M. Anisimova, J. P. Bielawski, and Z. Yang, Accuracy and Power of the Likelihood Ratio Test in Detecting Adaptive Molecular Evolution, Molecular Biology and Evolution, vol.18, issue.8, pp.1585-1592, 2001.
DOI : 10.1093/oxfordjournals.molbev.a003945

M. Anisimova and O. Gascuel, Approximate Likelihood-Ratio Test for Branches: A Fast, Accurate, and Powerful Alternative, Systematic Biology, vol.55, issue.4, pp.539-552, 2006.
DOI : 10.1080/10635150600755453

URL : https://hal.archives-ouvertes.fr/lirmm-00136658

J. Felsenstein, Confidence Limits on Phylogenies: An Approach Using the Bootstrap, Evolution, vol.39, issue.4, pp.783-791, 1985.
DOI : 10.2307/2408678

J. Felsenstein, Phylogenies from Molecular Sequences: Inference and Reliability, Annual Review of Genetics, vol.22, issue.1, pp.521-565, 1988.
DOI : 10.1146/annurev.ge.22.120188.002513

J. Felsenstein, Inferring phylogenies, 2003.

O. Gascuel, BIONJ: an improved version of the NJ algorithm based on a simple model of sequence data, Molecular Biology and Evolution, vol.14, issue.7, pp.685-695, 1997.
DOI : 10.1093/oxfordjournals.molbev.a025808

URL : https://hal.archives-ouvertes.fr/lirmm-00730410

N. Goldman, J. P. Anderson, and A. G. Rodrigo, Likelihood-Based Tests of Topologies in Phylogenetics, Systematic Biology, vol.49, issue.4, pp.652-670, 2000.
DOI : 10.1080/106351500750049752

S. Guindon and O. Gascuel, A Simple, Fast, and Accurate Algorithm to Estimate Large Phylogenies by Maximum Likelihood, Systematic Biology, vol.52, issue.5, pp.696-704, 2003.
DOI : 10.1080/10635150390235520

W. Hordijk and O. Gascuel, Improving the efficiency of SPR moves in phylogenetic tree search methods based on maximum likelihood, Bioinformatics, vol.21, issue.24, pp.4338-4347, 2005.
DOI : 10.1093/bioinformatics/bti713

URL : https://hal.archives-ouvertes.fr/lirmm-00137439

G. Jobb, A. Von-haeseler, and K. Strimmer, TREEFINDER: a powerful graphical analysis environment for molecular phylogenetics, BMC Evolutionary Biology, vol.4, issue.1, p.18, 2004.
DOI : 10.1186/1471-2148-4-18

T. Jukes and C. Cantor, Evolution of protein molecules Mammalian protein metabolism. Volume III. Chapter 24, pp.21-132, 1969.

H. Kishino and M. Hasegawa, Evaluation of the maximum likelihood estimate of the evolutionary tree topologies from DNA sequence data, and the branching order in hominoidea, Journal of Molecular Evolution, vol.46, issue.2, pp.170-179, 1989.
DOI : 10.1007/BF02100115

M. K. Kuhner and J. Felsenstein, A simulation comparison of phylogeny algorithms under equal and unequal evolutionary rates, Mol. Biol. Evol, vol.11, pp.459-468, 1994.

C. Lanave, G. Preparata, C. Saccone, and G. Serio, A new method for calculating evolutionary substitution rates, Journal of Molecular Evolution, vol.46, issue.1, pp.86-93, 1984.
DOI : 10.1007/BF02101990

S. Q. Le and O. Gascuel, An Improved General Amino Acid Replacement Matrix, Molecular Biology and Evolution, vol.25, issue.7, pp.1307-1320, 2008.
DOI : 10.1093/molbev/msn067

URL : https://hal.archives-ouvertes.fr/lirmm-00324106

S. Q. Le and O. Gascuel, Accounting for Solvent Accessibility and Secondary Structure in Protein Phylogenetics Is Clearly Beneficial, Systematic Biology, vol.59, issue.3, pp.277-287, 2010.
DOI : 10.1093/sysbio/syq002

URL : https://hal.archives-ouvertes.fr/lirmm-00511776

A. Lemmon and M. C. Milinkovitch, The metapopulation genetic algorithm: An efficient solution for the problem of large phylogeny estimation, Proc. Natl. Acad. Sci. USA, pp.10516-10521, 2002.
DOI : 10.1073/pnas.162224399

G. J. Olsen, H. Matsuda, R. Hagstrom, and R. Overbeek, fastDNAml: a tool for construction of phylogenetic trees of DNA sequences using maximum likelihood, Bioinformatics, vol.10, issue.1, pp.41-48, 1994.
DOI : 10.1093/bioinformatics/10.1.41

R. Ota, P. J. Waddell, M. Hasegawa, H. Shimodaira, and H. Kishino, Appropriate Likelihood Ratio Tests and Marginal Distributions for Evolutionary Tree Models with Constraints on Parameters, Molecular Biology and Evolution, vol.17, issue.5, pp.798-803, 2000.
DOI : 10.1093/oxfordjournals.molbev.a026358

M. Pagel and A. Meade, Mixture models in phylogenetic inference Mathematics of evolution & phylogeny, pp.121-142, 2005.

D. Penny and M. Steel, Parsimony, likelihood, and the role of models in molecular phylogenetics, Mol. Biol. Evol, vol.17, pp.839-850, 2000.

M. Price, P. Dehal, and A. Arkin, FastTree 2.1?approximately maximum-likelihood trees for large alignments Available from, 2009.

V. Ranwez and O. Gascuel, Quartet-Based Phylogenetic Inference: Improvements and Limits, Molecular Biology and Evolution, vol.18, issue.6, pp.1103-11016, 2001.
DOI : 10.1093/oxfordjournals.molbev.a003881

F. Ronquist and J. P. Huelsenbeck, MrBayes 3: Bayesian phylogenetic inference under mixed models, Bioinformatics, vol.19, issue.12, pp.1572-1574, 2003.
DOI : 10.1093/bioinformatics/btg180

M. J. Sanderson, M. J. Donoghue, W. Piel, and T. Eriksson, TreeBASE: a prototype database of phylogenetic analyses and an interactive tool for browsing the phylogeny of life Available from, Am. J. Bot, vol.81, p.183, 1994.

H. Shimodaira and M. Hasegawa, Multiple Comparisons of Log-Likelihoods with Applications to Phylogenetic Inference, Molecular Biology and Evolution, vol.16, issue.8, pp.1114-1116, 1999.
DOI : 10.1093/oxfordjournals.molbev.a026201

A. Stamatakis, RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models, Bioinformatics, vol.22, issue.21, pp.2688-2690, 2006.
DOI : 10.1093/bioinformatics/btl446

A. Stamatakis, Phylogenetic models of rate heterogeneity: a high performance computing perspective, Proceedings 20th IEEE International Parallel & Distributed Processing Symposium, pp.2006-2011, 2006.
DOI : 10.1109/IPDPS.2006.1639535

A. Stamatakis, P. Hoover, and J. Rougemont, A Rapid Bootstrap Algorithm for the RAxML Web Servers, Systematic Biology, vol.57, issue.5, pp.758-771, 2008.
DOI : 10.1080/10635150802429642

M. Steel and F. A. Matsen, The Bayesian "Star Paradox" Persists for Long Finite Sequences, Molecular Biology and Evolution, vol.24, issue.4, pp.1075-1079, 2007.
DOI : 10.1093/molbev/msm028

E. Susko, On the Distributions of Bootstrap Support and Posterior Distributions for a Star Tree, Systematic Biology, vol.57, issue.4, pp.602-612, 2008.
DOI : 10.1080/10635150802302468

S. Vinh and A. Von-haeseler, IQPNNI: Moving Fast Through Tree Space and Stopping in Time, Molecular Biology and Evolution, vol.21, issue.8, pp.1565-1571, 2004.
DOI : 10.1093/molbev/msh176

S. Whelan, New Approaches to Phylogenetic Tree Search and Their Application to Large Numbers of Protein Alignments, Systematic Biology, vol.56, issue.5, pp.727-740, 2007.
DOI : 10.1080/10635150701611134

S. Whelan and N. Goldman, A General Empirical Model of Protein Evolution Derived from Multiple Protein Families Using a Maximum-Likelihood Approach, Molecular Biology and Evolution, vol.18, issue.5, pp.691-699, 2001.
DOI : 10.1093/oxfordjournals.molbev.a003851

Z. Yang, Maximum-likelihood estimation of phylogeny from DNA sequences when substitution rates differ over sites, Mol. Biol. Evol, vol.10, pp.1396-1401, 1993.

C. M. Zmasek and S. R. Eddy, ATV: display and manipulation of annotated phylogenetic trees, Bioinformatics, vol.17, issue.4, pp.383-384, 2001.
DOI : 10.1093/bioinformatics/17.4.383

D. J. Zwickl, Genetic algorithm approaches for the phylogenetic analysis of large biological sequence data sets under the maximum likelihood criterion [PhD dissertation]. [Austin (TX)]: The University of Texas at Austin. 1. Prune S; 2. Compute the branch-length ML estimate at the prune position, 2006.

L. Evaluate and . Lnl, the log-likelihood of T', without adjusting the three branch lengths at the regraft site (the regraft site is in the

L. If, B. Lnl-',-then, . Lnl-'?-lnl-', and . Best-t-'?-t, Else, { i. Compute the three ML branch-length estimates at the regraft position and calculate LNL' = lnL

. Multiple, C. Spr, and . Algorithm, Multiple Spr Cycles Input: tree T Output: tree T with improved likelihood Let LNL be the log-likelihood of T; LNL' ? LNL -2?