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ROBUSTNESS OF PHYLOGENETIC INFERENCE BASED ON MINIMUMEVOLUTIONFabio Pardi1, Sylvain Guillemot1, Olivier Gascuel1Abstract. Minimum evolution is the guiding principle of an important class of distance-based phylogeny reconstruction methods, including neighbor-joining (NJ), which is the mostcited tree inference algorithm to date. The minimum evolution principle involves searchingfor the tree with minimum length, where the length is estimated using various least-squarescriteria. Since evolutionary distances cannot be known precisely but only estimated, it isimportant to investigate the robustness of phylogenetic reconstruction to imprecise estimatesfor these distances. The safety radius is a measure of this robustness: it consists of themaximum relative deviation that the input distances can have from the correct distances,without compromising the reconstruction of the correct tree structure. Answering some openquestions, we here derive the safety radius of two popular minimum evolution criteria: bal-anced minimum evolution (BME) and minimum evolution based on ordinary least squares(OLS+ME). Whereas BME has a radius of 1

2
, which is the best achievable, OLS+ME has aradius tending to 0 as the number of taxa increases. This di�erence may explain the gap inreconstruction accuracy observed in practice between OLS+ME and BME (which forms thebasis of popular programs such as NJ and FastME).1. IntroductionMinimum evolution methods for reconstructing phylogenetic trees [15, 20] are based uponthe following informal idea: given a matrix of distances between each pair of taxa in a set,reconstruct the phylogenetic tree for these taxa that implies the minimum amount of evolutionin order to explain the given distances. In practice a method to estimate the length of anypossible tree structure is speci�ed and minimum evolution aims to reconstruct the tree with theminimum length estimate.Several types of minimum evolution can then be de�ned based on the di�erent methods forestimating the tree length. In this paper we deal with two important versions of minimumevolution: the one based on an ordinary least squares technique for length estimation, and theone based on an increasingly popular �balanced� technique. We call these versions OLS+MEand BME, respectively.OLS+ME is based on a method for estimating branch lengths which originated from thework by Cavalli-Sforza and Edwards [6, 7] and was the �rst version of minimum evolution to beKey words and phrases. phylogenetics, distance methods, minimum evolution, least squares, safety radius.1Méthodes et Algorithmes pour la Bioinformatique, LIRMM, CNRS - Université de Montpellier, 161 rue Ada,34392 - Montpellier, France 1



ROBUSTNESS OF PHYLOGENETIC INFERENCE BASED ON MINIMUM EVOLUTION 2proposed [15, 20]. It is introduced in more detail in the next section. Interestingly, neighbor-joining (NJ) � one of the most popular algorithms for tree reconstruction � has been shownto have some connections with OLS+ME [23, 18].However, further mathematical investigation showed that NJ is much more tightly related tothe other criterion we study, BME: in fact, NJ turns out to be a greedy agglomerative algorithmaiming to construct the optimal tree with respect to this criterion [10, 14]. The vast popularityof NJ (more than 20,000 citations for the original paper [23] on Google Scholar), the fact thatBME length estimates are biologically meaningful variants of the least squares estimates [9],the computational e�ciency of the proposed heuristics for BME [8] and, last but not least, thehigh accuracy of these heuristics observed in simulation studies [8, 26, 9] justify the growingimportance of BME as a criterion for reconstructing phylogenetic trees. Again, a more detailedaccount of BME is given in the next section.BME and OLS+ME share an important property: if the distances in input perfectly corre-spond to the distances between leaves in a tree with branch lengths, then these criteria identifythis tree as the correct one. Evolutionary distances are estimated using genetic sequences orany other comparative data from the taxa under consideration. Ideal estimation proceduresshould ensure that, as the amount of compared data increases, the estimated distances convergeto those in the correct phylogenetic tree, which means that the property just stated is equiva-lent to the statistical consistency of these tree reconstruction methods. In fact consistency isa desirable property for any minimum evolution method [27], and more generally for all treereconstruction methods.Note however that the amount of data is usually limited, and the models used to estimate thedistances are usually only rough approximations of the reality. As a consequence, the estimateddistances δ will somehow deviate from the distances d
T in the correct tree T and the accuracyof tree reconstruction will depend on its robustness to such deviations. De�ne the L∞ di�erencebetween δ and d

T as ∥

∥

∥δ − d
T

∥

∥

∥

∞
= maxi,j |δij − dTij |, where i and j denote two taxa; then, ameasure of this robustness, proposed by Atteson [1], is the safety radius de�ned in the followingway, where `Tmin denotes the length of the shortest branch in T :De�nition 1. A distance-based tree reconstruction method has safety radius α [over n taxa]if, for every weighted bifurcating tree T [over a set of size n] and any distances δ such that

∥

∥

∥δ − d
T

∥

∥

∥

∞
< α`Tmin,the method reconstructs the topology of T .Note the distinction between the safety radius over a given number of taxa, and safety radiustout-court.An important remark is that there are distances δ which lie at 1

2`Tmin not only from d
T , butalso from the distances d

T ′ in a tree T ′ with a di�erent topology from that of T [1]. This impliesthat: (1) robustness must be measured relative to the length of the shortest branch in T , as nomaximum value for the di�erence between δ and d
T can guarantee a correct tree reconstruction



ROBUSTNESS OF PHYLOGENETIC INFERENCE BASED ON MINIMUM EVOLUTION 3if nothing is assumed regarding `Tmin; (2) no method reconstructing a unique tree can have asafety radius greater than 1
2 .Atteson [1] also proved that a number of agglomerative algorithms, including NJ, have optimalsafety radius 1

2 . A related result was recently shown by Bordewich et al. [3], who proved thatanother heuristic aimed at minimizing BME (based on subtree pruning and regrafting) has atleast radius 1
3 .Note that these results are about heuristics for minimum evolution, not the criterion itself.Here, we identify the safety radius of a tree reconstruction criterion as the safety radius of anyalgorithm returning the optimal tree with respect to that criterion. Although there is no versionof minimum evolution for which we have a practical algorithm for this task, it would still beinteresting to know the safety radius that such an algorithm would have, as this may give someinsight about the e�ectiveness of the heuristic algortihms used in practice. (We note that, atleast in the case of BME, this optimisation problem is NP-hard: manuscript in preparation.)What is then known about the safety radii of minimum evolution criteria? For BME, Bor-dewich et al. [3] have extended their result and proved that also the BME criterion has radiusat least 1

3 . As for OLS+ME, Willson [28] proved that the safety radius over n taxa is limitedabove by a function tending to 1
4 , as n tends to in�nity. Another relevant result was obtainedby Gascuel and McKenzie [13] for the case where both the estimation of branch lengths and theselection of a tree structure are based on a least squares criterion. They proved that when thiscriterion is constrained to produce ultrametric trees (i.e., rooted trees in which all leaves havethe same distance from the root), its radius tends to 0 as the the number of taxa increases. Thisresult has relevance for the practice of hierarchical clustering, where the ultrametric constraint isusually required, but it does not immediately imply anything regarding the radius of OLS+ME,of relevance in phylogenetics.The present paper concludes the debate regarding the radii of BME and OLS+ME. We provethat (as conjectured [3]) BME has radius 1

2 and that the result by Willson on the relativesensitiveness of OLS+ME can be strengthened: its safety radius actually tends to 0, as ntends to in�nity. There is then a large gap between the safety radius of BME (the maximumpossible) and that of OLS+ME (the minimum possible), which is consistent with the greaterreconstruction accuracy of BME observed in several simulation studies [22, 16, 11, 8].The paper is organised as follows: after some necessary notational preliminaries (Sec. 2), weproceed to prove the stated results about BME (Sec. 3) and OLS+ME (Sec. 4). In section 5 wediscuss the implications of these results on the heuristics that are used in practice for BME andOLS+ME. Finally, in the Appendix, we discuss the possibility of extending our positive resultson the robustness of BME to other ME methods: in particular, we prove that such an extensionis not possible for an obvious candidate class generalizing BME.2. PreliminariesA phylogenetic tree over a set X is a tree (in the graph-theoretic sense) whose leaves are bi-jectively labeled by the elements of X , called taxa. Here, for convenience of notation, we assume



ROBUSTNESS OF PHYLOGENETIC INFERENCE BASED ON MINIMUM EVOLUTION 4
X = {1, 2, . . . , n}. A weighted phylogenetic tree is a phylogenetic tree whose branches (edges)are assigned lengths (usually non-negative) typically representing the amount of evolution thathas occurred between their endpoints. A phylogenetic tree that is not weighted is also called atopology and we say that a weighted phylogenetic tree T has topology T if T can be obtainedfrom T by assigning lengths to the branches of T . Note that, in this paper, calligraphic letters(such as T and W) denote weighted phylogenetic trees and their corresponding italic symbols(such as T and W ) denote their topologies. The length of branch e in a tree T is denoted by
`Te . The length of the shortest branch in T is denoted by `Tmin.A phylogenetic tree is rooted if one of its nodes is designated as its root, representing theancestor of all the taxa in the tree. Except in one occasion (Lemma 8), we assume that the treeswe deal with do not have a root. A phylogenetic tree is said to be bifurcating if every internal(i.e., non-leaf) node has degree three, with the exception of the root, if there is one, which isrequired to have degree two. For simplicity, in this paper we only deal with bifurcating trees.Every branch e of a phylogenetic tree over X induces a bipartition of X consisting of the twosets of taxa in the two connected components obtained by deleting e. The bipartitions {A, B}induced in this way by the branches of a phylogenetic tree are called its splits and are denotedby A|B. A clade of a phylogenetic tree over X is a subset A ⊆ X such that A|(X\A) is oneof the tree's splits. A classic result in phylogenetics is that the topology of a phylogenetic treeis determined, up to isomorphism, by the set of its splits [5], or equivalently by the set of itsclades. For this reason, we here identify a topology with the set of its splits, which allows us towrite propositions such as A|B ∈ T and T 6= W . We also make no distinction between branchesof a tree and the splits they induce, which justi�es the use of expressions such as `T

A|B and e ∈ T(where e is a branch).Given a weighted phylogenetic tree T , the distance in T between taxa i and j, denoted dTij ,is the sum of the branch lengths in the path between i and j in T . The matrix containingthe distances in T between each pair of taxa is denoted by d
T = (dTij). Distance methods forphylogenetic reconstruction are based upon the assumption that a distance matrix δ = (δij),somewhat approximating d

T in an unknown tree, is given in input. Here, the only assumptionson δ will be that, for every i and j in {1, 2, . . . , n}, δii = 0 and δij = δji ≥ 0. (Althoughthe δij are not, strictly speaking, necessarily distances, the use of this term is standard inphylogenetics.) In the practice of phylogenetic tree reconstruction, the distances δ are obtained(from molecular or morphological data) with various techniques aiming to estimate the distances
d
T in the �true� evolutionary tree T that generated the taxa of interest. The aim of distancemethods is to reconstruct this unknown �true� tree.Minimum evolution (ME) is a class of distance methods based upon the two following logicalcomponents:(1) establish how to assign branch lengths to any given topology T so that the distances dT̂ijin the resulting weighted tree T̂ ��t� the distances δij given in input;



ROBUSTNESS OF PHYLOGENETIC INFERENCE BASED ON MINIMUM EVOLUTION 5(2) �look for� the bifurcating topology T that results in the weighted tree T̂ of minimum�length�.Clearly these two steps are loosely de�ned. Di�erent ways of de�ning the terms in quotes leadto di�erent versions of ME.Although other approaches are possible [15, 25, 12] (di�ering in the way they deal withnegative branch lengths), we here de�ne the length of a weighted tree as the sum of all itsbranches' lengths [20]; in symbols:
L(T ) =

∑

e∈T
`Te .Here we study two versions of ME that di�er for the chosen approach for the �rst component,branch length estimation. Possibly the simplest method for this step, called OLS (ordinary leastsquares), is to look for the branch length assigment that minimises the sum ∑

ij(δij − dT̂ij)
2. Inthis case, the optimal branch lengths are linear functions of δ (see, e.g., the book chapter byDesper and Gascuel [10]). Therefore, also the total length of the �tted tree T̂ is a linear functionof δ, which we denote by ST (δ). We call OLS+ME the version of ME using ST (δ) to estimatethe length of T . Formally, OLS+ME aims to reconstruct T ∗ = argminT ST (δ), where T rangesover all bifurcating topologies over the input taxa.The second method for branch length estimation that we study here is the balanced method.The branch length estimates, in this case, are optimal with respect to a weighted version of theleast squares approach sketched above. We refer the reader to other sources for a more detailedintroduction [19, 9, 24, 14]. For our purposes it su�ces to know that the length of the �ttedtree of bifurcating topology T is given by a simple, again linear, function of δ (due to Pauplin[19]):(2.1) BT (δ) :=

∑

i<j

21−tij δij ,where tij indicates the topological distance between i and j, that is, the number of branches inthe path between i and j in T . We call BME the version of ME using BT (δ) to estimate thelength of T . Formally, BME aims to reconstruct T ∗ = argminT BT (δ), where T ranges againover all bifurcating topologies over the input taxa.2.1. Characterization of general linear formulae for estimating tree length. The factthat ST (δ) and BT (δ) are both linear functions of δ is not surprising, as it can be shown thatoptimizing branch lengths with respect to a large class of generalisations of the least squaresapproach always results in linear functions of the input distances [4]. Furthermore, ST (δ)and BT (δ) have a number of properties that make them suitable for use in combination withminimum evolution [27]. We brie�y summarize these properties here, as some of the statementsin the rest of this paper are best expressed in terms of the general class of functions satisfyingthese properties. We start by de�ning a generalisation of the notion of split metric: [2]



ROBUSTNESS OF PHYLOGENETIC INFERENCE BASED ON MINIMUM EVOLUTION 6De�nition 2. Let A and B be disjoint subsets of {1, 2, . . . , n}; σA|B is de�ned by
σ

A|B
ij =







1 if one between i and j belongs to A and the other to B,

0 otherwise.Note that if T is a weighted tree with topology T , then(2.2) d
T =

∑

A|B∈T

`TA|Bσ
A|B.This follows from the fact that σ

A|B
ij = 1 if and only if the branch corresponding to A|B is onthe path joining i to j in T .The most basic requirement of any linear function LT (δ) for estimating the length of a tree

T is that it should give its correct length given perfect data. As remarked below, the functionssatisfying this requirement are precisely those in the following class [27].De�nition 3. Let T be a topology over {1, 2, . . . , n}. We denote by U(T ) the class of linearfunctions LT of any n × n distance matrix, such that LT (σA|B) = 1 for every split A|B of T .Remark. By using the decomposition in (2.2) and the linearity of LT it is easy to see that thefunctions in U(T ) are precisely the linear functions such that LT (dT ) = L(T ), for any weightedtree T with topology T .Note that if we write LT (δ) =
∑

i<j cT
ijδij then the quantity above can simply be expressedas the sum of the coe�cients for pairs of taxa in A × B:

LT (σA|B) =
∑

i∈A
j∈B

cT
ij ,where cT

ij with i > j is the same as cT
ji.The following de�nition [27] further restricts the set of linear functions suitable to be used incombination with minimum evolution.De�nition 4. Let T be a topology over {1, 2, . . . , n}. We denote by U+(T ) the class of linearfunctions LT ∈ U(T ) such that LT (σA|B) > 1 for all bipartitions A|B of {1, 2, . . . , n} that arenot splits of T .Remark. Imagine that for every bifurcating topology T we have a function from U+(T ) that weuse to estimate its length. Then, when the input distances d

T coincide with those in a weightedbifurcating tree T with positive branch lengths, minimum evolution correctly identi�es thetopology of T as the unique optimal one. This is because every �wrong� bifurcating topology
W (i.e., not coinciding with the topology of T ) contains at least one split not belonging to thecorrect topology, and therefore is such that

LW (dT ) =
∑

A|B∈T
`TA|BLW (σA|B) > L(T ),whereas, as noted before, LT (dT ) = L(T ) when T is the topology of T .



ROBUSTNESS OF PHYLOGENETIC INFERENCE BASED ON MINIMUM EVOLUTION 7Minimum evolution using formulae from U+(T ) is then consistent. As a matter of fact, theproofs of consistency for OLS+ME [21] and BME [9] were essentially equivalent to proving that
ST and BT belong to U+(T ). 3. BME has safety radius 1

2In this section we prove that BME has a safety radius of 1
2 , the best achievable by anydistance method. The proof proceeds as follows: �rst (Sec. 3.1, Theorem 5), we derive asu�cient condition on the linear functions LT guaranteeing that ME has safety radius (at least)

α; second (Sec. 3.2, Corollary 9), we show that this condition is satis�ed by BT with α = 1
2 .3.1. A general condition for ME to have safety radius α. We here show a condition onthe formulae used by ME, providing a minimum guaranteed radius. Although here we onlyprove that this is a su�cient condition, it can be shown that this is in fact also a necessarycondition for ME to have at least safety radius α. This theorem has similarities with resultspresented by Willson [28], which however were only stated for the OLS tree length estimates

ST (δ).Theorem 5. Assume that for each bifurcating topology T we use a linear function LT ∈ U+(T )to estimate its length, where LT (δ) =
∑

i<j cT
ijδij . Suppose that for any bifurcating topologies Tand W over the same set of taxa the following holds:(3.1) ∑

i<j

(

cW
ij (tij − wij) − α|cW

ij − cT
ij |

)

≥ 0,where tij and wij denote the number of branches in the path between i and j in T and W ,respectively. Then minimum evolution has safety radius (at least) α.The proof of Theorem 5 relies on the following two lemmas.Lemma 6. Let L(δ) =
∑

i<j cijδij be a linear function and δ and δ
′ two distance matriceswhose components di�er by less than ε > 0, that is, ∥

∥δ − δ
′∥
∥

∞ < ε. Then,(3.2) |L(δ) − L(δ′)| < ε
∑

i<j

|cij |.Proof.
|L(δ) − L(δ′)| = |

∑

i<j

cij(δij − δ′ij)| ≤
∑

i<j

|cij ||δij − δ′ij | < ε
∑

i<j

|cij |.

�Lemma 7. Let T be a weighted tree with non-negative branch lengths and a bifurcating topology
T and let W be another bifurcating topology over the same set of taxa {1, 2, . . . , n}. Assuming
LW ∈ U+(W ), then

LW (dT ) − L(T ) ≥ `TminL
W (t − w),where t = (tij) and w = (wij) contain the number of branches in the paths between i and j in

T and W , respectively.



ROBUSTNESS OF PHYLOGENETIC INFERENCE BASED ON MINIMUM EVOLUTION 8Proof. Using the decomposition of d
T given by (2.2), we obtain

LW (dT ) − L(T ) =
∑

A|B∈T

`TA|B

(

LW (σA|B) − 1
)

.Since LW ∈ U+(W ), each LW (σA|B) − 1 term above is non-negative. This, together with
`T
A|B ≥ `Tmin ≥ 0, implies

LW (dT ) − L(T ) ≥ `Tmin

∑

A|B∈T

(

LW (σA|B) − 1
)

= `Tmin



LW





∑

A|B∈T

σ
A|B



 − (2n − 3)



 .Now note that t =
∑

A|B∈T σA|B and that LW (w) = 2n − 3. Then
LW (dT ) − L(T ) ≥ `Tmin(L

W (t) − LW (w))

= `TminL
W (t − w).

�Proof of Theorem 5. We wish to prove that for every weighted bifurcating tree T withtopology T , if ||δ − d
T ||∞ < α`Tmin, then ∆L(δ) = LW (δ) − LT (δ) > 0, for every bifurcatingtopology W 6= T .First, application of Lemma 6 with L = ∆L, δ

′ = d
T and ε = α`Tmin, shows that(3.3) ∆L(δ) > ∆L(dT ) − α`Tmin

∑

i<j

|cW
ij − cT

ij |.Using the fact that LT ∈ U+(T ) correctly estimates the length of T given perfect data,
∆L(dT ) = LW (dT ) − LT (dT ) = LW (dT ) − L(T ). Lemma 7 shows that a lower bound forthis quantity is given by

`TminL
W (t − w) = `Tmin

∑

i<j

cW
ij (tij − wij).Plugging this expression into (3.3), we obtain

∆L(δ) > `Tmin

∑

i<j

(

cW
ij (tij − wij) − α|cW

ij − cT
ij |

)

.It is then clear that if the sum in the right-hand side above is non-negative for every choice of
T and W , then ME has safety radius α. �3.2. The length estimates used by BME satisfy Theorem 5. We now prove that theinequality in Theorem 5 is satis�ed for LT = BT and α = 1

2 . This will follow as a simplecorollary (Corollary 9) of the next lemma, where we need some additional de�nitions: the depthof a taxon i in a rooted topology T is the number of branches in the path, in T , from the rootto i; also, a cherry is a clade of size 2.



ROBUSTNESS OF PHYLOGENETIC INFERENCE BASED ON MINIMUM EVOLUTION 9Figure 3.1. Topologies in the proof of Lemma 8.

Lemma 8. Let T and W be bifurcating rooted topologies over {1, 2, . . . , n}. Let di and d′i denotethe depths of i ∈ {1, 2, . . . , n} in T and W , respectively. Then,
n

∑

i=1

2−d′
i

(

di − d′i −
1

2

∣

∣

∣2d′
i−di − 1

∣

∣

∣

)

≥ 0.Proof. By induction on the number of taxa n. Denote by f(T, W ) the sum in the lemma'sstatement. If n = 1 or 2, then T and W must be the same topology and therefore f(T, W ) = 0.For the case n ≥ 3 , we consider two scenarios: either T and W have a common cherry, or theydo not.If T and W have a common cherry, say {x, y}, then de�ne T ′ and W ′ as the trees that areobtained from T and W , respectively, by removing the cherry {x, y} and replacing it with a newtaxon z (see �g. 3.1(a)). Since T ′ and W ′ have n−1 taxa, we can apply the induction hypothesisand have that f(T ′, W ′) ≥ 0. The di�erence f(T, W ) − f(T ′, W ′) is easy to calculate, as thetwo sums only di�er for the terms corresponding to taxa x, y and z. Calling d and d′ the depthsof x (and therefore y) in T and W , respectively, and noting that therefore the depths of z in T ′and W ′ equal d − 1 and d′ − 1 (see �g. 3.1(a)), we have that:
f(T, W ) − f(T ′, W ′) =

2 · 2−d′

(

d − d′ − 1

2

∣

∣

∣2d′−d − 1
∣

∣

∣

)

− 2−(d′−1)

(

d − d′ − 1

2

∣

∣

∣2d′−d − 1
∣

∣

∣

)

= 0Therefore f(T, W ) = f(T ′, W ′) ≥ 0.



ROBUSTNESS OF PHYLOGENETIC INFERENCE BASED ON MINIMUM EVOLUTION 10If T and W do not have a common cherry, let {x, y} be a cherry with maximum depth in W .We will show that if we swap taxa in T so as to form {x, y} in the resulting tree T ′′, this tree issuch that f(T, W ) ≥ f(T ′′, W ). Since T ′′ and W do have a common cherry, for the argumentsabove, we have that f(T ′′, W ) � and therefore f(T, W ) � is non-negative.Let {z, z′} be a cherry with maximum depth in T . Because T and W do not have commoncherries, at least one of z and z′ must not be in {x, y}. Without loss of generality, assume
z /∈ {x, y}. Swap x and z in T and call the resulting tree T ′ (see �g. 3.1(b)). Let d and h be thedepths in T of x and z, respectively, and note that this implies that, in T ′, x and z have depths
h and d, respectively. Also, let d′ and h′ be the depths in W of z and x, respectively.We now show that f(T, W ) ≥ f(T ′, W ). The two sums only di�er for the terms correspondingto x and z:

f(T, W ) − f(T ′, W ) = 2−h′

(

d − h′ − 1

2

∣

∣

∣2h′−d − 1
∣

∣

∣

)

− 2−h′

(

h − h′ − 1

2

∣

∣

∣2h′−h − 1
∣

∣

∣

)

+ 2−d′

(

h − d′ − 1

2

∣

∣

∣2d′−h − 1
∣

∣

∣

)

− 2−d′

(

d − d′ − 1

2

∣

∣

∣2d′−d − 1
∣

∣

∣

)

=
(

2−d′ − 2−h′
)

(h − d) +
1

2

(∣

∣

∣2−h − 2−h′
∣

∣

∣ −
∣

∣

∣2−d − 2−h′
∣

∣

∣ +
∣

∣

∣2−d − 2−d′
∣

∣

∣ −
∣

∣

∣2−h − 2−d′
∣

∣

∣

)

.Using the fact that |x − y| = x + y − 2 min{x, y}, the expression above simpli�es into
(

2−d′ − 2−h′
)

(h − d) − min{2−h, 2−h′} + min{2−d, 2−h′} − min{2−d, 2−d′} + min{2−h, 2−d′}.Note that if h = d then f(T, W ) − f(T ′, W ) = 0. We then assume h ≥ d + 1 (remember that hand d are integers, as they represent depths in T ).Considering the three cases d ≤ d′ ≤ h′, d′ ≤ d ≤ h′ and d′ ≤ h′ ≤ d, it is easy to see that
min{2−d, 2−h′} − min{2−d, 2−d′} ≥ 2−h′ − 2−d′

.Similarly, considering the three possible positions of h relative to d′ and h′, it is easy to see that
min{2−h, 2−d′} − min{2−h, 2−h′} ≥ 0.Therefore

f(T, W ) − f(T ′, W ) ≥
(

2−d′ − 2−h′
)

(h − d) + 2−h′ − 2−d′

=
(

2−d′ − 2−h′
)

(h − d − 1) ≥ 0.This completes the proof that f(T, W ) ≥ f(T ′, W ). Now T ′ has {x, z′} as a cherry. If z′ = y,then de�ne T ′′ = T ′; otherwise let T ′′ be obtained by swapping z′ with y in T ′. In any case, bythe same arguments as above, f(T ′, W ) ≥ f(T ′′, W ).Since T ′′ has a cherry in common with W , we have that f(T ′′, W ) ≥ 0. But then,
f(T, W ) ≥ f(T ′, W ) ≥ f(T ′′, W ) ≥ 0.

�



ROBUSTNESS OF PHYLOGENETIC INFERENCE BASED ON MINIMUM EVOLUTION 11Remark. The inequality of Lemma 8 holds more generally for any positive sequences (di) and
(d′i) for which ∑

i 2−di =
∑

i 2−d′
i = 1, because such sequences coincide precisely with the taxondepths in two suitably de�ned bifurcating rooted trees (not shown).Corollary 9. Let T and W be bifurcating topologies over {1, 2, . . . , n}. Let tij and wij denotethe number of branches in the paths between i and j in T and W , respectively. Then,

∑

i<j

21−wij

(

tij − wij −
1

2

∣

∣2wij−tij − 1
∣

∣

)

≥ 0.Proof. The above sum can be re-expressed in the following way:
1

2

n
∑

j=1

n
∑

i=1

i6=j

21−wij

(

tij − wij −
1

2

∣

∣2wij−tij − 1
∣

∣

)

.Now de�ne Tj and Wj as the rooted topologies that are obtained from T and W by rooting intaxon j and removing the branch at the root. Then,
n

∑

i=1

i6=j

21−wij

(

tij − wij −
1

2

∣

∣2wij−tij − 1
∣

∣

)

=

n
∑

i=1

i6=j

2−d′
i

(

di − d′i −
1

2

∣

∣

∣2d′
i−di − 1

∣

∣

∣

)

,where di = tij − 1 and d′i = wij − 1 are the depths of i in Tj and Wj , respectively. Because ofLemma 8, this sum is non-negative, and therefore the whole sum in the statement � which isa sum of sums with this form � is also non-negative. �3.3. Putting it all together. We are now ready to complete the proof of the main result ofthis section.Theorem 10. BME has safety radius 1
2 .Proof. Because BT ∈ U+(T ) [9], Theorem 5 provides a su�cient condition for BME to haveradius 1

2 . It is easy to verify that this condition precisely coincides with that proven in Corollary9. �Given the generality of our arguments in section 3.1 � holding for ME using generic formulaein U+(T ) � one can wonder whether our proof can be extended to other formulae apart fromthe BT used by BME. However, the next section shows that OLS+ME, which uses ST ∈ U+(T )to estimate tree length, has safety radius equal to 0. In order to exclude even more stronglythe possibility to extend our arguments beyond BME, in the Appendix we show that even ifwe only use members of U+(T ) that share with BT the property of being linear functions withpositive coe�cients, ME can have an arbitrarily small safety radius.4. OLS+ME has safety radius 0In the example that follows we construct, for any �xed n (n ≥ 4), two bifurcating topologies
T and W over the same set of n taxa, a weighted tree T with topology T , and distances δ such



ROBUSTNESS OF PHYLOGENETIC INFERENCE BASED ON MINIMUM EVOLUTION 12Figure 4.1. Topologies referred to in Example 11.

that
∥

∥

∥δ − d
T

∥

∥

∥

∞
=

3

b√nc + 1
`Tmin and SW (δ) < ST (δ).Clearly, this implies that the safety radius of OLS+ME over n taxa cannot be greater than

3/(b√nc + 1). Because this function converges to 0, then also the safety radius of OLS+MEover n taxa tends to 0 as the number of taxa grows. This result completes the work by Willson[28], who previously showed that this safety radius is limited above by a function tending to 1
4 ,but left open the question of how tight this bound was.The following example makes use of a standard notation that we now introduce. Let A and

B be two disjoint clades. Given the distances in δ, the average distance between A and B isde�ned by:
δAB =

1

|A||B|
∑

i∈A

j∈B

δij .Example 11. Let T be a weighted bifurcating tree whose branch of minimum length separatesclades A and B on one side from C and D on the other side (as in Fig. 4.1, left). Let |A| =

|B| = b√nc, |C| = n − 2b√nc − 1 and |D| = 1. Let T be the topology of T , and let W be thetopology that is obtained by swapping the positions of B and C in T (as in Fig. 4.1, right).Now de�ne δ in the following way:
δij = dTij + ε if (i, j) ∈ (A × B) ∪ (C × D) ∪ (A × D) ∪ (B × C),

δij = dTij − ε if (i, j) ∈ (A × C) ∪ (B × D),

δij = dTij if (i, j) ∈ A2 ∪ B2 ∪ C2 ∪ D2.Clearly, ∥

∥

∥δ − d
T

∥

∥

∥

∞
= ε. If we express the average distances between the clades A, B, C and

D, we then have:
δAB = dTAB + ε, δCD = dTCD + ε,

δAD = dTAD + ε, δBC = dTBC + ε,

δAC = dTAC − ε, δBD = dTBD − ε.



ROBUSTNESS OF PHYLOGENETIC INFERENCE BASED ON MINIMUM EVOLUTION 13Desper and Gascuel [8] have shown how to calculate the di�erence ∆S(δ) = SW (δ)−ST (δ),for a generic δ, when W is obtained from T with a transformation such as that in Figure 4.1(a nearest neighbor interchange, NNI ). Applying their formula (equation (9) in their paper [8]),we have that:(4.1) ∆S(δ) =
1

2
[(1 − λ)(δAC + δBD) − (1 − λ′)(δAB + δCD) + (λ − λ′)(δAD + δBC)] ,where

λ =
|A||D| + |B||C|

(|A| + |B|)(|C| + |D|) =
1

2and
λ′ =

|A||D| + |B||C|
(|A| + |C|)(|B| + |D|) =

nb√nc − 2b√nc2
(n − b√nc − 1)(b√nc + 1)

.For the calculations that follow it su�ces to note that, as b√nc2 ≤ n,(4.2) λ′ ≥ n(b√nc − 2)

(n − b√nc − 1)(b√nc + 1)
>

b√nc − 2

b√nc + 1
.Using the expressions for the average distances between A, B, C and D and (4.1), we obtain:

∆S(δ) =
1

2

[

(1 − λ)(dTAC + dTBD − 2ε) − (1 − λ′)(dTAB + dTCD + 2ε)

+ (λ − λ′)(dTAD + dTBC + 2ε)
]

=
1

2

[

(1 − λ)(dTAC + dTBD) − (1 − λ′)(dTAB + dTCD) + (λ − λ′)(dTAD + dTBC)
]

+ [(λ − 1) − (1 − λ′) + (λ − λ′)] ε

= ∆S(dT ) − 2(1 − λ)ε

= ∆S(dT ) − ε.We are now going to express ∆S(dT ). We use the following relationship:
dTAC + dTBD = dTAD + dTBC = dTAB + dTCD + 2`Tmin,which can be proved by noting that dTac + dTbd = dTad + dTbc = dTab + dTcd + 2`Tmin holds for any

(a, b, c, d) ∈ A × B × C × D. Applying again (4.1), we then obtain:
∆S(dT ) =

1

2

[

(1 − λ)(dTAC + dTBD) − (1 − λ′)(dTAB + dTCD) + (λ − λ′)(dTAD + dTBC)
]

=
1

2

[

((1 − λ) − (1 − λ′) + (λ − λ′))(dTAB + dTCD) + 2((1 − λ) + (λ − λ′))`Tmin

]

= (1 − λ′)`Tmin.We therefore have:
∆S(δ) = (1 − λ′)`Tmin − ε.Using the bound in (4.2), we then have
∆S(δ) <

3

b√nc + 1
`Tmin − ε



ROBUSTNESS OF PHYLOGENETIC INFERENCE BASED ON MINIMUM EVOLUTION 14from which it becomes clear that if ε = 3
b√nc+1

`Tmin, then SW (δ)−ST (δ) < 0, which is what wewanted to show. 5. DiscussionThe performance of minimum evolution strongly depends on the chosen method for estimatingbranch lengths. Not only length estimation determines whether or not ME is consistent [21, 12,9, 27], but also whether it is robust to noise in the input data. A measure of this robustness isprovided by the safety radius studied here.Previously, it was shown that OLS estimation causes ME to have radius at most 1
4 [28]; herewe have shown that this version of ME in fact has safety radius 0 (Sec. 4). As for BME, thefact that NJ has optimal radius 1

2 [1] led some to conjecture that also BME has radius 1
2 [3]; wehave proved this here for the �rst time (Sec. 3).The result on the safety radius of OLS+ME (0) may at �rst surprise, as it is very di�erentfrom the safety radius of NJ ( 1

2 ), an algorithm that was originally designed to approximateOLS+ME [23]. However it has previously been noted that further optimizing for OLS+ME thetrees produced by NJ actually results in a decrease � not an increase � of their accuracy [11, 8].This observation, together with the lack of robustness of OLS+ME shown here, demonstratesthat the merits of NJ lie in the fact that it is a heuristic for BME, and do not come from itsrelationship with OLS+ME.In fact, two heuristics precisely aimed at optimizing OLS+ME have been proposed [8] and itis easy to see that also these heuristics have safety radius (converging to) 0. The �rst of theseheuristics (called GME by Desper and Gascuel [8]), is based on a greedy sequential additionstrategy: starting from the only possible topology on the �rst three taxa, sequentially addeach of the remaining taxa by attaching it (with a new terminal branch) onto the branch thatminimises the OLS length ST ′

(δ) of the resulting tree T ′. Now imagine applying this greedyalgorithm to the distances δ constructed in Example 11 where taxon n (the last to be addedby the algorithm) coincides with the only taxon in clade D. It is then clear that, if ε is setto the value derived in that example, this algorithm will not reconstruct the correct topology:even if all the taxa up to n − 1 are added in the right places, because SW (δ) < ST (δ), taxon
n would be added in the position producing the wrong tree W rather than that producing T .The other heuristic for OLS+ME (called FASTNNI [8]), consists of repeatedly swapping thepositions of clades separated by three branches (i.e., applying an NNI), again greedily choosingat each step the swap that produces the largest decrease in OLS length, until a local minimumis reached. Again this algorithm does not reconstruct the correct topology when applied toExample 11: because W is only one swap away from T and has a smaller OLS length, T is not alocal minimum. Since they do not reconstruct the correct tree when confronted with distancesdeviating by ε (with ε/`Tmin

n→∞−→ 0) from the correct distances, both these heuristics have safetyradius (converging to) 0.A related question is that of the safety radius of heuristic algorithms for BME. In addi-tion to NJ, two other such heuristics can simply be obtained by adapting to BME the two



ROBUSTNESS OF PHYLOGENETIC INFERENCE BASED ON MINIMUM EVOLUTION 15algorithms described above for OLS+ME. A simple inductive reasoning shows that the greedysequential addition algorithm for BME has radius 1
2 (an alternative proof of this result has alsobeen found by R.Mihaescu and M.Bordewich; unpublished, personal communication). Suppose

∥

∥

∥
δ − d

T
∥

∥

∥

∞
< 1

2`Tmin. If n = 4, then all the three possible bifurcating topologies are taken intoaccount by this algorithm, which then returns the topology with the minimum balanced length.Because of Theorem 10, this is precisely the topology of T . If n > 4, we can assume by induc-tive hypothesis that the greedy sequential algorithm applied up to taxon n− 1 reconstructs thecorrect topology of T restricted to the �rst n− 1 taxa. The complete topology of T is thereforeone of the possible topologies that can be produced when adding the last taxon, n. Because ofTheorem 10, this topology is the one with minimum balanced length and is therefore the onethat gets reconstructed.As for the NNI-based heuristic applied to BME (called BNNI [8]), the question of whetherthis algorithm is consistent (and therefore that of determining its radius) is still open, althoughempirical evidence leads us to conjecture that consistency does in fact hold.In conclusion, there seems to be a clear di�erence in the robustness of methods based onOLS+ME and those based on BME. Interestingly, although the safety radius is here de�nedin terms of the maximum norm ∥

∥

∥δ − d
T

∥

∥

∥

∞
, the high sensitivity of OLS+ME and the relativerobustness of BME to noise in the input data are independent of the choice of a norm: forinstance, whatever the de�nition of the di�erence between δ and d

T , the example in section 4shows that this di�erence can become arbitrarily small, with OLS+ME still favoring a wrongtree over the correct one.BME and OLS+ME therefore have qualitatively di�erent properties when confronted withrealistic (noisy) data. This may explain the lower reconstruction accuracy of (heuristics for)OLS+ME as compared to (heuristics for) BME, a di�erence in performance that was observedin several simulation studies [22, 16, 11, 8].Acknowledgement. We wish to thank Mike Steel for helpful suggestions about the original man-uscript and Radu Mihaescu for proposing an alternative proof for Lemma 8, based on theobservation that the sum in its statement can be seen as the di�erence between the Kullback-Leibler divergence and the total variation distance between the discrete probability distributionsde�ned by (2−d′
i)i and (2−di)i. References[1] K. Atteson. The performance of neighbor-joining methods of phylogenetic reconstruction. Algorithmica,25:251�278, 1999.[2] H.J. Bandelt and A.W. Dress. Split decomposition: a new and useful approach to phylogenetic analysis ofdistance data. Molecular Phylogenetics and Evolution, 1(3):242�252, 1992.[3] M. Bordewich, O. Gascuel, K. Huber, and V. Moulton. Consistency of topological moves based on the bal-anced minimum evolution principle of phylogenetic inference. IEEE/ACM Transactions on ComputationalBiology and Bioinformatics, 6:110�117, 2009.[4] M. Bulmer. Use of the method of generalized least squares in reconstructing phylogenies from sequence data.Molecular Biology and Evolution, 8(6):868, 1991.
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ROBUSTNESS OF PHYLOGENETIC INFERENCE BASED ON MINIMUM EVOLUTION 17AppendixRecently, it has been shown that ST and BT can be seen as special cases of larger classesof length estimators [27, 17]. U+(T ), de�ned in the Preliminaries, is one of these classes (andin fact it can be proven to contain the class by Mihaescu and Pachter [17]; result not shown).Given our results of sections 3 and 4, a reasonable question is whether there is a subclass of
U+(T ), containing BT but not ST , such that ME in combination with the members of thissubclass is robust to noisy data.A good candidate for such a subclass is the set of all the linear functions LT ∈ U(T ) (i.e.,those giving the correct length of a tree given perfect data) having positive coe�cients: thatis, assuming LT (δ) =

∑

i<j cT
ijδij , such that cT

ij > 0 for every i < j. It is easy to verify that
BT belongs to this set � as its coe�cients are powers of two and therefore always positive �whereas ST , in general, does not � for example some of the coe�cients of ST are negative when
T is a caterpillar tree with 8 taxa.The interest in this class comes from an elegant result which we prove now. We say that twoclades X and Y of T are separated by a branch e if any path in T between a leaf in X and aleaf in Y contains e. Note that clades separated by at least one branch must be disjoint.Figure 5.1. Illustration of the proof of Theorem 12: all the taxa in A1 and

A2 also belong to A, which we denote by coloring these clades in black. All thetaxa in B1 and B2 also belong to B, which we denote by coloring these cladesin white. The rest of the tree is colored in grey to denote that some of its taxaare in A and some in B.
Theorem 12. Assume that for each bifurcating topology T we use a linear function LT ∈ U(T )to estimate its length, where LT (δ) =

∑

i<j cT
ijδij and cT

ij > 0 for every T and i < j. Thenminimum evolution using the functions in {LT }T is consistent.Proof. Since LT ∈ U(T ), we just need to prove that LT (σA|B) > 1 for all bipartitions A|Bof {1, 2, . . . , n} that are not splits of T to conclude that LT ∈ U+(T ) and therefore ME isconsistent.Let then A|B be a bipartition of {1, 2, . . . , n} but not a split of T . It is easy to realise thatthere must be in T four disjoint clades A1, B1, A2 and B2, such that: (1) A1 and B1 areseparated by exactly two branches, (2) A2 and B2 are separated by exactly two branches, (3)
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A1 and A2 are contained in A and (4) B1 and B2 are cointained in B (see �g. 5.1). It is easy tosee that

σ
A|B = σ

A1|B1 + σ
A2|B2 + r,where r = (rij) has some entries such that rij = 1 and the remaining ones such that rij = 0.Because LT is linear,

LT (σA|B) = LT (σA1|B1) + LT (σA2|B2) + LT (r).Lemma 13 (proved below) shows that LT (σA1|B1) = LT (σA2|B2) = 1
2 . Because LT only haspositive coe�cients and r is binary with some positive entries, we also have that LT (r) > 0.We can then conclude that LT (σA|B) > 1. �Lemma 13. Let T be a bifurcating topology and LT ∈ U(T ). For every two clades, A and B,separated by exactly two branches in T ,

LT (σA|B) =
1

2
.Proof. Any internal node of a bifurcating tree T is attached to three branches, de�ning threeclades A, B and C each separated from the other two by exactly two branches. Because A|B∪C,

B|A ∪ C and C|A ∪ B are all splits of T , and since LT ∈ U(T ), the following equalities musthold:
LT (σA|B∪C) = LT (σA|B) + LT (σA|C) = 1,

LT (σB|A∪C) = LT (σA|B) + LT (σB|C) = 1,

LT (σC|A∪B) = LT (σA|C) + LT (σB|C) = 1.Solving the system above for the unknowns LT (σA|B), LT (σA|C) and LT (σB|C) leads to thefollowing solution:
LT (σA|B) = LT (σA|C) = LT (σB|C) =

1

2
.Since any two clades separated by exactly two branches must be in the con�guration outlinedabove, our proof is complete. �Can then our results on the robustness of BME be extended more generally to all versions ofME using functions from U(T ) with positive coe�cients? Unfortunately, the following exampleshows that if we estimate the length of each tree using an arbitrary element of this class offunctions, ME may have an arbitrarily small safety radius.Example 14. Let T and W be de�ned as in Figure 4.1 except that now we assume that thefour corner clades only contain one taxon each, with A = {1}, B = {2}, C = {3}, D = {4}.Give the branches of T the following (positive) lengths: `1, `2, `3, `4 for the terminal branchesincident with 1, 2, 3, 4, respectively and `0 for the internal branch. Call the resulting weightedtree T and assume `0 = `Tmin.Assume ME uses the following formulae to estimate the lengths of T and W :

LT (δ) =
1

2
(δ12 + δ34) +

1

4
(δ13 + δ14 + δ23 + δ24),



ROBUSTNESS OF PHYLOGENETIC INFERENCE BASED ON MINIMUM EVOLUTION 19
LW (δ) = LW

ε (δ) =
1

2
(δ13 + δ24) + (

1

2
− ε)(δ12 + δ34) + ε(δ14 + δ23),with ε being a small positive number. (It is unimportant what formula ME uses for the thirdbifurcating topology over {1, 2, 3, 4}.) It is easy to check that LT ∈ U(T ), LW

ε ∈ U(W ) and thatthey both have positive coe�cients. We now show that by making ε arbitrarily small, we canalso make the safety radius of ME arbitrarily small.Let α be such that 0 < α ≤ 1
2 . De�ne δ in the following way:
δ12 = dT12 + α`0 = `1 + `2 + α`0,

δ34 = dT34 + α`0 = `3 + `4 + α`0,

δ14 = dT14 + α`0 = `1 + `4 + (1 + α)`0,

δ23 = dT23 + α`0 = `2 + `3 + (1 + α)`0,

δ13 = dT13 − α`0 = `1 + `3 + (1 − α)`0,

δ24 = dT24 − α`0 = `2 + `4 + (1 − α)`0.Clearly, ||δ − d
T ||∞ = α`0. We also have:

LT (δ) = `1 + `2 + `3 + `4 + (1 + α)`0and
LW

ε (δ) = `1 + `2 + `3 + `4 + (1 + 2ε)`0.These formulae show that, if ε < 1
2α, then LW

ε (δ) < LT (δ), that is ME will favour a wrongtopology W over the true topology T .Therefore the safety radius of ME using LT (δ) and LW
ε (δ) (with ε su�ciently small) is limitedabove by α (if the radius were greater than α, ME should return T on the δ de�ned above). Sincethis holds for an arbitrarily small α, we conclude that using ME with correct linear formulaewith positive coe�cients does not guarantee any positive safety radius.The example above suggests that in order to guarantee a certain safety radius, the coe�cientsof the used linear functions must not only be positive, but also �large enough�. This is aninteresting idea for further research, but outside the scope of the present paper.


