
I, “.” or “?”). Based on their relative solvent accessibility
(Shrake and Rupley 1973), we also classified sites as
either buried or exposed; we used a 10% threshold of
relative accessibility, as in Goldman et al. (1998) and sev-
eral other studies. This threshold induces nearly equally
weighted buried and exposed categories. Finally, we
randomly selected 300 alignments for model compari-
son, whereas we used the remaining 1471 to train our
models.

We already used this cleaned alignment database
to estimate mixture models using amino acid replace-
ment matrices (Le, Lartillot, et al. 2008) and profiles (Le,
Gascuel, et al. 2008). Readers are referred to these papers
for details on the cleaning procedure. Note that the pur-
pose of these studies was different of this one. Indeed, in
mixture approaches, the protein structure is supposed
to be unknown when inferring trees, whereas here, we
shall use the available structural annotations to improve
the accuracy of substitution models and consequently
the reliability of tree reconstructions.

MODELS

Our models involve amino acid replacement matrices
that differ depending on the structural properties of the
sites (e.g., exposed/buried). We combine these matrices
accounting for both the structural annotations and the
fact that this information may not be fully reliable. We
first describe the replacement matrices and the way we
estimated them from the training data and then various
models to combine these matrices.

Amino Acid Replacement Matrices

We estimated replacement rate matrices for several
site partitions based on structural annotations. All
these matrices comply with the general time-reversible
model, which was first proposed for DNA sequences
(Lanave et al. 1984; Tavaré 1986), and then applied to
proteins through a number of empirical (as opposed to
mechanistic) models such as PAM, JTT, WAG, or LG (see
textbooks: e.g., Yang 2006; see also online Appendix 1).
One matrix was estimated per site category, and 3 parti-
tions were analyzed:

• EX is a 2-category partition corresponding to ex-
posed/buried sites.

• EHO is a 3-category partition corresponding to
extended/alpha-helix/other sites.

• EX EHO is a 6-category partition that combines both
previous criteria; sites are classified as: exposed &
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extended, buried & extended, exposed & alpha-helix,
buried & alpha-helix, exposed & other, or buried &
other.

To estimate the corresponding (2 + 3 + 6 = 11) replace-
ment matrices, we applied the procedure detailed in
Le and Gascuel (2008) and Le, Lartillot, et al. (2008)
to each site category. This procedure is based on the
maximum-likelihood (ML) principle and uses XRate
(Klosterman et al. 2006) and a new version of PhyML
(Guindon and Gascuel 2003), which implements our
multiple-matrix models (see below). A gamma distri-
bution of rates across sites (Yang 1993) is incorporated
in both the tree inference and the matrix estimation.
PhyML is used to estimate the phylogenies of each of
the 1471 training alignments using all the sites. In the
next step, we treat the phylogenies as fixed. We prepro-
cess the data to account for rate heterogeneity and then
use XRate to estimate the replacement matrix of each
structural category separately. Preprocessing involves
assigning each site to the most likely rate category and
rescaling the phylogeny associated to this site accord-
ingly (Le and Gascuel 2008). This procedure is iterated:
When a first set of matrices corresponding to the site
partition has been estimated, the phylogenies are rein-
ferred using this new model, the replacement matrices
are reestimated based on the new phylogenies, and so
on until convergence. All together, this estimation pro-
cedure improves considerably over standard counting
approaches that were used to estimate PAM and JTT
matrices as well as all matrices studied by Thorne et al.
(1996) and Goldman et al. (1998). It also outperforms the
ML procedure of Whelan and Goldman (2001), thanks
to the use of rates across sites in the matrix estimation
(Le and Gascuel 2008).

All these matrices are available from our Web site
and are compared with the (average) LG matrix. EX
and EHO matrices have already been analyzed in a
mixture context (Le, Lartillot, et al. 2008). One of the
main observations (see also Goldman et al. 1998) is
that the global average substitution rate is much higher
for exposed than for buried sites (ratio = 2.45). This is
an expected result as buried sites are subject to strong
structural constraints, whereas exposed sites are often
in the flexible and variable parts of the proteins. On
the other hand, the global average rate does not change
much among secondary structure categories, some sites
within each category being with strong structural con-
straints and the others not so. Moreover, each matrix
defines an equilibrium distribution of amino acids.
As expected, amino acid distributions are quite dif-
ferent among site categories. For example, the buried
category mostly contains hydrophobic amino acids,
whereas the helix category contains a large proportion
of alanines but very few prolines (commonly called
“helix-breakers”). Finally, the rates in the matrices (once
normalized, i.e., divided by the global average rate) also
differ among categories but to a lesser extent than amino
acid compositions. Again, the exposed/buried partition
induces higher contrasts among site categories than the

extended/helix/other partition and thus is expected to
bring more information on the substitution processes.

The secondary structure does not impose homoge-
neous structural constraints within each category. For
example, the “other” category contains some deeply
buried residues situated in the core of the proteins as
well as residues in the flexible regions. In the same
way, it is well known (e.g., Branden and Tooze 1999)
that a number of alpha-helices are amphiphilic, with
a side on the protein surface and the other side in the
protein core with strong structural constraints. The 6-
category partition EX EHO makes the secondary struc-
ture categorization effective. Indeed, there is a high
contrast among EX EHO categories. The slowest cat-
egory is “buried & other” (global rate = 0.535), the
fastest “exposed & helix” (global rate = 2.064), and the 2
buried/exposed helix categories clearly differ (rate ratio
∼ 2.8). Matrix entries are also more distant from aver-
age LG matrix than are the entries in uncombined EX
and EHO matrices. We thus expect good performance
of this crossed site partition in modeling amino acid
substitutions.

Models to Account for Site Structural Annotations

Amino acid replacement matrices are used to com-
pute the likelihood of the data, given a tree with branch
lengths, and the ML principle involves maximizing this
likelihood to search for the optimal tree (in most cases,
one must be satisfied with near optimal trees for com-
puting time reasons). Let D be the analyzed alignment
and Di the data at site i. When all sites are assumed
to belong to a single average category with replace-
ment matrix Q (e.g., JTT or WAG), the tree likelihood is
expressed using the independence assumption as

L(T,Q,Θ|D) =
∏

i

L(T,Q,Θ|Di), (1)

where the product runs over all the sites, T is the tree
(including branch lengths), Θ the set of additional
model parameters (typically the gamma distribution
parameter), and L(T,Q,Θ|Di) the likelihood of the data
at site i.

When the sites are classified into several known cate-
gories, the standard approach, called “partition model,”
uses this knowledge in a natural way. The partition
model is commonly used to account for different site
categories depending on codon positions or genes in
concatenated alignments (e.g., Rannala and Yang 2008).
Here, we consider structural categories, but the mathe-
matical formulation remains the same. Let C denote any
given category and Q = {QC} be the set of replacement
matrices corresponding to the studied categories; for
example, Q may contain the exposed and buried matri-
ces for the EX model. Moreover, let Ci be the category
of site i (e.g., “buried” or “exposed”) and {Ci} the set
of assignments for each site. Then, the tree likelihood is
equal to

L(T,Q, {Ci},Θ|D.) =
∏

i

L(T,QCi ,Θ|Di). (2)
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In other words, for each site, we simply use its associ-
ated replacement matrix. No free parameter is added
in comparison with single matrix–based Equation (1),
and the computing time remains basically unchanged
(at least when no extra parameters are added in Θ,
see below). Even though this approach is simple and
natural, we have not been able to find any paper re-
lating its performance with structural categories. Part
of the explanation derives from the fact that structural
annotations may be poor or noninformative for some
alignments. In these cases, some sites are analyzed
with inappropriate replacement matrices and the results
may be worse than using a single average matrix as in
Equation (1).

We refined the partition model to account for this
uncertainty in structural category assignment. A confi-
dence coefficient, denoted as χ, measures the reliability
of structural annotations. χ represents the fraction of
sites with reliable annotations in the alignment. When χ
is equal to 1, all structural annotations are used, just as
in Equation (2). When χ is less than 1, some annotations
are not reliable or not useful in a phylogenetic context.
Given an alignment, all the sites are analyzed using a
single χ value that is a free parameter estimated by ML
from the data. Moreover, we assume that no additional
knowledge is available to detect the sites with poor an-
notations (this hypothesis will be further discussed). For
each site, we thus envisage 2 possibilities (reliable/not
reliable), and the site likelihood is the weighted av-
erage of both corresponding likelihoods, following
the law of total probability. We studied 2 approaches
to deal with nonreliable annotations. In the simplest
one, we use a single standard average replacement ma-
trix denoted as Q (here LG), and the tree likelihood
is equal to

L(T,Q, {Ci},Θ|D) =
∏

i

[χL(T,QCi ,Θ|Di)

+(1− χ)L(T,Q,Θ|Di)]. (3)

In other words, we make a weighted sum of Equations
(1) and (2), assuming that Q is well suited to model the
substitutions of sites with poor structural annotations.
When χ is 0, structural annotations are not used and the
sites are analyzed with Q only.

In the second approach, we replace the single Q ma-
trix in Equation (3) by a mixture of matrices (models)
corresponding to all categories in the site partition. Mix-
tures are the standard approach when we assume that
the heterogeneity of substitution processes derives from
various site categories corresponding to different evo-
lutionary constraints but ignore the classification of the
sites into these categories (Gascuel and Guindon 2007).
Mixtures have been proposed as part of several substi-
tution models (e.g., Pagel and Meade 2005), including
with structural site categories where they show a clear
improvement over single-matrix models (Le, Lartillot,
et al. 2008). Let PC be the probability for any given site
to belong to category C. Using (again) the law of total

probability, the tree likelihood is given by

L(T,Q,Θ|D) =
∏

i

[
∑

C

PCL(T,QC,Θ|Di)

]

, (4)

where the total site likelihood is the weighted sum of
the site likelihoods for all possible categories. This ap-
proach performs well when the site partition is relevant
for the analyzed data set. In this case, the likelihood of
each site with the proper (unknown) category is much
larger than the likelihood with the average model, and
the weighted sum in Equation (4) tends to be larger
than the single term in Equation (1). As such a case
is encountered with most data sets (Le, Lartillot, et al.
2008), we combine Equation (2) with Equation (4) to
obtain

L(T,Q, {Ci},Θ|D)

=
∏

i

[

χL(T,QCi ,Θ|Di) + (1− χ)
∑

C

PCL(T,QC,Θ|Di)

]

.

(5)

When χ is 1 (annotations are fully reliable), this becomes
identical to the partition model (2), whereas when χ is 0
(annotations are just random), we use the mixture (4).
With mixtures, PC represents the probability of category
C. Structural category proportions are not the same for
all proteins, some only have alpha-helices and some beta
sheets only, whereas some have both (e.g., Branden and
Tooze 1999). PC proportions thus are free parameters to
be estimated for each analyzed data set. With our com-
pound model (5), the interpretation of PC proportions is
slightly different, as they represent the category propor-
tions among sites with nonreliable annotations. Again,
these proportions are free parameters estimated from
the data for each alignment separately.

As mentioned above, Θ contains additional model
parameters. In our case, Θ contains the shape parameter
of the gamma distribution, which defines the variability
of rates across sites (Yang 1993). This is used within ev-
ery structural category, including in Equation (1) where
all sites are analyzed with a unique replacement matrix.
As usual, the gamma distribution parameter is free and
estimated from the analyzed data. More sophisticated
models are conceivable, with different gamma distri-
butions among structural categories, but preliminary
experiments (not shown) did not reveal any significant
improvement, and a single gamma distribution of rates
is used in the following.

When using a single gamma distribution, the par-
tition model (2) does not add any free parameter to
standard model (1). Our first model (3) to account for
uncertainty adds a single free parameter (χ) to be es-
timated from the analyzed data. Let c be the number
of site categories; the mixture approach (4) adds c − 1
free parameters (category proportions) compared with
the standard model, whereas our second approach to
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accommodate for uncertainty (5) adds c free parame-
ters (χ and category proportions). Because of the nested
relationships of these models, the likelihood value us-
ing the confidence-based model (3) is guaranteed to be
higher than (or equal to) the likelihood values of the
standard (1) and partition (2) models. In the same way,
the confidence-based model (5) is guaranteed to obtain
better (or equal) likelihood values than (to) the partition
(2) and mixture (4) models, at least when the same tree
topology is analyzed. However, these gains in likeli-
hood could be counterbalanced by the larger number
of free parameters, necessitating a penalized likelihood
criterion such as Akaike information criterion (AIC;
Akaike 1974).

These models involve variable computing times,
which are basically proportional to the number of
categories used to analyze each of the sites (Bryant
et al. 2005). The partition model (2) thus requires nearly
the same time as the standard model (1), whereas the
confidence-based model (3) is 2 times slower than the
standard model, and the mixture (4) and confidence-
based (5) models are c times slower. The same ratios
apply to memory consumption. However, this analysis
is based on tree likelihood calculation only, whereas
model parameter estimation also induces significant
computational cost increase compared with the stan-
dard model (see illustrative examples below).

All these models are implemented in a new version of
PhyML (available from http://www.atgc-montpellier.fr
/phyml/structure/). An initial ML tree is first inferred
with LG in the usual manner, and then the chosen model
is used to refine this first tree, in terms of both topology
and branch lengths, with the model parameters (χ value,
category proportions, and gamma shape parameter) be-
ing adjusted along the way.

RESULTS AND DISCUSSION

In this section, we present the results obtained with
the 300 HSSP test alignments: 1) we show the likelihood
gains provided by our models compared with standard
approaches, 2) we analyze the values of our confidence
coefficient (χ) regarding the various structural cate-
gories, and 3) we discuss the impact on the topologies
of inferred trees.

Likelihood Gains

We used the 300 HSSP test alignments to compare
standard single-matrix models (JTT, WAG, and LG) to
our new models based on EX (solvent accessibility),
EHO (secondary structure), and EX EHO (both solvent
accessibility and secondary structure) site partitions.
For each of the multimatrix models, we used the 4 com-
binations detailed in the previous section:

• MIX is the mixture approach, expressed by Equation
(4), where the site categories are supposed to be
unknown.

• PART is the partition approach, expressed by Equa-
tion (2), where one uses the known HSSP site cate-
gories.

• CONF/LG is our first confidence-based approach,
expressed by Equation (3), where sites with unreli-
able annotations are analyzed using LG (HSSP ver-
sion, see below).

• CONF/MIX is our second confidence-based ap-
proach, expressed by Equation (5), where sites with
unreliable annotations are analyzed using a mixture.

These abbreviations are combined with the name
of the studied site partition; for example, EX PART
is the partition model with exposed and buried cate-
gories. All models were run using the new version of
PhyML (http://atgc.lirmm.fr/phyml-structure/) with
4 gamma rate categories (Γ4), BioNJ (Gascuel 1997)
starting tree, and subtree pruning and regrafting (SPR)–
based tree topology search (Hordijk and Gascuel 2005;
Guindon et al. 2010).

For all models, we measured the AIC (Akaike 1974)
on each of the test alignments:

AIC(M,D) = 2# parameters(M)− 2 ln L(M,T|D),

where # parameters(M) is the number of free param-
eters of model M and ln L(M,T|D) is the log-likelihood
value of alignment D given model M and inferred tree T.
This criterion has to be minimized; best scores are given
to models with low number of free parameters and high
likelihood value. We also computed the average AIC per
site of model M for all test alignments, which is simply

AIC/site(M) =
∑

D

AIC(M,D)

/
∑

D

s, (6)

where s is the number of sites in D. All models were
compared with LG using criterion (6) by computing
the difference AIC/site(LG) − AIC/site(M), which is
positive when M has a better fit than LG. To complete
this global average result, we also compared all models
with LG by counting the number of alignments where
AIC(M,D) is better/worse than AIC(LG,D). Moreover,
to assess the statistical significance of the observed dif-
ference between M and LG for any given alignment,
we used a Kishino–Hasegawa (KH; 1989) test with P <
0.01. As the number of free parameters may differ be-
tween M and LG, we used AIC-corrected log-likelihood
values instead of simple log-likelihood values (see
Shimodaira [1997] for explanations and justifications of
this procedure).

Average AIC results using criterion (6) are displayed
in Figure 1, whereas Figure 2 provides the number of
alignments where each model is (significantly) better/
worse than LG. Main observations and conclusions are
as follows.

The improvement from JTT to WAG and then LG is
quite significant. The AIC gain per site of LG compared
with JTT is 0.71, meaning that with 300 sites (standard
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282 SYSTEMATIC BIOLOGY VOL. 59

FIGURE 1. AIC gain per site compared with LG (and WAG and
JTT). All models are compared with LG (Le and Gascuel 2008) using
the average AIC/site criterion (Equation (6)), estimated with the 300
HSSP test alignments. Both WAG (Whelan and Goldman 2001) and
JTT (Jones et al. 1992) are worse than LG, with a negative difference
of −0.30 and −0.71, respectively. All multiple-matrix models are bet-
ter than LG with positive AIC/site difference. MIX =mixture model;
PART= partition model; CONF/LG= confidence-based model using
LG for nonreliable sites; CONF/MIX = confidence-based model us-
ing mixtures for nonreliable sites; EX=solvent accessibility–based site
partition; EHO= secondary structure–based site partition; EX EHO=
combination of EX and EHO site partitions.

length of protein alignments) the gain is as high as ∼200
AIC points, that is, ∼100 log-likelihood points. More-
over, LG is often significantly better than JTT and WAG,
but rarely worse.

We also tested a new version of LG, obtained from
HSSP instead of Pfam (Bateman et al. 2002), but using
the same estimation procedure as for original LG (Le
and Gascuel 2008). The aim was to check that the im-
provements provided by our new models do not derive
from HSSP training alignments, but from the models
themselves. Indeed, this HSSP version is only slightly
better than original LG with the 300 HSSP test align-
ments (AIC gain per site ∼0.02). Both LG versions are
actually very close (the correlation of log entries is equal
to 0.98), which shows that LG matrices are relatively sta-
ble when estimated from different general databases.

All our multiple-matrix models improve a lot com-
pared with single-matrix models, including LG. For
example, the gain between our best model (EX EHO
CONF/MIX; both solvent accessibility and secondary

structure site partitions, nonreliable sites are analyzed
using a mixture) and JTT is 1.96 AIC points per site,
meaning that with 300 sites the gain will be close to 600
AIC points. This gain is of the same magnitude as that
provided by the use of a gamma distribution of rates
across sites. For example, the gain between LG with
and without gamma distribution equals 2.90 with HSSP
test alignments, and similar values are found for JTT
and WAG. We thus believe that multiple-matrix models
should become standard in the near future, just as the
gamma distribution is standard today and used in most
phylogenetic analyses.

FIGURE 2. Number of alignments with better/worse likelihood
values than LG. Number of alignments (among the 300 HSSP test
alignments) where each model provides a better (positive side) and
a worse (negative side) likelihood value than LG. The black bars cor-
respond to the numbers of significant differences using the KH test
on AIC values with P < 0.01. MIX = mixture model; PART = parti-
tion model; CONF/LG = confidence-based model using LG for non-
reliable sites; CONF/MIX = confidence-based model using mixtures
for nonreliable sites; EX = solvent accessibility–based site partition;
EHO = secondary structure–based site partition; EX EHO = combi-
nation of EX and EHO site partitions.

However, using a gamma distribution of rates across
sites is still required with multiple-matrix models,
though they involve site categories with variable global
rates. For example, EX EHO CONF/MIX without
gamma distribution is not any better than LG + Γ4
(AIC gain per site < 0.01). Another example is PASSML
(Lio et al. 1998), which is clearly worse than JTT + Γ4
due to its lack of gamma distribution (AIC difference
per site ∼0.5; see online Appendix 2 for comparisons
of PASSML with our models). These results show that
sites within structural categories are not subject to the
same constraints and do not evolve at the same rate.
However, part of the rate heterogeneity is accounted
for by the structural categories and their variable global
rates; the estimated value of the gamma distribution
parameter tends to be higher (i.e., the rate variability is
lower) with our multimatrix models (∼0.9 on average)
than with single-matrix models (∼0.65 on average).

Overall, the site partition based on solvent accessi-
bility (EX) has higher gains than the secondary struc-
ture (EHO) partition, whereas the combination of both
(EX EHO) is clearly best. As discussed earlier, this il-
lustrates that secondary structures are not homoge-
neous, with highly conserved, hydrophobic sites, and
other sites situated in the exposed and variable regions.
However, EHO models clearly improve over single ma-
trices as they still account for a part of site heterogeneity.

The partition approach (PART) performs better than
mixtures (MIX), except with EHO where both obtain
similar average performance (see online Appendix 3 for
significance results). This is explained by the fact that
secondary structure annotation is somewhat arbitrary
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and not fully reliable; for example, the extremities of
alpha-helices are typically difficult to define. A quan-
titative measurement of this uncertainty is provided
below. With reliable annotations, PART benefits this
information and outperforms MIX.

Our confidence-based models (CONF/LG, which
uses LG for unreliable sites, and CONF/MIX using
a mixture instead of LG) clearly improve over both
PART and MIX. Due to nested relationships (see above),
CONF/MIX always has higher likelihood values than
MIX and PART. Figure 3 shows that the AIC differences
are significant in a large number of cases: CONF/MIX
is significantly better than MIX with >200 alignments
and significantly better than PART with 55–136 align-
ments. The AIC differences between CONF/LG, MIX,
and PART are positive in most cases, but less often
significant (see online Appendix 3). All these indicate
that some alignments (some sites within some align-
ments) are poorly annotated from a phylogenetic per-
spective and that our simple confidence-based models
offer efficient solutions to deal with this uncertainty.
CONF/MIX has better AIC values than CONF/LG
because unreliable sites are analyzed with a mixture that
outperforms LG in most cases. However, CONF/LG is
clearly of interest with EX EHO site partition where it is
about 3 times faster than CONF/MIX with similar like-
lihood performance. Actually, EX EHO CONF/LG is
even faster than EX CONF/MIX and EHO CONF/MIX,
although providing much better likelihood values. Its
interest would be even higher with a larger number of
categories, for example, combining 3 solvent accessibil-
ity categories (Le, Lartillot, et al. 2008) or 4 secondary
structure ones (Goldman et al. 1998), with a comput-
ing time still nearly equals to twice that required by
standard single-matrix models.

The computing time required by our best (and slow-
est) model, EX EHO CONF/MIX, is ∼9 times the com-

FIGURE 3. Comparison of CONF/MIX, PART, and MIX. Number
of alignments where CONF/MIX (confidence-based model using mix-
tures for nonreliable sites) is significantly better than MIX (mixture
model) and PART (partition model), using the KH test on AIC values
with P < 0.01. EX = solvent accessibility–based site partition; EHO =
secondary structure–based site partition; EX EHO = combination of
EX and EHO site partitions.

puting time required by LG with the same program
options (Γ4, SPR, etc.). The average running time with
the test alignments (∼56 sequences and ∼254 sites
on average) equals 40 and 4.5 min per alignment
using a standard PC (Intel(R) Xeon(R) 1.86 GHz) for
EX EHO CONF/MIX and LG, respectively. The slowest
alignment (1o98, 92 taxa, and 352 sites) requires 270 and
30 min for EX EHO CONF/MIX and LG, respectively,
but a number of alignments are dealt with much faster.
Other models require running times in between these
2 extreme models. The observed ratio of ∼9 between
EX EHO CONF/MIX and LG is significantly higher
than 6, as expected based on tree-likelihood calculation
(see above). The difference is basically explained by the
estimation of model parameters (i.e., χ, 5 category pro-
portions, and the gamma distribution parameter) that
are highly correlated.

All together, these results strongly support the use
in phylogenetics of solvent accessibility and secondary
structure annotations. Using this information in the
most appropriate way (EX EHO CONF/LG and EX
EHO CONF/MIX models) provides very high AIC
gains compared with the best known single matrices
(LG, WAG, or JTT), and these gains are significant for
most alignments (∼290/300 in our experiments). More-
over, computing times are still acceptable for most data
sets using standard computers.

Reliability and Usefulness of Structural Annotations

Our confidence coefficient χ in Equations (3) and (5)
is estimated separately for each of the alignments and
reflects the reliability of the annotations in the given
alignment. Actually, χ combines several factors: 1) pre-
cision of the annotation that may be somewhat arbitrary,
for example, at both alpha-helix extremities; 2) reliabil-
ity of the annotation, as some errors may be induced
by the complex computations to infer them from crys-
tallographic or nuclear magnetic resonance data (3D
structure elucidation, multiple alignment, DSSP, etc.;
3) conservation of the annotation, as the structures of
proteins in the multiple alignment may have evolved
and become slightly different to the structure of the seed
protein; and 4) usefulness of the annotation, which can
be more or less appropriate to analyze site evolution in
a phylogenetic context.

Figure 4 plots the distribution of χ depending on
the site partition with CONF/MIX model. The solvent
accessibility–based partition (EX) is associated with the
highest χ values (i.e., the most reliable annotations),
whereas EHO corresponds to the lowest ones. This is
an expected result, as solvent accessibility is well de-
fined and associated with high-likelihood gains (Fig. 1),
whereas secondary structure annotations are not fully
precise and useful, as seen from Figure 1 where the
partition approach (PART) is not any better than the
mixture (MIX). When combining these 2 site partitions
to obtain EX EHO, the χ values are intermediary. This
reflects both the uncertainty in EX EHO annotations,

 by guest on July 8, 2012
http://sysbio.oxfordjournals.org/

D
ow

nloaded from
 

http://sysbio.oxfordjournals.org/


284 SYSTEMATIC BIOLOGY VOL. 59

FIGURE 4. Distribution of the confidence coefficient χ depending on the site partition. This graph was obtained with CONF/MIX
(confidence-based model using mixtures for nonreliable sites) and the 300 HSSP test alignments. When χ equals 1, annotations are fully re-
liable, whereas χ= 0 means that available annotations are not any better than random guessing. EX = solvent accessibility–based site partition;
EHO = secondary structure–based site partition; EX EHO = combination of EX and EHO site partitions.

which cannot be more reliable and precise than EHO
annotations, and the fact that the 6 EX EHO categories
are specially relevant and useful in a phylogenetic con-
text. Overall, we thus see that χ combines several differ-
ent aspects. Moreover, Figure 4 shows that the χ values
are highly variable, ranging from ∼0 to ∼1. Further
investigation would be needed to characterize the sites
and alignments with poor annotation and build new
models, for example, with χ values modulated along
the sequences (typically close to 0 at alpha-helix extrem-
ities) and among proteins (e.g., disregarding secondary
structure with small proteins dominated by disulfide
bridges).

Topological Impact

The true tree is usually unknown with real data (as
opposed to simulated data), and thus, it is hard to as-
sess the topological accuracy induced by any tree build-
ing approach in a realistic setting. Here, we studied the
topological impact of our models, that is, whether using
these models, we frequently infer trees that differ from
those inferred with standard models.

Using the 300 HSSP test alignments and previous
experimental conditions (Γ4, SPR tree search, etc.), we
compared the topologies obtained with our multiple-
matrix models with the LG topologies. We counted the
number of alignments where the tree built using any
given model M is not the same as the tree inferred with
LG. Both M and LG trees were also compared using
the Robinson and Foulds (1979) distance, which is the
number of clades that belong to one tree but not to the
other. When different topologies are found, one should
prefer the one with best likelihood value, or best AIC
(or similar criterion) value, when evolutionary models
used for tree inference involve different numbers of pa-
rameters. However, the difference may be slight and
nonsignificant, so one cannot reject the topology with a
lower fit to data. We thus counted the number of align-
ments where M and LG topologies differ, and where M
is significantly better than LG, using a KH test on AIC
values with P < 0.01.

Finally, we checked that the observed topological dif-
ferences comprised some clades with significant sup-
port. Indeed, the topological impact would be low
if all differences corresponded to poorly supported
clades. To this end, we performed bootstrap analyses
and compared the topologies and clade supports of
EX EHO CONF/MIX (our best model), LG, and JTT.
We counted the number of clades with notable boot-
strap support (BP1 ≥ 50%) in one tree, which were not
recovered in the other tree, or had a much lower sup-
port in this tree (BP2 + 50% ≤ BP1). For example, one
clade with BP1 = 40% was not counted, even when it
was not recovered in the other tree; on the opposite, one
clade with BP1 = 80% in one tree was counted when it
was found in the other tree with BP2 = 20%. This mea-
sure thus summarizes the topological and clade support
differences. We used only 50 bootstrap replicates for
computing time reasons, but the differences in clade
supports corresponding to our gap of 50% between BP1
and BP2 are highly significant (P value ∼0.0 using a
z-test for 2 proportions). Moreover, 50% of bootstrap
support was shown to be optimal in terms of topologi-
cal error (Berry and Gascuel 1996; see also Holder et al.
2008).

Results are displayed in Table 1. We see that all
models frequently infer topologies that differ from LG
topologies. Moreover, these topologies are significantly
better than LG topologies in most cases. For example,
EX EHO CONF/MIX finds 230 topologies that differ
from LG ones, and among these 225 correspond to sig-
nificant AIC gains. In practice, one should thus retain
EX EHO CONF/MIX topology and discard LG one
with 225 alignments among 300. The difference with
JTT is even larger, as EX EHO CONF/MIX topology
should be retained with 248 alignments. The topolog-
ical distance between these trees is also appreciable.
Comparing LG and EX EHO CONF/MIX, the average
distance equals 0.136, meaning that on average, the LG
and EX EHO CONF/MIX topologies differ with ∼11
clades (among ∼106 on average). With JTT the average
topological distance with EX EHO CONF/MIX trees is
even larger and corresponds to ∼14 clades on average.
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TABLE 1. Topological impact

MIX PART CONF/LG CONF/MIX

EX
/=LG top 210 (158) 219 (171) 172 (162) 207 (191)

R&F LG top 0.127 0.140 0.061 0.117
EHO
/=LG top 177 (122) 200 (108) 157 (110) 186 (147)

R&F LG top 0.098 0.117 0.053 0.103
EX EHO
/=LG top 214 (184) 232 (208) 195 (190) 230 (225)

R&F LG top 0.132 0.157 0.075 0.136

Notes: These results are obtained with the 300 HSSP test alignments.
“ /=LG top” is the number of alignments (among 300) where given
model and LG topologies differ; the bracketed number is the num-
ber of cases where given model topology has significantly better AIC
value than LG topology (KH test on AIC values with P < 0.01;
each topology is analyzed with its own model). “R&F LG top” is
the average Robinson and Foulds (1979) topological distance between
given model and LG topologies for all 300 alignments; this distance
is normalized between 0 (both trees are identical) and 1 (they do not
share any clade in common). MIX = mixture model; PART = parti-
tion model; CONF/LG = confidence-based model using LG for non-
reliable sites; CONF/MIX = confidence-based model using mixtures
for nonreliable sites; EX = solvent accessibility–based site partition;
EHO = secondary structure–based site partition; EX EHO = combi-
nation of EX and EHO site partitions.

Bootstrap analyses result in 171 alignments where
LG and EX EHO CONF/MIX trees differ by at least
one clade with notable support (BP1 ≥ BP2 + 50%,
see above); the total number of such clades equals 338
with all 300 HSSP test alignments. Comparing JTT and
EX EHO CONF/MIX, we found 213 alignments where
both trees have notable differences, corresponding to
509 clades in total. These numbers of clades (<2 per
alignment on average) are low compared with the topo-
logical differences obtained with the standard Robinson
and Foulds topological distance. This effect was ex-
pected, as it is commonly observed in phylogenetics that
clades with strong support tend to be recovered with all
models and inference methods. To scale the differences
observed between JTT, LG, and EX EHO CONF/MIX,
we thus used the same protocol to compare LG + Γ4
(as in former experiments) and LG without gamma dis-
tribution of rates across sites; we found 209 alignments
where trees show notable differences, corresponding to
510 clades in total. These results are very close to those
of JTT versus EX EHO CONF/MIX. This indicates that
the topological impact of our models versus standard
models (JTT, WAG, and LG) is in the same range as that
induced by the use of a gamma distribution of rates, a
finding which is consistent with the results above on
likelihood gains.

Table 1 (without regard on branch supports) seems
to indicate that the topological impact of CONF/LG
models is lower than that of CONF/MIX ones. Most
notably, the topological distance with LG trees is about
twice lower for CONF/LG than for CONF/MIX, thus
showing some (expected) closeness between CONF/LG
and LG. However, when only counting clades with
notable support difference (BP1 ≥ BP2 + 50%, see
above), CONF/LG has similar impact as CONF/MIX.

Comparing EX EHO CONF/LG and JTT (LG), we
found 225 (168) alignments where both inferred trees
have notable differences, corresponding to 530 (323)
clades in total. With JTT, these results are even a bit
higher than those obtained by EX EHO CONF/MIX
(209 alignments corresponding to 510 clades). More-
over, as expected, there is a few notable differences
between EX EHO CONF/LG and EX EHO CONF/MIX
(61 clades in total). This further supports the use of
CONF/LG models, which obtain similar likelihood val-
ues and topologies as CONF/MIX models, but require
much lower computing times.

All together, these results demonstrate that our mod-
els have a notable topological impact. Although it is not
clear whether the resulting topologies are closer to the
true phylogenies, they are, in most cases, different from
the topologies inferred using standard models (JTT,
WAG, LG, etc.), with significantly higher likelihood val-
ues and new well-supported clades. These alternative
topologies should thus be of great interest for phyloge-
neticists. Just as was observed with other substitution
model improvements (e.g., transition/transversion for
DNA in Kimura 1980 or gamma-distributed site rates
in ML methods by Yang 1993), it is most likely that the
high likelihood gains obtained here will also result in
more accurate phylogeny reconstructions.

CONCLUSIONS AND PERSPECTIVES

We have described simple phylogenetic models to
benefit from the structural annotations available for a
large number of proteins (∼50,000 entries in PDB and
∼35% of Uniprot covered by HSSP). These models con-
tinue previous research, mainly by Koshi and Goldstein
(1995), Thorne et al. (1996), and Goldman et al. (1998).
Our results confirm their observations that evolution-
ary processes are quite heterogeneous depending on
site structural configurations and that highly signifi-
cant likelihood gains are obtained when accounting for
this heterogeneity. The main difference between these
previous studies and our paper is that we explicitly
use available structural annotations, whereas their ap-
proaches were based on mixtures or HMMs, where
all structural categories were envisaged for each site,
a solution imposed by the low number of 3D struc-
tures available in the 1990s. Moreover, our models cope
with the uncertainty inherent in structural annotations
and include a gamma distribution of rates across sites,
which is an essential component in substitution model-
ing. All together, our models provide likelihood gains
over standard models (JTT, WAG, and LG) that are of
the same magnitude as the gain obtained by adding a
gamma distribution of site rates to standard models.
The topological impact of these new models is also no-
table and (again) in the same range as that induced by
the use of a gamma distribution with standard models.
We thus believe that accounting for structural annota-
tions in protein phylogenetics should become routine
in near future using our models or their foreseeable
refinements.
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Several research directions deserve to be explored.
First, some tools should be implemented to connect
the phylogeny domain to structural bioinformatics. For
example, extracting and synthesizing the structural an-
notations associated with multiple alignments is still a
difficult task, despite the progress of some recent Web
servers (e.g., Pollastri et al. 2007). Moreover, our models
could be refined in several ways, for example, using dif-
ferent structural categories (e.g., 3 exposure classes,
other groupings of the 8 DSSP secondary structure
states), or studying solutions with variable confidence
coefficients (χ) among site categories or along the se-
quences. Finally, we have described general models for
globular proteins, but it is well known that substitution
processes vary among life domains (e.g., apicomplexa
or viruses) and protein groups (e.g., mitochondrial or
membrane proteins). Specific substitution rate matrices
and models should be estimated and implemented to
analyze these data and nonglobular proteins.

SUPPLEMENTARY MATERIAL

Supplementary material can be found at http://www
.sysbio.oxfordjournals.org/.
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Mark Holder, Clemens Lakner, Nicolas Lartillot, Juliette
Martin, David Posada, Aylwyn Scally, and Hidetoshi
Shimodaira for discussions, comments, and help.

REFERENCES

Akaike H. 1974. A new look at statistical model identification. IEEE
Trans. Automat. Control. 19:716–722.

Bateman A., Birney E., Cerruti L., Durbin R., Etwiller L., Eddy S.R.,
Griffiths-Jones S., Howe K.L., Marshall M., Sonnhammer E.L.L.
2002. The Pfam protein families database. Nucleic Acids Res.
30:276–280. Available from: http://pfam.cgb.ki.se/.

Berman H.M., Westbrook J., Feng Z., Gilliland G., Bhat T.N., Weissig
H., Shindyalov I.N., Bourne P.E. 2000. The protein data bank. Nu-
cleic Acids Res. 28:235–242. Available from: http://www.pdb.org.

Berry V., Gascuel O. 1996. Interpretation of bootstrap trees: threshold
of clade selection and induced gain. Mol. Biol. Evol. 13:999–1011.

Branden C., Tooze J. 1999. Introduction to protein structure. 2nd ed.
New York: Garland Publishing.

Bryant D., Galtier N., Poursat M.A. 2005. Likelihood calculations in
phylogenetics. In: Gascuel O., editor. Mathematics of evolution and
phylogeny. Oxford: Oxford University Press. p. 33–62.

Chothia C., Lesk A.M. 1986. The relation between the divergence of
sequence and structure in proteins. EMBO J. 5:823–826.

Dayhoff M.O., Eyck R.V., Park C.M. 1972. A model of evolution-
ary change in proteins. In: Dayhoff M.O., editor. Atlas of protein
sequence and structure. Vol. 5. Washington: National Biomedical
Research Foundation. p. 89–99.

Felsenstein J. 2003. Inferring phylogenies. Sunderland (MA): Sinauer
Associates, Inc.

Gascuel O. 1997. BIONJ: an improved version of the NJ algorithm
based on a simple method of sequence data. Mol. Biol. Evol. 14:
685–695.

Gascuel O., Guindon S. 2007. Modelling the variability of evolution-
ary processes. In: Gascuel O., Steels M., editors. Reconstructing
evolution: new mathematical and computational advances. Oxford:
Oxford University Press. p. 65–99.

Goldman N., Thorne J.L., Jones D.T. 1998. Assessing the impact of
secondary structure and solvent accessibility on protein evolution.
Genetics. 149:445–458.

Guindon S., Gascuel O. 2003. A simple, fast and accurate algorithm
to estimate large phylogenies by maximum likelihood. Syst. Biol.
52:696–704.

Guindon S., Dufayard J.-F., Lefort V., Anisimova M., Hordijk W.,
Gascuel O. 2010. New algorithms and methods to estimate
maximum-likelihood phylogenies: assessing the performance of
PhyML 3.0. Syst. Biol. 59(3):307–321.

Holder M.T., Sukumaran J., Lewis P.O. 2008. A justification for re-
porting the majority-rule consensus tree in Bayesian phylogenetics.
Syst. Biol. 57:814–821.

Holmes I., Rubin G.M. 2002. An expectation maximization algorithm
for training hidden substitution models. J. Mol. Biol. 317:753–
764.

Hordijk W., Gascuel O. 2005. Improving the efficiency of SPR moves
in phylogenetic tree search methods based on maximum likelihood.
Bioinformatics. 21(24):4338–4347.

Jones D.T., Taylor W.R., Thornton J.M. 1994. A mutation data matrix
for transmembrane proteins. FEBS Lett. 339:269–275.

Jones D.T., Taylor W.R., Thornton J.M. 1992. The rapid generation of
mutation data matrices from protein sequences. Comput. Appl.
Biosci. 8:275–282.

Kabsch W., Sander C. 1983. Dictionary of protein secondary structure:
pattern recognition of hydrogen-bonded and geometrical features.
Biopolymers. 22:2577–2637.

Kimura M. 1980. A simple method for estimating evolutionary rates
of base substitutions through comparative studies of nucleotide
sequences. J. Mol. Evol. 16:111–120.

Kishino H., Hasegawa M. 1989. Evaluation of the maximum likelihood
estimate of the evolutionary tree topologies from DNA sequence
data, and the branching order in Hominoidea. J. Mol. Evol. 29:170–
179.

Klosterman P.S., Uzilov A.V., Bendaña Y.R., Bradley R.K., Chao S.,
Kosiol C., Goldman N., Holmes I. 2006. XRate: a fast prototyping,
training and annotation tool for phylo-grammars. BMC Bioinfor-
matics. 7(1):428.

Koshi J.M., Goldstein R.A. 1995. Context-dependent optimal substitu-
tion matrices. Protein Eng. 8:641–645.

Lanave C., Preparata G., Saccone C., Serio G. 1984. A new method for
calculating evolutionary substitution rates. J. Mol. Evol. 20:86–93.

Le S.Q., Gascuel O. 2008. An improved general amino-acid replace-
ment matrix. Mol. Biol. Evol. 25:1307–1320.

Le S.Q., Gascuel O., Lartillot N. 2008. Empirical profile mixture models
for phylogenetic reconstruction. Bioinformatics. 24:2317–2323.

Le S.Q., Lartillot N., Gascuel. 2008. Phylogenetic mixture models for
proteins. Philos. Trans. R. Soc. B. 363:3965–3976.

Lio P., Goldman N., Thorne J.L., Jones D.T. 1998. PASSML: combining
evolutionary inference and protein secondary structure prediction.
Bioinformatics. 14:726–733.

Pagel M., Meade A. 2005. Mixture models in phylogenetic inference.
In: Gascuel O., editor. Mathematics of evolution and phylogeny.
Oxford: Oxford University Press. p. 121–142.

Pollastri G., Martin A.J.M., Mooney C., Vullo C. 2007. Accurate pre-
diction of protein secondary structure and solvent accessibility by
consensus combiners of sequence and structure information. BMC
Bioinformatics. 8:201.

Raman P., Cherezov V., Caffrey M. 2006. The membrane protein data
bank. Cell. Mol. Life Sci. 63:36–51.

Rannala B., Yang Z.Z. 2008. Phylogenetic inference using whole
genomes. Annu. Rev. Genomics Hum. Genet. 9:217–231.

Robinson D., Foulds L. 1979. Comparison of weighted labeled trees.
Berlin (Germany): Springer-Verlag (Lecture notes in mathematics;
vol. 748), p. 119–126.

Schneider R., de Daruvar A., Sander C. 1997. The HSSP database
of protein structure-sequence alignments. Nucleic Acids Res. 25:
226–230.

Shimodaira H. 1997. Assessing the error probability of the model
selection test. Ann. Inst. Stat. Math. 49:395–410.

 by guest on July 8, 2012
http://sysbio.oxfordjournals.org/

D
ow

nloaded from
 

http://sysbio.oxfordjournals.org/


2010 LE AND GASCUEL—ACCOUNTING FOR STRUCTURE IN PROTEIN PHYLOGENETICS 287

Shrake A., Rupley J.A. 1973. Environment and exposure to solvent of
protein atoms. Lysozyme and insulin. J. Mol. Biol. 79:351–372.
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