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Abstract Minimum evolution is the guiding principle of an important class of distance-

based phylogeny reconstruction methods, including neighbor-joining (NJ), which is the

most cited tree inference algorithm to date. The minimum evolution principle involves

searching for the tree with minimum length, where the length is estimated using various

least-squares criteria. Since evolutionary distances cannot be known precisely but only

estimated, it is important to investigate the robustness of phylogenetic reconstruction to

imprecise estimates for these distances. The safety radius is a measure of this robustness:

it consists of the maximum relative deviation that the input distances can have from the

correct distances, without compromising the reconstruction of the correct tree structure.

Answering some open questions, we here derive the safety radius of two popular min-

imum evolution criteria: balanced minimum evolution (BME) and minimum evolution

based on ordinary least squares (OLS + ME). Whereas BME has a radius of 1
2
, which is

the best achievable, OLS + ME has a radius tending to 0 as the number of taxa increases.

This difference may explain the gap in reconstruction accuracy observed in practice be-

tween OLS + ME and BME (which forms the basis of popular programs such as NJ and

FastME).

Keywords Phylogenetics · Distance methods · Minimum evolution · Least squares ·
Safety radius

1. Introduction

Minimum evolution methods for reconstructing phylogenetic trees (Kidd and Sgaramella-

Zonta, 1971; Rzhetsky and Nei, 1992) are based upon the following informal idea: given

a matrix of distances between each pair of taxa in a set, reconstruct the phylogenetic tree

for these taxa that implies the minimum amount of evolution in order to explain the given
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distances. In practice, a method to estimate the length of any possible tree structure is

specified and minimum evolution aims to reconstruct the tree with the minimum length

estimate.

Several types of minimum evolution can then be defined based on the different meth-

ods for estimating the tree length. In this paper, we deal with two important versions of

minimum evolution: the one based on an ordinary least squares technique for length esti-

mation, and the one based on an increasingly popular “balanced” technique. We call these

versions OLS + ME and BME, respectively.

OLS + ME is based on a method for estimating branch lengths which originated

from the work by Cavalli-Sforza and Edwards (1964, 1967) and was the first ver-

sion of minimum evolution to be proposed (Kidd and Sgaramella-Zonta, 1971; Rzhet-

sky and Nei, 1992). It is introduced in more detail in the next section. Interestingly,

neighbor-joining (NJ)—one of the most popular algorithms for tree reconstruction—

has been shown to have some connections with OLS + ME (Saitou and Nei, 1987;

Nei and Kumar, 2000).

However, further mathematical investigation showed that NJ is much more tightly re-

lated to the other criterion we study, BME: In fact, NJ turns out to be a greedy agglom-

erative algorithm aiming to construct the optimal tree with respect to this criterion (Des-

per and Gascuel, 2005; Gascuel and Steel, 2006). The vast popularity of NJ (more than

20,000 citations for the original paper (Saitou and Nei, 1987) on Google Scholar), the fact

that BME length estimates are biologically meaningful variants of the least squares esti-

mates (Desper and Gascuel, 2004), the computational efficiency of the proposed heuristics

for BME (Desper and Gascuel, 2002), and last but not least, the high accuracy of these

heuristics observed in simulation studies (Desper and Gascuel, 2002, 2004; Vinh and von

Haeseler, 2005) justify the growing importance of BME as a criterion for reconstructing

phylogenetic trees. Again, a more detailed account of BME is given in the next section.

BME and OLS + ME share an important property: if the input distances perfectly cor-

respond to the distances between leaves in a tree with branch lengths, then these criteria

identify this tree as the correct one. Evolutionary distances are estimated using genetic se-

quences or any other comparative data from the taxa under consideration. Ideal estimation

procedures should ensure that, as the amount of compared data increases, the estimated

distances converge to those in the correct phylogenetic tree, which means that the property

just stated is equivalent to the statistical consistency of these tree reconstruction methods.

In fact, consistency is a desirable property for any minimum evolution method (Willson,

2005a), and more generally for all tree reconstruction methods.

Note, however, that the amount of data is usually limited, and the models used to esti-

mate the distances are usually only rough approximations of the reality. As a consequence,

the estimated distances δ will somehow deviate from the distances d
T in the correct tree

T and the accuracy of tree reconstruction will depend on its robustness to such deviations.

Define the L∞ difference between δ and d
T as ‖δ − d

T ‖∞ = maxi,j |δij − dT

ij |, where

i and j denote two taxa; then a measure of this robustness, proposed by Atteson (1999),

is the safety radius defined in the following way, where ℓT

min denotes the length of the

shortest branch in T .

Definition 1. A distance-based tree reconstruction method has safety radius α [over n

taxa] if, for every weighted bifurcating tree T [over a set of size n] and any distances δ
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such that

∥

∥δ − d
T

∥

∥

∞ < αℓT

min,

the method reconstructs the topology of T .

Note the distinction between the safety radius over a given number of taxa, and safety

radius tout-court.

An important remark is that there are distances δ which lie at 1
2
ℓT

min not only from

d
T , but also from the distances d

T
′

in a tree T
′ with a different topology from that of T

(Atteson, 1999). This implies that: (1) robustness must be measured relative to the length

of the shortest branch in T , as no maximum value for the difference between δ and d
T

can guarantee a correct tree reconstruction if nothing is assumed regarding ℓT

min; (2) no

method reconstructing a unique tree can have a safety radius greater than 1
2
.

Atteson (1999) also proved that a number of agglomerative algorithms, including NJ,

have optimal safety radius 1
2
. A related result was recently shown by Bordewich et al.

(2009) who proved that another heuristic aimed at minimizing BME (based on subtree

pruning and regrafting) has at least radius 1
3
.

Note that these results are about heuristics for minimum evolution, not the criterion

itself. Here, we identify the safety radius of a tree reconstruction criterion as the safety

radius of any algorithm returning the optimal tree with respect to that criterion. Although

there is no version of minimum evolution for which we have a practical algorithm for this

task, it would still be interesting to know the safety radius that such an algorithm would

have, as this may give some insight about the effectiveness of the heuristic algorithms

used in practice. (We note that, at least in the case of BME, this optimization problem is

NP-hard: manuscript in preparation.)

What is then known about the safety radii of minimum evolution criteria? For BME,

Bordewich et al. (2009) have extended their result and proved that also the BME criterion

has radius at least 1
3
. As for OLS + ME, Willson (2005b) proved that the safety radius

over n taxa is limited above by a function tending to 1
4
, as n tends to infinity. Another

relevant result was obtained by Gascuel and McKenzie (2004) for the case where both

the estimation of branch lengths and the selection of a tree structure are based on a least

squares criterion. They proved that when this criterion is constrained to produce ultramet-

ric trees (i.e., rooted trees in which all leaves have the same distance from the root), its

radius tends to 0 as the number of taxa increases. This result has relevance for the prac-

tice of hierarchical clustering, where the ultrametric constraint is usually required, but it

does not immediately imply anything regarding the radius of OLS + ME, of relevance in

phylogenetics.

The present paper concludes the debate regarding the radii of BME and OLS + ME.

We prove that (as conjectured Bordewich et al., 2009) BME has radius 1
2

and that the

result by Willson on the relative sensitiveness of OLS + ME can be strengthened: its

safety radius actually tends to 0, as n tends to infinity. There is then a large gap between

the safety radius of BME (the maximum possible) and that of OLS + ME (the minimum

possible), which is consistent with the greater reconstruction accuracy of BME observed

in several simulation studies (Saitou and Imanishi, 1989; Kumar, 1996; Gascuel, 2000;

Desper and Gascuel, 2002).
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The paper is organized as follows: after some necessary notational preliminaries (Sec-

tion 2), we proceed to prove the stated results about BME (Section 3) and OLS + ME

(Section 4). In Section 5, we discuss the implications of these results on the heuristics that

are used in practice for BME and OLS + ME. Finally, in the Appendix, we discuss the

possibility of extending our positive results on the robustness of BME to other ME meth-

ods: in particular, we prove that such an extension is not possible for an obvious candidate

class generalizing BME.

2. Preliminaries

A phylogenetic tree over a set X is a tree (in the graph-theoretic sense) whose leaves are

bijectively labeled by the elements of X, called taxa. Here, for convenience of notation,

we assume X = {1,2, . . . , n}. A weighted phylogenetic tree is a phylogenetic tree whose

branches (edges) are assigned lengths (usually nonnegative) typically representing the

amount of evolution that has occurred between their endpoints. A phylogenetic tree that

is not weighted is also called a topology and we say that a weighted phylogenetic tree

T has topology T if T can be obtained from T by assigning lengths to the branches

of T . Note that, in this paper, calligraphic letters (such as T and W ) denote weighted

phylogenetic trees and their corresponding italic symbols (such as T and W ) denote their

topologies. The length of branch e in a tree T is denoted by ℓT

e . The length of the shortest

branch in T is denoted by ℓT

min.

A phylogenetic tree is rooted if one of its nodes is designated as its root, representing

the ancestor of all the taxa in the tree. Except in one occasion (Lemma 8), we assume that

the trees we deal with do not have a root. A phylogenetic tree is said to be bifurcating if

every internal (i.e., nonleaf) node has degree three, with the exception of the root, if there

is one, which is required to have degree two. For simplicity, in this paper we only deal

with bifurcating trees.

Every branch e of a phylogenetic tree over X induces a bipartition of X consisting

of the two sets of taxa in the two connected components obtained by deleting e. The

bipartitions {A,B} induced in this way by the branches of a phylogenetic tree are called

its splits and are denoted by A|B . A clade of a phylogenetic tree over X is a subset A ⊆ X

such that A|(X\A) is one of the tree’s splits. A classic result in phylogenetics is that the

topology of a phylogenetic tree is determined, up to isomorphism, by the set of its splits

(Buneman, 1971), or equivalently by the set of its clades. For this reason, we here identify

a topology with the set of its splits, which allows us to write propositions such as A|B ∈ T

and T �= W . We also make no distinction between branches of a tree and the splits they

induce, which justifies the use of expressions such as ℓT

A|B and e ∈ T (where e is a branch).

Given a weighted phylogenetic tree T , the distance in T between taxa i and j , denoted

dT

ij , is the sum of the branch lengths in the path between i and j in T . The matrix con-

taining the distances in T between each pair of taxa is denoted by d
T = (dT

ij ). Distance

methods for phylogenetic reconstruction are based upon the assumption that a distance

matrix δ = (δij ), somewhat approximating d
T in an unknown tree, is given in input. Here,

the only assumptions on δ will be that, for every i and j in {1,2, . . . , n}, δii = 0 and

δij = δj i ≥ 0. (Although the δij are not, strictly speaking, necessarily distances, the use

of this term is standard in phylogenetics.) In the practice of phylogenetic tree reconstruc-

tion, the distances δ are obtained (from molecular or morphological data) with various



1824 Pardi et al.

techniques aiming to estimate the distances d
T in the “true” evolutionary tree T that gen-

erated the taxa of interest. The aim of distance methods is to reconstruct this unknown

“true” tree.

Minimum evolution (ME) is a class of distance methods based upon the two following

logical components:

(1) Establish how to assign branch lengths to any given topology T so that the distances

d T̂

ij in the resulting weighted tree T̂ “fit” the distances δij given in input.

(2) “Look for” the bifurcating topology T that results in the weighted tree T̂ of minimum

“length.”

Clearly, these two steps are loosely defined. Different ways of defining the terms in quotes

lead to different versions of ME.

Although other approaches are possible (Kidd and Sgaramella-Zonta, 1971; Swofford

et al., 1996; Gascuel et al., 2001) (differing in the way they deal with negative branch

lengths), we here define the length of a weighted tree as the sum of all its branches’

lengths (Rzhetsky and Nei, 1992). In symbols:

L(T ) =
∑

e∈T

ℓT

e .

Here, we study two versions of ME that differ for the chosen approach for the first

component, branch length estimation. Possibly the simplest method for this step, called

OLS (ordinary least squares), is to look for the branch length assignment that minimizes

the sum
∑

ij (δij − d T̂

ij )2. In this case, the optimal branch lengths are linear functions of δ

(see, e.g., the book chapter by Desper and Gascuel, 2005). Therefore, also the total length

of the fitted tree T̂ is a linear function of δ, which we denote by ST (δ). We call OLS+ME

the version of ME using ST (δ) to estimate the length of T . Formally, OLS + ME aims to

reconstruct T ∗ = argminT ST (δ), where T ranges over all bifurcating topologies over the

input taxa.

The second method for branch length estimation that we study here is the balanced

method. The branch length estimates, in this case, are optimal with respect to a weighted

version of the least squares approach sketched above. We refer the reader to other sources

for a more detailed introduction (Pauplin, 2000; Desper and Gascuel, 2004; Semple and

Steel, 2004; Gascuel and Steel, 2006). For our purposes, it suffices to know that the length

of the fitted tree of bifurcating topology T is given by a simple, again linear, function of

δ (due to Pauplin, 2000):

BT (δ) :=
∑

i<j

21−tij δij , (1)

where tij indicates the topological distance between i and j , that is, the number of

branches in the path between i and j in T . We call BME the version of ME using BT (δ) to

estimate the length of T . Formally, BME aims to reconstruct T ∗ = argminT BT (δ), where

T ranges again over all bifurcating topologies over the input taxa.

2.1. Characterization of general linear formulae for estimating tree length

The fact that ST (δ) and BT (δ) are both linear functions of δ is not surprising, as it can be

shown that optimizing branch lengths with respect to a large class of generalizations of
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the least squares approach always results in linear functions of the input distances (Bul-

mer, 1991). Furthermore, ST (δ) and BT (δ) have a number of properties that make them

suitable for use in combination with minimum evolution (Willson, 2005a). We briefly

summarize these properties here, as some of the statements in the rest of this paper are

best expressed in terms of the general class of functions satisfying these properties. We

start by defining a generalization of the notion of split metric (Bandelt and Dress, 1992):

Definition 2. Let A and B be disjoint subsets of {1,2, . . . , n}; σ
A|B is defined by

σ
A|B
ij =

{

1 if one between i and j belongs to A and the other to B,

0 otherwise.

Note that if T is a weighted tree with topology T , then

d
T =

∑

A|B∈T

ℓT

A|Bσ
A|B . (2)

This follows from the fact that σ
A|B
ij = 1 if and only if the branch corresponding to A|B

is on the path joining i to j in T .

The most basic requirement of any linear function LT (δ) for estimating the length of

a tree T is that it should give its correct length given perfect data. As remarked below, the

functions satisfying this requirement are precisely those in the following class (Willson,

2005a).

Definition 3. Let T be a topology over {1,2, . . . , n}. We denote by U (T ) the class of

linear functions LT of any n × n distance matrix, such that LT (σA|B) = 1 for every split

A|B of T .

Remark. By using the decomposition in (2) and the linearity of LT it is easy to see that

the functions in U (T ) are precisely the linear functions such that LT (dT ) = L(T ), for

any weighted tree T with topology T .

Note that if we write LT (δ) =
∑

i<j cT
ijδij then the quantity above can simply be ex-

pressed as the sum of the coefficients for pairs of taxa in A × B:

LT
(

σ
A|B)

=
∑

i∈A
j∈B

cT
ij ,

where cT
ij with i > j is the same as cT

ji .

The following definition (Willson, 2005a) further restricts the set of linear functions

suitable to be used in combination with minimum evolution.

Definition 4. Let T be a topology over {1,2, . . . , n}. We denote by U
+(T ) the class of lin-

ear functions LT ∈ U (T ) such that LT (σA|B) > 1 for all bipartitions A|B of {1,2, . . . , n}
that are not splits of T .
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Remark. Imagine that for every bifurcating topology T we have a function from U
+(T )

that we use to estimate its length. Then when the input distances d
T coincide with those in

a weighted bifurcating tree T with positive branch lengths, minimum evolution correctly

identifies the topology of T as the unique optimal one. This is because every “wrong”

bifurcating topology W (i.e., not coinciding with the topology of T ) contains at least one

split not belonging to the correct topology and, therefore, is such that

LW
(

d
T

)

=
∑

A|B∈T

ℓT

A|BLW
(

σ
A|B)

> L(T ),

whereas, as noted before, LT (dT ) = L(T ) when T is the topology of T .

Minimum evolution using formulae from U
+(T ) is then consistent. As a matter of fact,

the proofs of consistency for OLS + ME (Rzhetsky and Nei, 1993) and BME (Desper and

Gascuel, 2004) were essentially equivalent to proving that ST and BT belong to U
+(T ).

3. BME has safety radius 1
2

In this section, we prove that BME has a safety radius of 1
2
, the best achievable by any

distance method. The proof proceeds as follows: first (Section 3.1, Theorem 5), we derive

a sufficient condition on the linear functions LT guaranteeing that ME has safety radius

(at least) α; second (Section 3.2, Corollary 9), we show that this condition is satisfied by

BT with α = 1
2
.

3.1. A general condition for ME to have safety radius α

We here show a condition on the formulae used by ME, providing a minimum guaranteed

radius. Although here we only prove that this is a sufficient condition, it can be shown

that this is in fact also a necessary condition for ME to have at least safety radius α. This

theorem has similarities with results presented by Willson (2005b), which however were

only stated for the OLS tree length estimates ST (δ).

Theorem 5. Assume that for each bifurcating topology T , we use a linear function LT ∈
U

+(T ) to estimate its length, where LT (δ) =
∑

i<j cT
ijδij . Suppose that for any bifurcating

topologies T and W over the same set of taxa the following holds:

∑

i<j

(

cW
ij (tij − wij ) − α

∣

∣cW
ij − cT

ij

∣

∣

)

≥ 0, (3)

where tij and wij denote the number of branches in the path between i and j in T and

W , respectively. Then minimum evolution has safety radius (at least) α.

The proof of Theorem 5 relies on the following two lemmas.

Lemma 6. Let L(δ) =
∑

i<j cijδij be a linear function and δ and δ
′ two distance matrices

whose components differ by less than ǫ > 0, that is, ‖δ − δ
′‖∞ < ǫ. Then

∣

∣L(δ) − L
(

δ
′)∣
∣ < ǫ

∑

i<j

|cij |. (4)
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Proof:

∣

∣L(δ) − L
(

δ
′)∣
∣ =

∣

∣

∣

∣

∣

∑

i<j

cij

(

δij − δ′
ij

)

∣

∣

∣

∣

∣

≤
∑

i<j

|cij |
∣

∣δij − δ′
ij

∣

∣ < ǫ
∑

i<j

|cij |.

�

Lemma 7. Let T be a weighted tree with nonnegative branch lengths and a bifurcat-

ing topology T and let W be another bifurcating topology over the same set of taxa

{1,2, . . . , n}. Assuming LW ∈ U
+(W), then

LW
(

d
T

)

− L(T ) ≥ ℓT

minL
W (t − w),

where t = (tij ) and w = (wij ) contain the number of branches in the paths between i and

j in T and W , respectively.

Proof: Using the decomposition of d
T given by (2), we obtain

LW
(

d
T

)

− L(T ) =
∑

A|B∈T

ℓT

A|B
(

LW
(

σ
A|B)

− 1
)

.

Since LW ∈ U
+(W), each LW (σA|B) − 1 term above is nonnegative. This, together with

ℓT

A|B ≥ ℓT

min ≥ 0, implies

LW
(

d
T

)

− L(T ) ≥ ℓT

min

∑

A|B∈T

(

LW
(

σ
A|B)

− 1
)

= ℓT

min

(

LW

(

∑

A|B∈T

σ
A|B

)

− (2n − 3)

)

.

Now note that t =
∑

A|B∈T σ
A|B and that LW (w) = 2n − 3. Then

LW
(

d
T

)

− L(T ) ≥ ℓT

min

(

LW (t) − LW (w)
)

= ℓT

minL
W (t − w).

�

Proof of Theorem 5: We wish to prove that for every weighted bifurcating tree T with

topology T , if ||δ − d
T ||∞ < αℓT

min, then �L(δ) = LW (δ) − LT (δ) > 0, for every bifur-

cating topology W �= T .

First, application of Lemma 6 with L = �L, δ
′ = d

T and ǫ = αℓT

min, shows that

�L(δ) > �L
(

d
T

)

− αℓT

min

∑

i<j

∣

∣cW
ij − cT

ij

∣

∣. (5)
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Using the fact that LT ∈ U
+(T ) correctly estimates the length of T given perfect data,

�L(dT ) = LW (dT ) − LT (dT ) = LW (dT ) − L(T ). Lemma 7 shows that a lower bound

for this quantity is given by

ℓT

minL
W (t − w) = ℓT

min

∑

i<j

cW
ij (tij − wij ).

Plugging this expression into (5), we obtain

�L(δ) > ℓT

min

∑

i<j

(

cW
ij (tij − wij ) − α

∣

∣cW
ij − cT

ij

∣

∣

)

.

It is then clear that if the sum in the right-hand side above is nonnegative for every choice

of T and W , then ME has safety radius α. �

3.2. The length estimates used by BME satisfy Theorem 5

We now prove that the inequality in Theorem 5 is satisfied for LT = BT and α = 1
2
. This

will follow as a simple corollary (Corollary 9) of the next lemma, where we need some

additional definitions: the depth of a taxon i in a rooted topology T is the number of

branches in the path, in T , from the root to i; also, a cherry is a clade of size 2.

Lemma 8. Let T and W be bifurcating rooted topologies over {1,2, . . . , n}. Let di and

d ′
i denote the depths of i ∈ {1,2, . . . , n} in T and W , respectively. Then

n
∑

i=1

2−d ′
i

(

di − d ′
i − 1

2

∣

∣2d ′
i
−di − 1

∣

∣

)

≥ 0.

Proof: By induction on the number of taxa n. Denote by f (T ,W) the sum in the lemma’s

statement. If n = 1 or 2, then T and W must be the same topology and, therefore,

f (T ,W) = 0. For the case n ≥ 3, we consider two scenarios: either T and W have a

common cherry, or they do not.

If T and W have a common cherry, say {x, y}, then define T ′ and W ′ as the trees that

are obtained from T and W , respectively, by removing the cherry {x, y} and replacing it

with a new taxon z (see Fig. 1(a)). Since T ′ and W ′ have n − 1 taxa, we can apply the

induction hypothesis and have that f (T ′,W ′) ≥ 0. The difference f (T ,W) − f (T ′,W ′)
is easy to calculate, as the two sums only differ for the terms corresponding to taxa x, y,

and z. Calling d and d ′ the depths of x (and, therefore, y) in T and W , respectively, and

noting that therefore the depths of z in T ′ and W ′ equal d − 1 and d ′ − 1 (see Fig. 1(a)),

we have that

f (T ,W) − f
(

T ′,W ′) = 2 · 2−d ′
(

d − d ′ − 1

2

∣

∣2d ′−d − 1
∣

∣

)

− 2−(d ′−1)

(

d − d ′ − 1

2

∣

∣2d ′−d − 1
∣

∣

)

= 0.
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Fig. 1 Topologies in the proof of Lemma 8.

Therefore, f (T ,W) = f (T ′,W ′) ≥ 0.

If T and W do not have a common cherry, let {x, y} be a cherry with maximum depth

in W . We will show that if we swap taxa in T so as to form {x, y} in the resulting tree T ′′,
this tree is such that f (T ,W) ≥ f (T ′′,W). Since T ′′ and W do have a common cherry, for

the arguments above, we have that f (T ′′,W)—and, therefore, f (T ,W)—is nonnegative.

Let {z, z′} be a cherry with maximum depth in T . Because T and W do not have

common cherries, at least one of z and z′ must not be in {x, y}. Without loss of generality,

assume z /∈ {x, y}. Swap x and z in T and call the resulting tree T ′ (see Fig. 1(b)). Let d

and h be the depths in T of x and z, respectively, and note that this implies that, in T ′, x

and z have depths h and d , respectively. Also, let d ′ and h′ be the depths in W of z and x,

respectively.

We now show that f (T ,W) ≥ f (T ′,W). The two sums only differ for the terms cor-

responding to x and z:

f (T ,W) − f
(

T ′,W
)

= 2−h′
(

d − h′ − 1

2

∣

∣2h′−d − 1
∣

∣

)

− 2−h′
(

h − h′ − 1

2

∣

∣2h′−h − 1
∣

∣

)

+ 2−d ′
(

h − d ′ − 1

2

∣

∣2d ′−h − 1
∣

∣

)

− 2−d ′
(

d − d ′ − 1

2

∣

∣2d ′−d − 1
∣

∣

)

=
(

2−d ′ − 2−h′)
(h − d) + 1

2

(∣

∣2−h − 2−h′ ∣
∣ −

∣

∣2−d − 2−h′ ∣
∣

+
∣

∣2−d − 2−d ′ ∣
∣ −

∣

∣2−h − 2−d ′ ∣
∣

)

.
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Using the fact that |x − y| = x + y − 2 min{x, y}, the expression above simplifies into

(

2−d ′ − 2−h′)
(h − d) − min

{

2−h,2−h′} + min
{

2−d ,2−h′}

− min
{

2−d ,2−d ′} + min
{

2−h,2−d ′}
.

Note that if h = d then f (T ,W) − f (T ′,W) = 0. We then assume h ≥ d + 1 (remember

that h and d are integers, as they represent depths in T ).

Considering the three cases d ≤ d ′ ≤ h′, d ′ ≤ d ≤ h′ and d ′ ≤ h′ ≤ d , it is easy to see

that

min
{

2−d ,2−h′} − min
{

2−d ,2−d ′} ≥ 2−h′ − 2−d ′
.

Similarly, considering the three possible positions of h relative to d ′ and h′, it is easy to

see that

min
{

2−h,2−d ′} − min
{

2−h,2−h′} ≥ 0.

Therefore,

f (T ,W) − f
(

T ′,W
)

≥
(

2−d ′ − 2−h′)
(h − d) + 2−h′ − 2−d ′

=
(

2−d ′ − 2−h′)
(h − d − 1) ≥ 0.

This completes the proof that f (T ,W) ≥ f (T ′,W). Now T ′ has {x, z′} as a cherry. If

z′ = y, then define T ′′ = T ′; otherwise let T ′′ be obtained by swapping z′ with y in T ′. In

any case, by the same arguments as above, f (T ′,W) ≥ f (T ′′,W).

Since T ′′ has a cherry in common with W , we have that f (T ′′,W) ≥ 0. But then,

f (T ,W) ≥ f
(

T ′,W
)

≥ f
(

T ′′,W
)

≥ 0. �

Remark. The inequality of Lemma 8 holds more generally for any integer sequences (di)

and (d ′
i) of equal length for which

∑

i 2−di =
∑

i 2−d ′
i = 1, because such sequences coin-

cide precisely with the taxon depths in two suitably defined bifurcating rooted trees (not

shown).

Corollary 9. Let T and W be bifurcating topologies over {1,2, . . . , n}. Let tij and wij

denote the number of branches in the paths between i and j in T and W , respectively.

Then

∑

i<j

21−wij

(

tij − wij − 1

2

∣

∣2wij −tij − 1
∣

∣

)

≥ 0.

Proof: The above sum can be reexpressed in the following way:

1

2

n
∑

j=1

n
∑

i=1
i �=j

21−wij

(

tij − wij − 1

2

∣

∣2wij −tij − 1
∣

∣

)

.
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Now define Tj and Wj as the rooted topologies that are obtained from T and W by rooting

in taxon j and removing the branch at the root. Then

n
∑

i=1
i �=j

21−wij

(

tij − wij − 1

2

∣

∣2wij −tij − 1
∣

∣

)

=
n

∑

i=1
i �=j

2−d ′
i

(

di − d ′
i − 1

2

∣

∣2d ′
i
−di − 1

∣

∣

)

,

where di = tij −1 and d ′
i = wij −1 are the depths of i in Tj and Wj , respectively. Because

of Lemma 8, this sum is nonnegative and, therefore, the whole sum in the statement—

which is a sum of sums with this form—is also nonnegative. �

3.3. Putting it all together

We are now ready to complete the proof of the main result of this section.

Theorem 10. BME has safety radius 1
2
.

Proof: Because BT ∈ U
+(T ) (Desper and Gascuel, 2004), Theorem 5 provides a suffi-

cient condition for BME to have radius 1
2
. Using (1), it is easy to verify that this condition

precisely coincides with that proven in Corollary 9. �

Given the generality of our arguments in Section 3.1—holding for ME using generic

formulae in U
+(T )—one can wonder whether our proof can be extended to other formulae

apart from the BT used by BME. However, the next section shows that OLS + ME, which

uses ST ∈ U +(T ) to estimate tree length, has safety radius equal to 0. In order to exclude

even more strongly the possibility to extend our arguments beyond BME, in the Appendix,

we show that even if we only use members of U
+(T ) that share with BT the property of

being linear functions with positive coefficients, ME can have an arbitrarily small safety

radius.

4. OLS + ME has safety radius 0

In the example that follows we construct, for any fixed n (n ≥ 4), two bifurcating topolo-

gies T and W over the same set of n taxa, a weighted tree T with topology T , and

distances δ such that

∥

∥δ − d
T

∥

∥

∞ = 3

⌊√n⌋ + 1
ℓT

min and SW (δ) < ST (δ).

Clearly, this implies that the safety radius of OLS + ME over n taxa cannot be greater

than 3/(⌊√n⌋ + 1). Because this function converges to 0, then also the safety radius of

OLS + ME over n taxa tends to 0 as the number of taxa grows. This result completes the

work by Willson (2005b), who previously showed that this safety radius is limited above

by a function tending to 1
4
, but left open the question of how tight this bound was.

The following example makes use of a standard notation that we now introduce. Let

A and B be two disjoint clades. Given the distances in δ, the average distance between A
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Fig. 2 Topologies referred to in Example 11.

and B is defined by:

δAB = 1

|A||B|
∑

i∈A
j∈B

δij .

Example 11. Let T be a weighted bifurcating tree whose branch of minimum length

separates clades A and B on one side from C and D on the other side (as in Fig. 2, left).

Let |A| = |B| = ⌊√n⌋, |C| = n − 2⌊√n⌋ − 1 and |D| = 1. Let T be the topology of T ,

and let W be the topology that is obtained by swapping the positions of B and C in T (as

in Fig. 2, right).

Now define δ in the following way:

δij = dT

ij + ǫ if (i, j) ∈ (A × B) ∪ (C × D) ∪ (A × D) ∪ (B × C),

δij = dT

ij − ǫ if (i, j) ∈ (A × C) ∪ (B × D),

δij = dT

ij if (i, j) ∈ A2 ∪ B2 ∪ C2 ∪ D2.

Clearly, ‖δ −d
T ‖∞ = ǫ. If we express the average distances between the clades A, B , C,

and D, we then have:

δAB = dT

AB + ǫ, δCD = dT

CD + ǫ,

δAD = dT

AD + ǫ, δBC = dT

BC + ǫ,

δAC = dT

AC − ǫ, δBD = dT

BD − ǫ.

Desper and Gascuel (2002) have shown how to calculate the difference �S(δ) =
SW (δ) − ST (δ), for a generic δ, when W is obtained from T with a transformation such

as that in Fig. 2 (a nearest neighbor interchange, NNI). Applying their formula (Eq. (9)

in Desper and Gascuel, 2002), we have that

�S(δ) = 1

2

[

(1−λ)(δAC +δBD)−
(

1−λ′)(δAB +δCD)+
(

λ−λ′)(δAD +δBC)
]

, (6)
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where

λ = |A||D| + |B||C|
(|A| + |B|)(|C| + |D|) = 1

2

and

λ′ = |A||D| + |B||C|
(|A| + |C|)(|B| + |D|) = n⌊√n⌋ − 2⌊√n⌋2

(n − ⌊√n⌋ − 1)(⌊√n⌋ + 1)
.

For the calculations that follow it suffices to note that, as ⌊√n⌋2 ≤ n,

λ′ ≥ n(⌊√n⌋ − 2)

(n − ⌊√n⌋ − 1)(⌊√n⌋ + 1)
>

⌊√n⌋ − 2

⌊√n⌋ + 1
. (7)

Using the expressions for the average distances between A, B , C, and D and (6), we

obtain:

�S(δ) = 1

2

[

(1 − λ)
(

dT

AC + dT

BD − 2ǫ
)

−
(

1 − λ′)(dT

AB + dT

CD + 2ǫ
)

+
(

λ − λ′)(dT

AD + dT

BC + 2ǫ
)]

= 1

2

[

(1 − λ)
(

dT

AC + dT

BD

)

−
(

1 − λ′)(dT

AB + dT

CD

)

+
(

λ − λ′)(dT

AD + dT

BC

)]

+
[

(λ − 1) −
(

1 − λ′) +
(

λ − λ′)]ǫ

= �S
(

d
T

)

− 2(1 − λ)ǫ

= �S
(

d
T

)

− ǫ.

We are now going to express �S(dT ). We use the following relationship:

dT

AC + dT

BD = dT

AD + dT

BC = dT

AB + dT

CD + 2ℓT

min,

which can be proved by noting that dT

ac + dT

bd = dT

ad + dT

bc = dT

ab + dT

cd + 2ℓT

min holds for

any (a, b, c, d) ∈ A × B × C × D. Applying again (6), we then obtain:

�S
(

d
T

)

= 1

2

[

(1 − λ)
(

dT

AC + dT

BD

)

−
(

1 − λ′)(dT

AB + dT

CD

)

+
(

λ − λ′)(dT

AD + dT

BC

)]

= 1

2

[(

(1 − λ) −
(

1 − λ′) +
(

λ − λ′))(dT

AB + dT

CD

)

+ 2
(

(1 − λ) +
(

λ − λ′))ℓT

min

]

=
(

1 − λ′)ℓT

min.

We therefore have

�S(δ) =
(

1 − λ′)ℓT

min − ǫ.
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Using the bound in (7), we then have

�S(δ) <
3

⌊√n⌋ + 1
ℓT

min − ǫ

from which it becomes clear that if ǫ = 3

⌊√n⌋+1
ℓT

min, then SW (δ) − ST (δ) < 0, which is

what we wanted to show.

5. Discussion

The performance of minimum evolution strongly depends on the chosen method for es-

timating branch lengths. Not only length estimation determines whether or not ME is

consistent (Rzhetsky and Nei, 1993; Gascuel et al., 2001; Desper and Gascuel, 2004;

Willson, 2005a), but also whether it is robust to noise in the input data. A measure of this

robustness is provided by the safety radius studied here.

Previously, it was shown that OLS estimation causes ME to have radius at most 1
4

(Willson, 2005b); here, we have shown that this version of ME in fact has safety radius 0

(Section 4). As for BME, the fact that NJ has optimal radius 1
2

(Atteson, 1999) led some

to conjecture that also BME has radius 1
2

(Bordewich et al., 2009); we have proved this

here for the first time (Section 3).

The result on the safety radius of OLS + ME (0) may at first surprise, as it is very

different from the safety radius of NJ ( 1
2
), an algorithm that was originally designed to ap-

proximate OLS + ME (Saitou and Nei, 1987). However, it has previously been noted that

further optimizing for OLS+ME the trees produced by NJ actually results in a decrease—

not an increase—of their accuracy (Gascuel, 2000; Desper and Gascuel, 2002). This ob-

servation, together with the lack of robustness of OLS + ME shown here, demonstrates

that the merits of NJ lie in the fact that it is a heuristic for BME, and do not come from its

relationship with OLS + ME.

In fact, two heuristics precisely aimed at optimizing OLS + ME have been proposed

(Desper and Gascuel, 2002) and it is easy to see that also these heuristics have safety

radius (converging to) 0. The first of these heuristics (called GME by Desper and Gascuel,

2002), is based on a greedy sequential addition strategy: starting from the only possible

topology on the first three taxa, sequentially add each of the remaining taxa by attaching

it (with a new terminal branch) onto the branch that minimises the OLS length ST ′
(δ)

of the resulting tree T ′. Now imagine applying this greedy algorithm to the distances δ

constructed in Example 11 where taxon n (the last to be added by the algorithm) coincides

with the only taxon in clade D. It is then clear that, if ǫ is set to the value derived in that

example, this algorithm will not reconstruct the correct topology: even if all the taxa

up to n − 1 are added in the right places, because SW (δ) < ST (δ), taxon n would be

added in the position producing the wrong tree W rather than that producing T . The

other heuristic for OLS + ME (called FASTNNI; Desper and Gascuel, 2002), consists of

repeatedly swapping the positions of clades separated by three branches (i.e., applying an

NNI), again greedily choosing at each step the swap that produces the largest decrease in

OLS length, until a local minimum is reached. Again this algorithm does not reconstruct

the correct topology when applied to Example 11: because W is only one swap away from

T and has a smaller OLS length, T is not a local minimum. Since they do not reconstruct
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the correct tree when confronted with distances deviating by ǫ (with ǫ/ℓT

min

n→∞−→0) from

the correct distances, both these heuristics have safety radius (converging to) 0.

A related question is that of the safety radius of heuristic algorithms for BME. In ad-

dition to NJ, two other such heuristics can simply be obtained by adapting to BME the

two algorithms described above for OLS + ME. A simple inductive reasoning shows that

the greedy sequential addition algorithm for BME has radius 1
2

(an alternative proof of

this result has also been found by R.Mihaescu and M.Bordewich; unpublished, personal

communication). Suppose ‖δ − d
T ‖∞ < 1

2
ℓT

min. If n = 4, then all the three possible bifur-

cating topologies are taken into account by this algorithm, which then returns the topology

with the minimum balanced length. Because of Theorem 10, this is precisely the topology

of T . If n > 4, we can assume by inductive hypothesis that the greedy sequential algo-

rithm applied up to taxon n − 1 reconstructs the correct topology of T restricted to the

first n − 1 taxa. The complete topology of T is therefore one of the possible topologies

that can be produced when adding the last taxon, n. Because of Theorem 10, this topology

is the one with minimum balanced length and is therefore the one that gets reconstructed.

As for the NNI-based heuristic applied to BME (called BNNI; Desper and Gascuel,

2002), the question of whether this algorithm is consistent (and therefore that of deter-

mining its radius) is still open, although empirical evidence leads us to conjecture that

consistency does in fact hold.

In conclusion, there seems to be a clear difference in the robustness of methods based

on OLS + ME and those based on BME. Interestingly, although the safety radius is here

defined in terms of the maximum norm ‖δ −d
T ‖∞, the high sensitivity of OLS+ME and

the relative robustness of BME to noise in the input data are independent of the choice

of a norm: For instance, whatever the definition of the difference between δ and d
T ,

the example in Section 4 shows that this difference can become arbitrarily small, with

OLS + ME still favoring a wrong tree over the correct one.

BME and OLS+ME therefore have qualitatively different properties when confronted

with realistic (noisy) data. This may explain the lower reconstruction accuracy of (heuris-

tics for) OLS + ME as compared to (heuristics for) BME, a difference in performance

that was observed in several simulation studies (Saitou and Imanishi, 1989; Kumar, 1996;

Gascuel, 2000; Desper and Gascuel, 2002).
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Appendix

Recently, it has been shown that ST and BT can be seen as special cases of larger classes

of length estimators (Willson, 2005a; Mihaescu and Pachter, 2008). U
+(T ), defined in the

Preliminaries, is one of these classes (and, in fact, it can be proven to contain the class by
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Mihaescu and Pachter, 2008; result not shown). Given our results of Sections 3 and 4, a

reasonable question is whether there is a subclass of U
+(T ), containing BT but not ST ,

such that ME in combination with the members of this subclass is robust to noisy data.

A good candidate for such a subclass is the set of all the linear functions LT ∈ U (T )

(i.e., those giving the correct length of a tree given perfect data) having positive coeffi-

cients: that is, assuming LT (δ) =
∑

i<j cT
ijδij , such that cT

ij > 0 for every i < j . It is easy

to verify that BT belongs to this set—as its coefficients are powers of two and therefore

always positive—whereas ST , in general, does not—for example, some of the coefficients

of ST are negative when T is a caterpillar tree with 8 taxa.

The interest in this class comes from an elegant result which we prove now. We say

that two clades X and Y of T are separated by a branch e if any path in T between a leaf

in X and a leaf in Y contains e. Note that clades separated by at least one branch must be

disjoint.

Theorem A.1. Assume that for each bifurcating topology T we use a linear func-

tion LT ∈ U (T ) to estimate its length, where LT (δ) =
∑

i<j cT
ijδij and cT

ij > 0 for

every T and i < j . Then minimum evolution using the functions in {LT }T is consis-

tent.

Proof: Since LT ∈ U (T ), we just need to prove that LT (σA|B) > 1 for all bipartitions

A|B of {1,2, . . . , n} that are not splits of T to conclude that LT ∈ U
+(T ) and, therefore,

ME is consistent.

Let then A|B be a bipartition of {1,2, . . . , n} but not a split of T . It is easy to realize

that there must be in T four disjoint clades A1, B1, A2, and B2, such that: (1) A1 and

B1 are separated by exactly two branches, (2) A2 and B2 are separated by exactly two

branches, (3) A1 and A2 are contained in A and (4) B1 and B2 are contained in B (see

Fig. 3). It is easy to see that

σ
A|B = σ

A1|B1 + σ
A2|B2 + r,

where r = (rij ) has some entries such that rij = 1 and the remaining ones such that rij = 0.

Fig. 3 Illustration of the proof of Theorem A.1: all the taxa in A1 and A2 also belong to A, which we

denote by coloring these clades in black. All the taxa in B1 and B2 also belong to B , which we denote by

coloring these clades in white. The rest of the tree is colored in grey to denote that some of its taxa are in

A and some in B .
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Because LT is linear,

LT
(

σ
A|B)

= LT
(

σ
A1|B1

)

+ LT
(

σ
A2|B2

)

+ LT (r).

Lemma A.2 (proved below) shows that LT (σA1|B1) = LT (σA2|B2) = 1
2
. Because LT only

has positive coefficients and r is binary with some positive entries, we also have that

LT (r) > 0. We can then conclude that LT (σA|B) > 1. �

Lemma A.2. Let T be a bifurcating topology and LT ∈ U (T ). For every two clades, A

and B , separated by exactly two branches in T ,

LT
(

σ
A|B)

= 1

2
.

Proof: Any internal node of a bifurcating tree T is attached to three branches, defining

three clades A, B, and C each separated from the other two by exactly two branches.

Because A|B ∪ C, B|A ∪ C, and C|A ∪ B are all splits of T , and since LT ∈ U (T ), the

following equalities must hold:

LT
(

σ
A|B∪C

)

= LT
(

σ
A|B)

+ LT
(

σ
A|C)

= 1,

LT
(

σ
B|A∪C

)

= LT
(

σ
A|B)

+ LT
(

σ
B|C)

= 1,

LT
(

σ
C|A∪B

)

= LT
(

σ
A|C)

+ LT
(

σ
B|C)

= 1.

Solving the system above for the unknowns LT (σA|B), LT (σA|C), and LT (σB|C) leads to

the following solution:

LT
(

σ
A|B)

= LT
(

σ
A|C)

= LT
(

σ
B|C)

= 1

2
.

Since any two clades separated by exactly two branches must be in the configuration

outlined above, our proof is complete. �

Can then our results on the robustness of BME be extended more generally to all

versions of ME using functions from U (T ) with positive coefficients? Unfortunately, the

following example shows that if we estimate the length of each tree using an arbitrary

element of this class of functions, ME may have an arbitrarily small safety radius.

Example A.3. Let T and W be defined as in Fig. 2 except that now we assume that the

four corner clades only contain one taxon each, with A = {1}, B = {2}, C = {3}, D = {4}.
Give the branches of T the following (positive) lengths: ℓ1, ℓ2, ℓ3, ℓ4 for the terminal

branches incident with 1,2,3,4, respectively, and ℓ0 for the internal branch. Call the

resulting weighted tree T and assume ℓ0 = ℓT

min.

Assume ME uses the following formulae to estimate the lengths of T and W :

LT (δ) = 1

2
(δ12 + δ34) + 1

4
(δ13 + δ14 + δ23 + δ24),

LW (δ) = LW
ǫ (δ) = 1

2
(δ13 + δ24) +

(

1

2
− ǫ

)

(δ12 + δ34) + ǫ(δ14 + δ23),
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with ǫ being a small positive number. (It is unimportant what formula ME uses for

the third bifurcating topology over {1,2,3,4}.) It is easy to check that LT ∈ U (T ),

LW
ǫ ∈ U (W) and that they both have positive coefficients. We now show that by mak-

ing ǫ arbitrarily small, we can also make the safety radius of ME arbitrarily small.

Let α be such that 0 < α ≤ 1
2
. Define δ in the following way:

δ12 = dT

12 + αℓ0 = ℓ1 + ℓ2 + αℓ0,

δ34 = dT

34 + αℓ0 = ℓ3 + ℓ4 + αℓ0,

δ14 = dT

14 + αℓ0 = ℓ1 + ℓ4 + (1 + α)ℓ0,

δ23 = dT

23 + αℓ0 = ℓ2 + ℓ3 + (1 + α)ℓ0,

δ13 = dT

13 − αℓ0 = ℓ1 + ℓ3 + (1 − α)ℓ0,

δ24 = dT

24 − αℓ0 = ℓ2 + ℓ4 + (1 − α)ℓ0.

Clearly, ||δ − d
T ||∞ = αℓ0. We also have

LT (δ) = ℓ1 + ℓ2 + ℓ3 + ℓ4 + (1 + α)ℓ0

and

LW
ǫ (δ) = ℓ1 + ℓ2 + ℓ3 + ℓ4 + (1 + 2ǫ)ℓ0.

These formulae show that, if ǫ < 1
2
α, then LW

ǫ (δ) < LT (δ), that is ME will favor a wrong

topology W over the true topology T .

Therefore, the safety radius of ME using LT (δ) and LW
ǫ (δ) (with ǫ sufficiently small)

is limited above by α (if the radius were greater than α, ME should return T on the δ

defined above). Since this holds for an arbitrarily small α, we conclude that using ME

with correct linear formulae with positive coefficients does not guarantee any positive

safety radius.

The example above suggests that in order to guarantee a certain safety radius, the

coefficients of the used linear functions must not only be positive, but also “large enough.”

This is an interesting idea for further research, but outside the scope of the present paper.
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