F. Opperdoes, Phylogenetic analysis using protein sequences In The Phylogenetics Handbook A Practical Approach to DNA and Protein Phylogeny Edited by: Salemi M, Vandamme AM, pp.207-235

C. Setubal and J. Meidanis, Introduction to Computational Molecular Biology 1st edition, 1997.

J. Thorne, Models of protein sequence evolution and their applications. Currrent Opinion in Genetics and Development, pp.602-605, 2000.

S. Le and O. Gascuel, An Improved General Amino Acid Replacement Matrix, Molecular Biology and Evolution, vol.25, issue.7, pp.1307-1320, 2008.
DOI : 10.1093/molbev/msn067

URL : https://hal.archives-ouvertes.fr/lirmm-00324106

M. Dayhoff, R. Schwartz, and B. Orcutt, A Model of Evolutionary Change in Proteins, Atlas of Protein Sequence Structure, pp.345-352

D. Jones, W. Taylor, and J. Thornton, The rapid generation of mutation data matrices from protein sequences, Bioinformatics, vol.8, issue.3, pp.275-282, 1992.
DOI : 10.1093/bioinformatics/8.3.275

J. Adachi and M. Hasegawa, Model of amino acid substitution in proteins encoded by mitochondrial DNA, Journal of Molecular Evolution, vol.41, issue.4, pp.459-468, 1996.
DOI : 10.1007/BF02498640

S. Whelan and N. Goldman, A General Empirical Model of Protein Evolution Derived from Multiple Protein Families Using a Maximum-Likelihood Approach, Molecular Biology and Evolution, vol.18, issue.5, pp.691-699, 2001.
DOI : 10.1093/oxfordjournals.molbev.a003851

M. Dimmic, J. Rest, D. Mindell, and R. Goldstein, rtREV: An Amino Acid Substitution Matrix for Inference of Retrovirus and Reverse Transcriptase Phylogeny, Journal of Molecular Evolution, vol.55, issue.1, pp.65-73, 2002.
DOI : 10.1007/s00239-001-2304-y

D. Nickle, L. Heath, M. Jensen, P. Gilbert, J. Mullins et al., HIV-Specific Probabilistic Models of Protein Evolution, PLoS ONE, vol.299, issue.6, p.503, 2007.
DOI : 10.1371/journal.pone.0000503.s003

E. Ghedin, N. Sengamalay, M. Shumway, J. Zaborsky, T. Feldblyum et al., Large-scale sequencing of human influenza reveals the dynamic nature of viral genome evolution, Nature, vol.2, issue.7062, pp.1162-1166, 2005.
DOI : 10.1016/S0166-0934(02)00184-2

D. Janies, A. Hill, R. Guralnick, F. Habib, E. Waltari et al., Genomic Analysis and Geographic Visualization of the Spread of Avian Influenza (H5N1) Systematic Biology, pp.321-329, 2007.

Y. Bao, P. Bolotov, D. Dernovoy, B. Kiryutin, L. Zaslavsky et al., The Influenza Virus Resource at the National Center for Biotechnology Information, Journal of Virology, vol.82, issue.2, pp.596-601, 2008.
DOI : 10.1128/JVI.02005-07

T. Nguyen, T. Nguyen, D. Vijaykrishna, R. Webster, Y. Guan et al., Multiple Sublineages of Influenza A Virus (H5N1), Vietnam, 2005???2007, Multiple Sublineages of Influenza A Virus (H5N1), Vietnam, pp.632-636, 2005.
DOI : 10.3201/eid1404.071343

S. Guindon and O. Gascuel, A Simple, Fast, and Accurate Algorithm to Estimate Large Phylogenies by Maximum Likelihood, Systematic Biology, vol.52, issue.5, pp.696-704, 2003.
DOI : 10.1080/10635150390235520

H. Kishino and M. Hasegawa, Evaluation of the maximum likelihood estimate of the evolutionary tree topologies from DNA sequence data, and the branching order in hominoidea, Journal of Molecular Evolution, vol.46, issue.2, pp.170-179, 1989.
DOI : 10.1007/BF02100115

N. Goldman, J. Anderson, and R. A. , Likelihood-Based Tests of Topologies in Phylogenetics, Systematic Biology, vol.49, issue.4, pp.652-670, 2000.
DOI : 10.1080/106351500750049752

M. Pagel and A. Meade, Mixture models in phylogenetic inference, Mathematics of evolution and phylogeny Edited by: Gascuel O, pp.121-142

R. Edgar, MUSCLE: multiple sequence alignment with high accuracy and high throughput, Nucleic Acids Research, vol.32, issue.5, pp.1792-1797, 2004.
DOI : 10.1093/nar/gkh340

L. Kevin, R. Sindhu, N. Serita, R. L. , and T. W. , Rapid and Accurate Large- Scale Coestimation of Sequence Alignments and Phylogenetic Trees, Science, vol.324, pp.1561-1564, 2009.

M. Boni, Y. Zhou, J. Taubenberger, and E. Holmes, Homologous Recombination Is Very Rare or Absent in Human Influenza A Virus, Journal of Virology, vol.82, issue.10, pp.4807-4811, 2008.
DOI : 10.1128/JVI.02683-07

C. He, Z. Xie, G. Han, J. Dong, D. Wang et al., Homologous Recombination as an Evolutionary Force in the Avian Influenza A Virus, Molecular Biology and Evolution, vol.26, issue.1, pp.177-187, 2009.
DOI : 10.1093/molbev/msn238

J. Castresana, Selection of Conserved Blocks from Multiple Alignments for Their Use in Phylogenetic Analysis, Molecular Biology and Evolution, vol.17, issue.4, pp.540-552, 2000.
DOI : 10.1093/oxfordjournals.molbev.a026334

K. Strimmer and A. Haeseler, Nucleotide Substitution Models In The Phylogenetics Handbook A Practical Approach to DNA and Protein Phylogeny Edited by: Salemi M, Vandamme AM, pp.72-100

J. Felsenstein, Evolutionary trees from DNA sequences: A maximum likelihood approach, Journal of Molecular Evolution, vol.24, issue.6, pp.368-376, 1981.
DOI : 10.1007/BF01734359

W. Fitch and E. Margoliash, A method for estimating the number of invariant amino acid coding positions in a gene using cytochrome c as a model case, Biochemical Genetics, vol.13, issue.1, pp.65-71, 1967.
DOI : 10.1007/BF00487738

G. Churchill, A. Haeseler, and W. Navidi, Sample Size for Phylogenetic Inference, Mol Biol Evol, vol.9, pp.753-769, 1992.

Z. Yang, Maximum-likelihood estimation of phylogeny from DNA sequences when substitution rates differ over sites, Mol Biol Evol, vol.10, pp.1396-1401, 1993.

X. Gu, Y. Fu, and W. Li, Maximum Likelihood Estimation of the Heterogeneity of Substitution Rate among Nucleotide Sites, Mol Biol Evol, vol.12, pp.546-557, 1995.

P. Klosterman, A. Uzilov, Y. Bendana, R. Bradley, S. Chao et al., XRate: a fast prototyping, training and annotation tool for phylo-grammars, BMC Bioinformatics, vol.7, issue.1, p.428, 2006.
DOI : 10.1186/1471-2105-7-428