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Completing a combinatorial proof of the rigidity of Sturmian words generated by morphisms

, Séébold announced that Sturmian words generated by morphisms are all rigid.

There was a gap in the proof. This gap is corrected here to complete a combinatorial proof of this result.

Introduction

An infinite word generated by a morphism is rigid if all the morphisms which generate this word are powers of a unique morphism.

In [START_REF] Séébold | On the conjugation of standard morphisms[END_REF], Séébold claimed the following. Séébold's proof is entirely combinatorial. However, recently [START_REF] Rao | Invertible Substitutions with a Common Periodic Point[END_REF], Rao and Wen published a paper in which they give a geometrical proof of Theorem 1.1 based on Rauzy fractals, saying moreover that they "have sought for a combinatorial proof but did not succeed. It would be interesting to know a combinatorial proof (sic)".

While they did not pointed out Séébold's result, they know it because, when preparing their paper, they noticed in Séébold's proof a part which was not complete and hard to retrieve [1].

Even if Rao and Wen were unable to succeed in finding a combinatorial proof of Theorem 1.1 (in fact in correcting the gap in Séébold's proof), such a proof really exists since Séébold's proof can be completed.

The aim of the present note is therefore to correct the gap in Séébold's proof with only combinatorial arguments, thus completing an entirely (correct) combinatorial proof of Theorem 1.1.

The gap is described in Section 3 and corrected in Section 4. In order to be self-contained, and to correct some other imprecisions in Séébold's proof, a combinatorial proof of Theorem 1.1, based on Séébold's original proof (see [START_REF] Séébold | On the conjugation of standard morphisms[END_REF]), is given in Section 5.

2 Preliminaries

Before pointing out the gap and solving it, we recall some definitions and notations, and useful results (for references and details, readers are invited to refer to [START_REF] Séébold | On the conjugation of standard morphisms[END_REF]). For general notions about combinatorics on words, we refer to [START_REF] Lothaire | Algebraic Combinatorics on Words[END_REF].

Let A be the two-letter alphabet A = {a, b}. The set St of all Sturmian morphisms is generated by the three morphisms

Sturmian words are infinite aperiodic words over

E(a → b, b → a), G(a → a, b → ab), G(a → a, b → ba).
This means that every Sturmian morphism f is a composition of a certain number of these three morphisms in a certain order. Considering such a decomposition as a word over the alphabet {E, G, G}, we write St = {E, G, G} * and a given decomposition of f is the word f over St.

The set St has the presentation

E 2 = Id A GEG k E G = GE Gk EG, k ≥ 0
where Id A is the identity morphism over A. Note that when k = 0, G G = GG.

In all the following, since E 2 = Id A , we will without restriction consider only reduced words, i.e., decompositions of morphisms with no two consecutive E. This is in particular allowed by the following important lemma which summarizes results proved in [START_REF] Séébold | On the conjugation of standard morphisms[END_REF].

Lemma 2.1 ( [START_REF] Séébold | On the conjugation of standard morphisms[END_REF]) If two Sturmian morphisms f and g are such that f = g then there exists an

integer n ≥ 0 such that f = f 1 • ... • f n and g = g 1 • ... • g n with, for all integers i, 1 ≤ i ≤ n, f i ∈ {E, G, G}, g i ∈ {E, G, G} and, g i ∈ {G, G} if and only if f i ∈ {G, G}, g i = E if and only if f i = E.
(In other words, in all decompositions of two equal Sturmian morphisms letter E occurs exactly at the same index.) This implies in particular that the length |f | (the number of occurrences of single morphisms E, G and G in f ) is a well-defined number because, under the assumption that E 2 never appear in the decomposition of a morphism, all decompositions of a given morphism have the same length.

We will also use the notation |f | x to denote, in a given decomposition of the morphism f , the number of occurrences of x in this decomposition of f (x ∈ {E, G, G}). From what preceed, for a given Sturmian morphism f the number |f | E is the same for all decompositions of f . Now, if we consider the infinite set of relations of the previous presentation of St as a symmetric rewriting system S then S is locally confluent: every two elements with a common ancestor share a common descendant (this is because each relation is invertible). This implies that, at each step, we can always choose to apply any of the possible rewriting rules to go from one decomposition to another without changing the result.

In the following, we will work with the rewriting system S, considering that if two Sturmian morphisms f and g are equal (f = g) then the reduced words f and g (in

St \ StE 2 St) are S-equivalent (f ≡ g). In particular, from Lemma 2.1, if f ≡ g then |f | = |g| and f i = E if and only if g i = E, 1 ≤ i ≤ |f |.
To end these preliminaries, we recall that the set St is left and right cancellative [START_REF] Richomme | Conjugacy and episturmian morphisms[END_REF], i.e., if f , g and h are Sturmian morphisms then f

• g = f • h implies g = h and f • g = h • g implies f = h. From what preceeds, this implies that if f • g ≡ f • h then g ≡ h and if f • g ≡ h • g then f ≡ h.
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Before indicating the gap in Séébold's proof, we need to recall precisely the meaning of "a morphism generates an infinite word".

Let f be a morphism on A. If there exist a letter c ∈ A and a word u ∈ A + such that f (c) = cu and, for every non-negative integer n, |f n+1 (c)| > |f n (c)| then f generates an infinite word, x = lim n→∞ f n (c). Notice that if f generates an infinite word x then x is a fixed point of f , i.e., x = f (x) (of course the converse is false since, for example, Id A (x) = x for every word x but the identity morphism never generates any word). To end, it is noteworthy that, since A is a two-letter alphabet then either f or f 2 generates an infinite word, or no power of f generates an infinite word.

In his proof of Theorem 1.1 given in [START_REF] Séébold | On the conjugation of standard morphisms[END_REF], Séébold considers two morphisms f and g generating the same Sturmian word and concludes that f • g = g • f and f n = g m for some integers n, m.

Then he writes (this is the end of the proof): "f n = g m and f g = gf imply that the words f and g are powers of the same word and thus that the morphisms f and g are powers of the same morphism." The gap is here because, due to the presentation of St, the set of all Sturmian morphisms, the decomposition of one particular morphism is generally not unique, consequently what is true for words can be wrong for morphisms.

Therefore the proof needs to be completed by showing that, in this case, what is true for words remains true in the rewriting system S.

The complement

The solution is given by the following proposition. With this proposition, the gap is ruled out by Corollary 4.3 below which should replace the end of Séébold's proof in [START_REF] Séébold | On the conjugation of standard morphisms[END_REF]. The proof of this corollary needs an intermediate useful lemma.

Lemma 4.2 Let f be a Sturmian morphism. Then f • E = E • f if and only if f = Id A or f = E. Proof. The "if" part is trivial. For the "only if" part, let us remark that if f is a Sturmian morphism then |f (a)| a +|f (b)| a = |f (a)| b + |f (b)| b , except if f = Id A or f = E. Now, |f •E(a)| a +|f •E(b)| a = |f (a)| a +|f (b)| a when |E •f (a)| a +|E •f (b)| a = |f (a)| b +|f (b)| b .
Consequently, the only possiblity to have f 

• E = E • f is that f = Id A or f = E.
f = g • h. Since f • g = g • f , one has g • h • g = g • g • h from which we obtain h • g = g • h because St is left cancellative. If h = Id A then f = g. Otherwise |h| ≥ 1 and, from Lemma 4.2, h = E (otherwise g = Id A or g = E, a contradiction). Consequently |f | > max(|g|, |h|) (thus n < m). Since f n = g m and h • g = g • h, g n • h n = g m , thus h n = g m-n
. By induction, there exist integers k, ℓ and a Sturmian morphism h ′ such that g = h ′k and h = h ′ℓ . Thus f = h ′k+ℓ . Before proving Proposition 4.1 we need to establish some intermediate lemmas. Proof. We prove the first assertion (the proof of the second one is exactly the same, exchanging G and G). 

Consider first that |α|

E = 1. Then α ≡ G k 1 EG k 2 , k 1 , k 2 ≥ 0 and f ≡ G k 1 +1 EG k 2 Gβ.

Consider now that |α|

E ≥ 3, that is, α ≡ G k 1 EG k 2 EG k 3 Eδ with k 1 ≥ 0, k 2 , k 3 ≥ 1, δ ∈ {G, E} * , and f ≡ GG k 1 EG k 2 EG k 3 Eδ Gβ. Observe that |Eδ| E = |α| E -2 is odd and |G k 3 Eδ Gβ| < |f |.
Therefore by induction G k 3 Eδ Gβ has no decomposition beginning with G, which implies this also holds for f because k 2 ≥ 1. Consequently, a decomposition of f begins with

G k+1 EG k ′ E G ≡ G k GE Gk ′ EG ≡ GG k E Gk ′ EG. Let γ be such that f ≡ GG k E Gk ′ EGγ. Since f ≡ Gk+1 Eβ, GG k E Gk ′ EGγ ≡ Gk+1 Eβ from which G k E Gk ′ EGγ ≡ Gk Eβ (because St is left cancellative) which is impossible from Lemma 4.4 if k = 0.
• If f has a decomposition f ≡ αGEG k with k ≥ 1, then all decompositions of f end with EG k .

• If f has a decomposition f ≡ α GE Gk with k ≥ 1, then all decompositions of f end with E Gk .

Proof. We prove the second assertion (the proof of the first one is exactly the same, exchanging G and G).

The property is true if α ≡ G p Gq (p, q ≥ 0) or α ≡ G p 1 Gq 1 EG p 0 Gq 0 (p 0 , q 0 , p 1 , q 1 ≥ 0), i.e.,

if |α| E = 0 or |α| E = 1.
Arguing by induction on |α| E , let us suppose that α ≡ α ′ EG p 1 Gq 1 EG p 0 Gq 0 . If α ′ = ε then it is again straightforward that all decompositions of f end with E Gk . Otherwise, α ′ ≡ α ′′ G p 2 Gq 2 therefore f ≡ α ′′ G p 2 Gq 2 EG p 1 Gq 1 EG p 0 Gq 0 GE Gk with p 0 , q 0 , p 1 , q 1 , p 2 , q 2 ≥ 0 and p 1 + q 1 ≥ 1,

p 2 + q 2 ≥ 1.
Two cases have to be considered. 1) q 1 = 0. In this case, f has a decomposition f ≡ α ′′ G p 2 Gq 2 EG p 1 EG p 0 Gq 0 GE Gk .

• If q 0 ≥ 1 then every decomposition of f ends with E Gk because only one occurrence of G in the block G p 0 Gq 0 G can be changed in G, implying that no rewriting rule using E can be applied to the end of the decomposition of f .

• If q 0 = 0 then f ≡ α ′′ G p 2 Gq 2 EG p 1 EG p 0 GE Gk .
If p 2 = 0 then no rewriting rule using E Gk can be applied to the end of the decom-

position of f . Otherwise, p 2 ≥ 1 and f ≡ α ′′ G p 2 -1 Gq 2 GEG p 1 E GG p 0 E Gk ≡ α ′′ G p 2 -1 Gq 2 +1 E Gp 1 EG p 0 +1 E Gk .
By induction hypothesis, every decomposition of α"G p 2 -1 Gq 2 +1 E Gp 1 ends with E Gp 1 .

Therefore, no rewriting rule using E Gk can be applied to the end of the decomposition of f .

2)

q 1 ≥ 1. Then f ≡ α ′′ G p 2 Gq 2 EG p 1 Gq 1 E GG p 0 Gq 0 E Gk .
Again, by induction hypothesis, every decomposition of α ′′ G p 2 Gq 2 EG p 1 Gq 1 E G ends with E G, therefore no rewriting rule using E Gk can be applied to the end of the decomposition of f .

We are now ready to prove Proposition 4.1.

Proof of Proposition 4.1. Let f and g be two Sturmian morphisms such that f • g = g • f and f n = g m , for some integers n ≤ m. This implies |f | ≥ |g|, so all decompositions of f are longer (as words) than all decompositions of g.

Since f and g are Sturmian, f ∈ {E, G, G} * and g ∈ {E, G, G} * . From Lemma 2.1, equality f n = g m implies that for all decompositions of f and g, and for each integer i,

1 ≤ i ≤ n • |f | (= m • |g|), (f n ) i = E if and only if (g m ) i = E, and (f n ) i ∈ {G, G} if and only if (g m ) i ∈ {G, G}.
In particular, for all decompositions of f and g, and for each integer j, 1 ≤ j ≤ |g|, f j = E if and only if g j = E, and f j ∈ {G, G} if and only if g j ∈ {G, G}. Now, let us suppose that for all decompositions of f and g there exists an index i ≤ |g| such that f i = g i . This implies in particular that 2 ≤ n ≤ m (otherwise n = 1, so f = g m ).

A In this note, in order to complete an entirely combinatorial proof of Theorem 1.1, we have proved in Proposition 4.1 that if f and g are two Sturmian morphisms such that f • g = g • f and f n = g m , for some integers n ≤ m, then there exists a Sturmian morphism h such that f = g •h. Of course, only the first condition is not sufficient to have the result since, for example, f = G and g = G are such that f • g = g • f while f = g. On the contrary, the second condition could perhaps be enough alone because, in the proof of Proposition 4.1, it seems that the first condition could be avoided.

On the other hand, let us also point out that, recently, new developments on rigidity were obtained (see, e.g., [START_REF] Krieger | On stabilizers of infinite words[END_REF], [START_REF] Diekert | Some remarks about stabilizers[END_REF], [START_REF] Durand | Syndeticity and independent substitutions[END_REF]).

Theorem 1 . 1 (

 11 [START_REF] Séébold | On the conjugation of standard morphisms[END_REF], Theorem 7) Sturmian words generated by morphisms are all rigid.

  A that contain exactly n+1 different factors of length n for each integer n ≥ 0. Sturmian morphisms are those morphisms which preserve Sturmian words: a morphism f on A is Sturmian if f (s) is a Sturmian word whenever s is a Sturmian word.

Proposition 4 . 1

 41 If f and g are two Sturmian morphisms such that f • g = g • f and f n = g m , for some integers n ≤ m, then there exists a Sturmian morphism h such that f = g • h.

Corollary 4 . 3

 43 Let f and g be Sturmian morphisms generating the same Sturmian word, such that f • g = g • f and f n = g m , n, m integers. Then there exist integers k and ℓ, and a Sturmian morphism h such that f = h k and g = h ℓ . Proof. Here, because G and G do not generate any Sturmian word, we use morphisms ϕ and φ. It is well known (and immediate since ϕ = G • E and φ = G • E) that St = {ϕ, φ, E} * . First of all, let us remark that f and g are not Id A nor E because the identity morphism Id A and the exchange morphism E do not generate any infinite word. The proof is by induction on max(|f |, |g|). If max(|f |, |g|) = 0 then f and g are the empty morphisms which do not generate any word. Therefore |f | ≥ 1 and |g| ≥ 1.

Lemma 4 . 4

 44 Let f , α, β be three Sturmian morphisms.• If f has a decomposition f ≡ Gα Gβ with |α| G = 0 and |α| E odd, then all decompositions of f begin with G.• If f has a decomposition f ≡ GαGβ with |α| G = 0 and |α| E odd, then all decompositions of f begin with G.Note that, on the other hand, if f has a decomposition f ≡ Gα Gβ with |α| G = 0 and |α| E even, then there exists a decomposition of f beginning with G (and the same is true, exchanging G and G).

  So, let f , α, β be three Sturmian morphisms such that f has a decomposition f ≡ Gα Gβ with |α| G = 0 and |α| E odd. First note that, from Lemma 2.1, no decomposition of f can begin with E. We proceed by induction on |f |. Necessarily |f | ≥ 3 and when |f | = 3, f = GE G has a unique decomposition over {G, E, G} (without factor EE) and in this case the result holds. Assume now that |f | > 3.

From

  the presentation of St, f admits a factorization beginning with G only if Gβ admits a factorization Gβ ≡ G k 3 E Gγ with k 3 > 0, and γ ∈ {G, G, E} * . But, since |G k 3 E Gγ| = | Gβ| < |f |, by induction, this is not possible.

Lemma 4 . 5

 45 If a Sturmian morphism has two decompositionsG k+1 Eα ≡ Gk+1 Eβ then k = 0. Proof. Let f ≡ G k+1 Eα ≡ Gk+1Eβ for a non-negative integer k. We first remark that α must contain at least one occurrence of G otherwise no decomposition of G k+1 Eα can start with G.If α begins with G k ′ G for some integer k ′ then, from Lemma 4.4, no decomposition of G k+1 Eα can begin with G. Therefore α ≡ G k ′ Eα ′ with k ′ ≥ 1. In this case the only possibility for f to have a decomposition beginning with G is that α ′ has a decomposition beginning with G.

Result 5 . 6 ([ 8 ], Corollary 2 )

 5682 Let g be a Sturmian morphism (different from Id A and E) and f the standard morphism of which g is a conjugate then, for all u ∈ A * , the word g(u) is a conjugate of the word f (u).Proof of Theorem 1.1.Let f and g, be two morphisms on A which generate the same Sturmian word x. Since f (x) = x = g(x), f and g are Sturmian by Result 5.1. From Result 5.2, there exist f ′ and g ′ , two characteristic morphisms of which f and g are respectively good conjugates and which generate two words 1 with the same set of factors as x. From Results 5.3 and 5.4, and Lemma 2.1, this implies that f ′ and g ′ are two powers of a same primitive characteristic morphism h. Thus f and g are good conjugates of two powers of h, and there exist two strictly positive integers m and n such that f is a good conjugate of h m and g is a good conjugate of h n . But in this case, from Result 5.5, f n and g m are both conjugates of h nm and f • g and g • f are both conjugates of h n+m . Since all these morphisms generate x, one has then f n = g m and f • g = g • f (indeed for every prefix u of x, by Result 5.6, |f n (u)| = |h nm (u)| = |g m (u)|, so that words f n (u) and g m (u) are equal since they are both prefixes of x; similarly f • g(u) = g • f (u)). This implies, from Corollary 4.3, that the morphisms f and g are powers of a same morphism.

  Sturmian word x is characteristic if both ax and bx are Sturmian words. A morphism f is standard if f ∈ {E, φ} * . Standard morphisms generating Sturmian words are called characteristic morphisms. A morphism g is a conjugate of a morphism f if there exists s ∈ A * such that sg(ab) = f (ab)s and |g(a)| = |f (a)| (which of course implies that |g(b)| = |f (b)|). In what follows, good conjugates of a standard morphisms are all its conjugates that are Sturmian morphisms. Notice that eachSturmian morphism is a conjugate of one standard morphism. Let g ∈ St be a morphism which generates a Sturmian word x. Let f be a characteristic morphism and x be the characteristic word generated by f. Then there exists a primitive characteristic morphism h such that 1. f = h n for an integer n ;

	Result 5.2 ([8], Lemma 8) Then g is a conjugate of a characteristic morphism f which generates a word y having the same
	set of factors as x.
	A morphism is primitive if it is not a power of another morphism.
	Result 5.3 ([8], Theorem 6)

2. a morphism g : A * → A * generates an infinite word having the same set of factors as x if and only if g is a good conjugate of a power of h.

Result 5.4 ([8], Lemma 7) Let f be a characteristic morphism. Then any primitive morphism g on A, such that f is a power of g, is standard.

Result 5.5 ([8], Proposition 6) A morphism g ∈ St is a good conjugate of a power of a standard morphism f if and only if g is a composition of good conjugates of f.

Let us recall that two words u and v are conjugates (of each other) if there exists s ∈ A * such that su = vs.

Notice that, since these two words are characteristic words with the same set of factors, they are equal (see, e.g.,[START_REF] Lothaire | Algebraic Combinatorics on Words[END_REF]). This argument was used in Séébold's original proof[START_REF] Séébold | On the conjugation of standard morphisms[END_REF], but there, this property was not explicitely proved. This is why we choose here to do not use this equality and to show that results explicitely proved in[START_REF] Séébold | On the conjugation of standard morphisms[END_REF] are sufficient to conclude.8

Let f ≡ uf |u|+1 v 1 and g ≡ ug |u|+1 v 2 be decompositions of f and g where |u| is the greatest possible such that f |u|+1 = g |u|+1 . Possibly exchanging f and g, we can assume that f |u|+1 = G, g |u|+1 = G, i.e., f ≡ uGv 1 and g ≡ u Gv 2 .

If |v 1 | G = 0 then there exist α 1 , β 1 such that |α 1 | G = 0 and f ≡ uGα 1 Gβ 1 . The fact that |u| is maximal implies that |α 1 | E is odd. But, in this case

Consequently v 1 ∈ {G, E} * and, with the same reasoning,

(1)

and from f • g = g • f , we have

Now, four cases have to be considered following the value of v 1 .

In particular |f | = |g|, so n = m.

Two cases are possible:

• |u| E = 0. In this case, u ≡ G r Gs for some non-negative integers r, s and then

Gns and g m ≡ G nr Gn(s+1) , a contradiction with f n = g m .

• |u| E ≥ 1. In this case, u ≡ G r Gs Eu ′ for some non-negative integers r, s and u ′ does not begin with E.

if u ′ begins with G then all decompositions of GEu ′ Gg n-2 begins with G and if u ′ begins with G then all decompositions of GEu ′ Gf n-2 begins with G.

Consequently, u ′ = ε and Equation [START_REF] Diekert | Some remarks about stabilizers[END_REF] gives GE G ≡ GEG, a contradiction.

2)

• If |u| E = 0 then u ≡ G r Gs for some non-negative integers r, s and Equation (1) gives

• If |u| E ≥ 1 then u ≡ G r Gs Eu ′ for some non-negative integers r, s and Equation ( 2)

then, from Lemma 4.5, ℓ 0 = k 0 = 0, a contradiction.

3) v 1 = G ℓ 0 E for some integer ℓ 0 ≥ 0

In this case f ≡ uG ℓ 0 +1 E and then v 2 = Gℓ 0 E. For if not, from Lemma 2.1 and Equation (1), and since |v 1 | ≥ |v 2 |, v 2 = Gk 0 for some integer k 0 ≤ ℓ 0 , which implies g m ends with G when f n ends with E, a contradiction with Equation (1) and Lemma 2.1.

Again, from Lemma 4.5, ℓ 0 = 0.

Therefore, v 1 = v 2 = E, and Equation (1) gives GEuGEf n-2 ≡ GEu GEg m-2 .

• If u = ε, then the left part of this equivalence contains only occurrences of G when its right part contains only occurrences of G, a contradiction.

• If u begins with G then, from Lemma 4.4, each decomposition of GEu GEg m-2 begins with G, a contradiction.

• If u begins with G then, from Lemma 4.4, each decomposition of GEuGEf n-2 begins with G, a contradiction.

Henceforth, u = Eu ′ and, since

gives

If v ′ 1 ends with E then, as previously, v 2 ends with E and Equation (3) remains the same without this last occurrence of E.

Thus our assuming that G ℓ 1 v ′ 1 ends with G (and then Gv 2 ends with G). In this case, since

In the four cases, the assumption that f i = G and g i = G for some index i, 1 ≤ i ≤ |g|, leads to a contradiction. This implies that there exist one decomposition of f and one decomposition of g such that

5 A combinatorial proof of Theorem 1.1

Before starting the proof of Theorem 1.1, we need to define some terminology and to recall some results from [START_REF] Séébold | On the conjugation of standard morphisms[END_REF]. (ii) f is Sturmian;

(iii) there exists at least one Sturmian word s such that f (s) is Sturmian.