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Abstract5

In [8], Séébold announced that Sturmian words generated by morphisms are all rigid.6

There was a gap in the proof. This gap is corrected here to complete a combinatorial proof7

of this result.8

1 Introduction9

An infinite word generated by a morphism is rigid if all the morphisms which generate this word10

are powers of a unique morphism.11

In [8], Séébold claimed the following.12

Theorem 1.1 ([8], Theorem 7) Sturmian words generated by morphisms are all rigid.13

Séébold’s proof is entirely combinatorial. However, recently [6], Rao and Wen published a14

paper in which they give a geometrical proof of Theorem 1.1 based on Rauzy fractals, saying15

moreover that they “have sought for a combinatorial proof but did not succeed. It would be16

interesting to know a combinatorial proof (sic)”.17

While they did not pointed out Séébold’s result, they know it because, when preparing their18

paper, they noticed in Séébold’s proof a part which was not complete and hard to retrieve [1].19

Even if Rao and Wen were unable to succeed in finding a combinatorial proof of Theorem 1.120

(in fact in correcting the gap in Séébold’s proof), such a proof really exists since Séébold’s proof21

can be completed.22

The aim of the present note is therefore to correct the gap in Séébold’s proof with only com-23

binatorial arguments, thus completing an entirely (correct) combinatorial proof of Theorem 1.1.24

The gap is described in Section 3 and corrected in Section 4. In order to be self-contained, and25

to correct some other imprecisions in Séébold’s proof, a combinatorial proof of Theorem 1.1,26

based on Séébold’s original proof (see [8]), is given in Section 5.27
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2 Preliminaries28

Before pointing out the gap and solving it, we recall some definitions and notations, and useful29

results (for references and details, readers are invited to refer to [8]). For general notions about30

combinatorics on words, we refer to [5].31

Let A be the two-letter alphabet A = {a, b}.32

Sturmian words are infinite aperiodic words over A that contain exactly n+1 different factors33

of length n for each integer n ≥ 0. Sturmian morphisms are those morphisms which preserve34

Sturmian words: a morphism f on A is Sturmian if f(s) is a Sturmian word whenever s is a35

Sturmian word.36

The set St of all Sturmian morphisms is generated by the three morphisms

E(a 7→ b, b 7→ a), G(a 7→ a, b 7→ ab), G̃(a 7→ a, b 7→ ba).

This means that every Sturmian morphism f is a composition of a certain number of these three37

morphisms in a certain order. Considering such a decomposition as a word over the alphabet38

{E,G, G̃}, we write St = {E,G, G̃}∗ and a given decomposition of f is the word f over St.39

The set St has the presentation

E2 = IdA

GEGkEG̃ = G̃EG̃kEG, k ≥ 0

where IdA is the identity morphism over A. Note that when k = 0, GG̃ = G̃G.40

In all the following, since E2 = IdA, we will without restriction consider only reduced words,41

i.e., decompositions of morphisms with no two consecutive E. This is in particular allowed by42

the following important lemma which summarizes results proved in [8].43

Lemma 2.1 ([8]) If two Sturmian morphisms f and g are such that f = g then there exists an44

integer n ≥ 0 such that f = f1 ◦ ... ◦ fn and g = g1 ◦ ... ◦ gn with, for all integers i, 1 ≤ i ≤ n,45

fi ∈ {E,G, G̃}, gi ∈ {E,G, G̃} and, gi ∈ {G, G̃} if and only if fi ∈ {G, G̃}, gi = E if and only46

if fi = E.47

(In other words, in all decompositions of two equal Sturmian morphisms letter E occurs exactly48

at the same index.)49

This implies in particular that the length |f | (the number of occurrences of single morphisms50

E, G and G̃ in f) is a well-defined number because, under the assumption that E2 never appear in51

the decomposition of a morphism, all decompositions of a given morphism have the same length.52

We will also use the notation |f |x to denote, in a given decomposition of the morphism f , the53

number of occurrences of x in this decomposition of f (x ∈ {E,G, G̃}). From what preceed, for54

a given Sturmian morphism f the number |f |E is the same for all decompositions of f .55

Now, if we consider the infinite set of relations of the previous presentation of St as a56

symmetric rewriting system S then S is locally confluent: every two elements with a common57

ancestor share a common descendant (this is because each relation is invertible). This implies58

that, at each step, we can always choose to apply any of the possible rewriting rules to go from59

one decomposition to another without changing the result.60

In the following, we will work with the rewriting system S, considering that if two Sturmian61

morphisms f and g are equal (f = g) then the reduced words f and g (in St \ StE2St) are62

S-equivalent (f ≡ g). In particular, from Lemma 2.1, if f ≡ g then |f | = |g| and fi = E if and63

only if gi = E, 1 ≤ i ≤ |f |.64

To end these preliminaries, we recall that the set St is left and right cancellative [7], i.e., if65

f , g and h are Sturmian morphisms then f ◦ g = f ◦ h implies g = h and f ◦ g = h ◦ g implies66

f = h. From what preceeds, this implies that if f ◦ g ≡ f ◦ h then g ≡ h and if f ◦ g ≡ h ◦ g67

then f ≡ h.68
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3 The gap69

Before indicating the gap in Séébold’s proof, we need to recall precisely the meaning of “a70

morphism generates an infinite word”.71

Let f be a morphism on A. If there exist a letter c ∈ A and a word u ∈ A+ such that72

f(c) = cu and, for every non-negative integer n, |fn+1(c)| > |fn(c)| then f generates an infinite73

word, x = limn→∞ fn(c). Notice that if f generates an infinite word x then x is a fixed point74

of f , i.e., x = f(x) (of course the converse is false since, for example, IdA(x) = x for every75

word x but the identity morphism never generates any word). To end, it is noteworthy that,76

since A is a two-letter alphabet then either f or f2 generates an infinite word, or no power of f77

generates an infinite word.78

In his proof of Theorem 1.1 given in [8], Séébold considers two morphisms f and g generating79

the same Sturmian word and concludes that f ◦ g = g ◦ f and fn = gm for some integers n, m.80

Then he writes (this is the end of the proof): “fn = gm and fg = gf imply that the words81

f and g are powers of the same word and thus that the morphisms f and g are powers of the82

same morphism.” The gap is here because, due to the presentation of St, the set of all Sturmian83

morphisms, the decomposition of one particular morphism is generally not unique, consequently84

what is true for words can be wrong for morphisms.85

Therefore the proof needs to be completed by showing that, in this case, what is true for86

words remains true in the rewriting system S.87

4 The complement88

The solution is given by the following proposition.89

Proposition 4.1 If f and g are two Sturmian morphisms such that f ◦ g = g ◦ f and fn = gm,90

for some integers n ≤ m, then there exists a Sturmian morphism h such that f = g ◦ h.91

With this proposition, the gap is ruled out by Corollary 4.3 below which should replace the92

end of Séébold’s proof in [8]. The proof of this corollary needs an intermediate useful lemma.93

Lemma 4.2 Let f be a Sturmian morphism. Then f ◦ E = E ◦ f if and only if f = IdA or94

f = E.95

Proof. The “if” part is trivial.96

For the “only if” part, let us remark that if f is a Sturmian morphism then |f(a)|a+|f(b)|a 6=97

|f(a)|b + |f(b)|b, except if f = IdA or f = E.98

Now, |f ◦E(a)|a+|f ◦E(b)|a = |f(a)|a+|f(b)|a when |E◦f(a)|a+|E◦f(b)|a = |f(a)|b+|f(b)|b.99

Consequently, the only possiblity to have f ◦ E = E ◦ f is that f = IdA or f = E.100

Corollary 4.3 Let f and g be Sturmian morphisms generating the same Sturmian word, such101

that f ◦g = g ◦f and fn = gm, n, m integers. Then there exist integers k and ℓ, and a Sturmian102

morphism h such that f = hk and g = hℓ.103

Proof. Here, because G and G̃ do not generate any Sturmian word, we use morphisms ϕ and ϕ̃.104

It is well known (and immediate since ϕ = G ◦ E and ϕ̃ = G̃ ◦ E) that St = {ϕ, ϕ̃, E}∗.105

First of all, let us remark that f and g are not IdA nor E because the identity morphism106

IdA and the exchange morphism E do not generate any infinite word.107

The proof is by induction on max(|f |, |g|).108

If max(|f |, |g|) = 0 then f and g are the empty morphisms which do not generate any word.109

Therefore |f | ≥ 1 and |g| ≥ 1.110

3



If max(|f |, |g|) = 1 then f = ϕ or f = ϕ̃ and g must be equal to f .111

Suppose |f | ≥ |g|. From Proposition 4.1, there exists a Sturmian morphism h such that112

f = g ◦ h. Since f ◦ g = g ◦ f , one has g ◦ h ◦ g = g ◦ g ◦ h from which we obtain h ◦ g = g ◦ h113

because St is left cancellative. If h = IdA then f = g. Otherwise |h| ≥ 1 and, from Lemma 4.2,114

h 6= E (otherwise g = IdA or g = E, a contradiction). Consequently |f | > max(|g|, |h|) (thus115

n < m).116

Since fn = gm and h ◦ g = g ◦ h, gn ◦ hn = gm, thus hn = gm−n. By induction, there exist117

integers k, ℓ and a Sturmian morphism h′ such that g = h′k and h = h′ℓ. Thus f = h′k+ℓ.118

Before proving Proposition 4.1 we need to establish some intermediate lemmas.119

Lemma 4.4 Let f , α, β be three Sturmian morphisms.120

• If f has a decomposition f ≡ GαG̃β with |α|G̃ = 0 and |α|E odd, then all decompositions121

of f begin with G.122

• If f has a decomposition f ≡ G̃αGβ with |α|G = 0 and |α|E odd, then all decompositions123

of f begin with G̃.124

Note that, on the other hand, if f has a decomposition f ≡ GαG̃β with |α|G̃ = 0 and |α|E even,125

then there exists a decomposition of f beginning with G̃ (and the same is true, exchanging G126

and G̃).127

Proof. We prove the first assertion (the proof of the second one is exactly the same, exchanging128

G and G̃).129

So, let f , α, β be three Sturmian morphisms such that f has a decomposition f ≡ GαG̃β130

with |α|G̃ = 0 and |α|E odd.131

First note that, from Lemma 2.1, no decomposition of f can begin with E.132

We proceed by induction on |f |. Necessarily |f | ≥ 3 and when |f | = 3, f = GEG̃ has a133

unique decomposition over {G, E, G̃} (without factor EE) and in this case the result holds.134

Assume now that |f | > 3.135

Consider first that |α|E = 1. Then α ≡ Gk1EGk2 , k1, k2 ≥ 0 and f ≡ Gk1+1EGk2G̃β.136

From the presentation of St, f admits a factorization beginning with G̃ only if G̃β admits a137

factorization G̃β ≡ Gk3EG̃γ with k3 > 0, and γ ∈ {G, G̃, E}∗. But, since |Gk3EG̃γ| = |G̃β| <138

|f |, by induction, this is not possible.139

Consider now that |α|E ≥ 3, that is, α ≡ Gk1EGk2EGk3Eδ with k1 ≥ 0, k2, k3 ≥ 1,140

δ ∈ {G, E}∗, and f ≡ GGk1EGk2EGk3EδG̃β. Observe that |Eδ|E = |α|E − 2 is odd and141

|Gk3EδG̃β| < |f |. Therefore by induction Gk3EδG̃β has no decomposition beginning with G̃,142

which implies this also holds for f because k2 ≥ 1.143

Lemma 4.5 If a Sturmian morphism has two decompositions Gk+1Eα ≡ G̃k+1Eβ then k = 0.144

Proof. Let f ≡ Gk+1Eα ≡ G̃k+1Eβ for a non-negative integer k. We first remark that α must145

contain at least one occurrence of G̃ otherwise no decomposition of Gk+1Eα can start with G̃.146

If α begins with Gk′

G̃ for some integer k′ then, from Lemma 4.4, no decomposition of Gk+1Eα147

can begin with G̃. Therefore α ≡ Gk′

Eα′ with k′ ≥ 1. In this case the only possibility for f148

to have a decomposition beginning with G̃ is that α′ has a decomposition beginning with G̃.149

Consequently, a decomposition of f begins with Gk+1EGk′

EG̃ ≡ GkG̃EG̃k′

EG ≡ G̃GkEG̃k′

EG.150

Let γ be such that f ≡ G̃GkEG̃k′

EGγ. Since f ≡ G̃k+1Eβ, G̃GkEG̃k′

EGγ ≡ G̃k+1Eβ from151

which GkEG̃k′

EGγ ≡ G̃kEβ (because St is left cancellative) which is impossible from Lemma152

4.4 if k 6= 0.153
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Lemma 4.6 Let f be a Sturmian morphism.154

• If f has a decomposition f ≡ αGEGk with k ≥ 1, then all decompositions of f end with155

EGk.156

• If f has a decomposition f ≡ αG̃EG̃k with k ≥ 1, then all decompositions of f end with157

EG̃k.158

Proof. We prove the second assertion (the proof of the first one is exactly the same, exchanging159

G and G̃).160

The property is true if α ≡ GpG̃q (p, q ≥ 0) or α ≡ Gp1G̃q1EGp0G̃q0 (p0, q0, p1, q1 ≥ 0), i.e.,161

if |α|E = 0 or |α|E = 1.162

Arguing by induction on |α|E , let us suppose that α ≡ α′EGp1G̃q1EGp0G̃q0 . If α′ = ε then it163

is again straightforward that all decompositions of f end with EG̃k. Otherwise, α′ ≡ α′′Gp2G̃q2
164

therefore f ≡ α′′Gp2G̃q2EGp1G̃q1EGp0G̃q0G̃EG̃k with p0, q0, p1, q1, p2, q2 ≥ 0 and p1 + q1 ≥ 1,165

p2 + q2 ≥ 1.166

Two cases have to be considered.167

1) q1 = 0. In this case, f has a decomposition f ≡ α′′Gp2G̃q2EGp1EGp0G̃q0G̃EG̃k.168

• If q0 ≥ 1 then every decomposition of f ends with EG̃k because only one occurrence169

of G̃ in the block Gp0G̃q0G̃ can be changed in G, implying that no rewriting rule170

using E can be applied to the end of the decomposition of f .171

• If q0 = 0 then f ≡ α′′Gp2G̃q2EGp1EGp0G̃EG̃k.172

If p2 = 0 then no rewriting rule using EG̃k can be applied to the end of the decom-173

position of f .174

Otherwise, p2 ≥ 1 and f ≡ α′′Gp2−1G̃q2GEGp1EG̃Gp0EG̃k

≡ α′′Gp2−1G̃q2+1EG̃p1EGp0+1EG̃k.
175

By induction hypothesis, every decomposition of α”Gp2−1G̃q2+1EG̃p1 ends with EG̃p1 .176

Therefore, no rewriting rule using EG̃k can be applied to the end of the decomposition177

of f .178

2) q1 ≥ 1. Then f ≡ α′′Gp2G̃q2EGp1G̃q1EG̃Gp0G̃q0EG̃k.179

Again, by induction hypothesis, every decomposition of α′′Gp2G̃q2EGp1G̃q1EG̃ ends with180

EG̃, therefore no rewriting rule using EG̃k can be applied to the end of the decomposition181

of f .182

We are now ready to prove Proposition 4.1.183

Proof of Proposition 4.1. Let f and g be two Sturmian morphisms such that f ◦ g = g ◦ f and184

fn = gm, for some integers n ≤ m. This implies |f | ≥ |g|, so all decompositions of f are longer185

(as words) than all decompositions of g.186

Since f and g are Sturmian, f ∈ {E,G, G̃}∗ and g ∈ {E,G, G̃}∗. From Lemma 2.1, equality187

fn = gm implies that for all decompositions of f and g, and for each integer i, 1 ≤ i ≤ n · |f |188

(= m · |g|), (fn)i = E if and only if (gm)i = E, and (fn)i ∈ {G, G̃} if and only if (gm)i ∈ {G, G̃}.189

In particular, for all decompositions of f and g, and for each integer j, 1 ≤ j ≤ |g|, fj = E if190

and only if gj = E, and fj ∈ {G, G̃} if and only if gj ∈ {G, G̃}.191

Now, let us suppose that for all decompositions of f and g there exists an index i ≤ |g| such192

that fi 6= gi. This implies in particular that 2 ≤ n ≤ m (otherwise n = 1, so f = gm).193
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Let f ≡ uf|u|+1v1 and g ≡ ug|u|+1v2 be decompositions of f and g where |u| is the greatest194

possible such that f|u|+1 6= g|u|+1. Possibly exchanging f and g, we can assume that f|u|+1 = G,195

g|u|+1 = G̃, i.e., f ≡ uGv1 and g ≡ uG̃v2.196

If |v1|G̃ 6= 0 then there exist α1, β1 such that |α1|G̃ = 0 and f ≡ uGα1G̃β1. The fact that |u|197

is maximal implies that |α1|E is odd. But, in this case fn ≡ uGα1G̃β1f
n−1 and gm ≡ uG̃v2g

m−1
198

and, since St is left cancellative, fn = gm implies Gα1G̃β1f
n−1 ≡ G̃v2g

m−1. But, since |α1|E is199

odd, from Lemma 4.4 each decomposition of Gα1G̃β1f
n−1 begins with G, a contradiction.200

Consequently v1 ∈ {G, E}∗ and, with the same reasoning, v2 ∈ {G̃, E}∗.201

From fn = gm, n, m ≥ 2, we have202

Gv1uGv1f
n−2 ≡ G̃v2uG̃v2g

m−2 (1)

and from f ◦ g = g ◦ f , we have203

Gv1uG̃v2 ≡ G̃v2uGv1. (2)

Now, four cases have to be considered following the value of v1.204

1) v1 = ε205

In this case, since |v1| ≥ |v2| (because |f | ≥ |g|), v2 = ε. Therefore f = uG and g = uG̃.206

In particular |f | = |g|, so n = m.207

Two cases are possible:208

• |u|E = 0. In this case, u ≡ GrG̃s for some non-negative integers r, s and then209

fn ≡ (GrG̃sG)n ≡ Gn(r+1)G̃ns and gm ≡ GnrG̃n(s+1), a contradiction with fn = gm.210

• |u|E ≥ 1. In this case, u ≡ GrG̃sEu′ for some non-negative integers r, s and u′ does211

not begin with E.212

Equation (1) gives GrG̃sEu′GGrG̃sEu′Gfn−2 ≡ GrG̃sEu′G̃GrG̃sEu′G̃gn−2. Since213

St is left cancellative, this means GEu′Gfn−2 ≡ G̃Eu′G̃gn−2. But, from Lemma 4.4,214

if u′ begins with G then all decompositions of G̃Eu′G̃gn−2 begins with G̃ and if u′
215

begins with G̃ then all decompositions of GEu′Gfn−2 begins with G.216

Consequently, u′ = ε and Equation (2) gives GEG̃ ≡ G̃EG, a contradiction.217

2) v1 = Gℓ0 for some integer ℓ0 ≥ 1218

In this case, since |v1| ≥ |v2| and from Equation (1), v2 = G̃k0 , k0 ≤ ℓ0.219

• If |u|E = 0 then u ≡ GrG̃s for some non-negative integers r, s and Equation (1) gives220

Gn(r+ℓ0+1)G̃ns ≡ GmrG̃m(s+k0+1) which is impossible because m ≥ n ≥ 2 implies221

m(s + k0 + 1) > ns.222

• If |u|E ≥ 1 then u ≡ GrG̃sEu′ for some non-negative integers r, s and Equation (2)223

gives Gℓ0+1Eu′G̃k0+1 ≡ G̃k0+1Eu′Gℓ0+1 which implies, from Lemma 2.1, ℓ0 = k0 and224

then, from Lemma 4.5, ℓ0 = k0 = 0, a contradiction.225

3) v1 = Gℓ0E for some integer ℓ0 ≥ 0226

In this case f ≡ uGℓ0+1E and then v2 = G̃ℓ0E. For if not, from Lemma 2.1 and Equa-227

tion (1), and since |v1| ≥ |v2|, v2 = G̃k0 for some integer k0 ≤ ℓ0, which implies gm ends228

with G̃ when fn ends with E, a contradiction with Equation (1) and Lemma 2.1.229
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Since v1 ≡ Gℓ0E and v2 ≡ G̃ℓ0E, Equation (1) gives

Gℓ0+1EuGℓ0+1Efn−2 ≡ G̃ℓ0+1EuG̃ℓ0+1Egm−2.

Again, from Lemma 4.5, ℓ0 = 0.230

Therefore, v1 = v2 = E, and Equation (1) gives GEuGEfn−2 ≡ G̃EuG̃Egm−2.231

• If u = ε, then the left part of this equivalence contains only occurrences of G when232

its right part contains only occurrences of G̃, a contradiction.233

• If u begins with G then, from Lemma 4.4, each decomposition of G̃EuG̃Egm−2 begins234

with G̃, a contradiction.235

• If u begins with G̃ then, from Lemma 4.4, each decomposition of GEuGEfn−2 begins236

with G, a contradiction.237

Henceforth, u = Eu′ and, since v1 = v2 = E, f ≡ Eu′GE, g = Eu′G̃E. Since E2 = IdA,238

fn ≡ E(u′G)nE and gm = E(u′G̃)mE. Let f ′ = u′G and g′ = u′G̃. From fn = gm we239

obtain f ′n = g′m, and from f ◦ g = g ◦ f we obtain f ′ ◦ g′ = g′ ◦ f ′. Therefore, we are in240

the previous case v1 = v2 = ε for f ′ = u′Gv1, g′ = u′G̃v2.241

4) v1 = Gℓ0EGℓ1v′1 for some integers ℓ0 ≥ 0, ℓ1 ≥ 1, and a word v′1 ∈ {G, E}∗242

Then f ≡ uGℓ0+1EGℓ1v′1 and Equation (2) gives243

Gℓ0+1EGℓ1v′1uG̃v2 ≡ G̃v2uGℓ0+1EGℓ1v′1. (3)

If v′1 ends with E then, as previously, v2 ends with E and Equation (3) remains the same244

without this last occurrence of E.245

Thus our assuming that Gℓ1v′1 ends with G (and then G̃v2 ends with G̃). In this case, since246

v′1 ∈ {G, E}∗ and v2 ∈ {G̃, E}∗, there exist v′′1 and v′2 such that Gℓ0+1EGℓ1v′1 = v′′1GEGℓ′
247

with ℓ′ ≥ 1, and G̃v2 = v′2G̃.248

Then Equation (3) becomes Gℓ0+1EGℓ1v′1uv′2G̃ ≡ G̃v2uv′′1GEGℓ′ , which is impossible from249

Lemma 4.6.250

In the four cases, the assumption that fi = G and gi = G̃ for some index i, 1 ≤ i ≤ |g|, leads to251

a contradiction.252

This implies that there exist one decomposition of f and one decomposition of g such that253

fi = gi, 1 ≤ i ≤ |g|. Then f = g ◦ h and h is a Sturmian morphism because fj ∈ {E,G, G̃},254

|g| + 1 ≤ j ≤ |f |.255

5 A combinatorial proof of Theorem 1.1256

Before starting the proof of Theorem 1.1, we need to define some terminology and to recall some257

results from [8].258

Result 5.1 ([8], Theorem 2) Let f : A∗ → A∗ be a morphism. The following three conditions259

are equivalent:260

(i) f ∈ St;261

(ii) f is Sturmian;262

(iii) there exists at least one Sturmian word s such that f(s) is Sturmian.263
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A Sturmian word x is characteristic if both ax and bx are Sturmian words. A morphism f264

is standard if f ∈ {E, φ}∗. Standard morphisms generating Sturmian words are called charac-265

teristic morphisms.266

A morphism g is a conjugate of a morphism f if there exists s ∈ A∗ such that sg(ab) = f(ab)s267

and |g(a)| = |f(a)| (which of course implies that |g(b)| = |f(b)|). In what follows, good conjugates268

of a standard morphisms are all its conjugates that are Sturmian morphisms. Notice that each269

Sturmian morphism is a conjugate of one standard morphism.270

Result 5.2 ([8], Lemma 8) Let g ∈ St be a morphism which generates a Sturmian word x.271

Then g is a conjugate of a characteristic morphism f which generates a word y having the same272

set of factors as x.273

A morphism is primitive if it is not a power of another morphism.274

Result 5.3 ([8], Theorem 6) Let f be a characteristic morphism and x be the characteristic275

word generated by f. Then there exists a primitive characteristic morphism h such that276

1. f = hn for an integer n ;277

2. a morphism g : A∗ → A∗ generates an infinite word having the same set of factors as x if278

and only if g is a good conjugate of a power of h.279

Result 5.4 ([8], Lemma 7) Let f be a characteristic morphism. Then any primitive mor-280

phism g on A, such that f is a power of g, is standard.281

Result 5.5 ([8], Proposition 6) A morphism g ∈ St is a good conjugate of a power of a282

standard morphism f if and only if g is a composition of good conjugates of f.283

Let us recall that two words u and v are conjugates (of each other) if there exists s ∈ A∗
284

such that su = vs.285

Result 5.6 ([8], Corollary 2) Let g be a Sturmian morphism (different from IdA and E) and286

f the standard morphism of which g is a conjugate then, for all u ∈ A∗, the word g(u) is a287

conjugate of the word f(u).288

Proof of Theorem 1.1.289

Let f and g, be two morphisms on A which generate the same Sturmian word x. Since290

f(x) = x = g(x), f and g are Sturmian by Result 5.1. From Result 5.2, there exist f ′ and291

g′, two characteristic morphisms of which f and g are respectively good conjugates and which292

generate two words1 with the same set of factors as x. From Results 5.3 and 5.4, and Lemma 2.1,293

this implies that f ′ and g′ are two powers of a same primitive characteristic morphism h. Thus294

f and g are good conjugates of two powers of h, and there exist two strictly positive integers m295

and n such that f is a good conjugate of hm and g is a good conjugate of hn. But in this case,296

from Result 5.5, fn and gm are both conjugates of hnm and f ◦ g and g ◦ f are both conjugates297

of hn+m. Since all these morphisms generate x, one has then fn = gm and f ◦ g = g ◦ f (indeed298

for every prefix u of x, by Result 5.6, |fn(u)| = |hnm(u)| = |gm(u)|, so that words fn(u) and299

gm(u) are equal since they are both prefixes of x; similarly f ◦ g(u) = g ◦ f(u)). This implies,300

from Corollary 4.3, that the morphisms f and g are powers of a same morphism.301

1Notice that, since these two words are characteristic words with the same set of factors, they are equal (see,
e.g., [5]). This argument was used in Séébold’s original proof [8], but there, this property was not explicitely
proved. This is why we choose here to do not use this equality and to show that results explicitely proved in [8]
are sufficient to conclude.

8



6 Conclusion302

In this note, in order to complete an entirely combinatorial proof of Theorem 1.1, we have303

proved in Proposition 4.1 that if f and g are two Sturmian morphisms such that f ◦ g = g ◦ f304

and fn = gm, for some integers n ≤ m, then there exists a Sturmian morphism h such that305

f = g◦h. Of course, only the first condition is not sufficient to have the result since, for example,306

f = G and g = G̃ are such that f ◦ g = g ◦ f while f 6= g. On the contrary, the second condition307

could perhaps be enough alone because, in the proof of Proposition 4.1, it seems that the first308

condition could be avoided.309

On the other hand, let us also point out that, recently, new developments on rigidity were310

obtained (see, e.g., [4], [2], [3]).311
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