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Abstract4

We study k-overlap-free binary infinite words that are binary infinite words which can contain5

only overlaps xyxyx with |x| ≤ k − 1. We prove that no such word can be generated by morphism,6

except if k = 1. On the other hand, for every k ≥ 2, there exist k-overlap-free binary infinite words7

which are not (k − 1)-overlap-free. As an application, we prove that, for every integer n, there exists8

infinitely many k-overlap-free binary infinite partial words with n holes.9

1 Introduction10

Repetitions, i.e., consecutive occurrences of a given factor within a word, and especially repetition-freeness11

have been fundamental research subjects in combinatorics on words since the seminal papers of Thue12

[11, 12] in the beginning of the 20th century (see also [2]). In particular, Thue and Morse independently13

showed the existence of an overlap-free binary infinite word (the Thue-Morse word [8, 12]), i.e., an infinite14

word using only two different letters and which does not contain any factor xyxyx with x a non-empty15

word.16

In the present paper we study the case where x must be of length at least k, that is, k-overlap-free17

binary infinite words which do not contain any factor xyxyx with |x| ≥ k.18

The paper is organized as follows. After general definitions and notations given in Section 2, the19

notion of k-overlap-freeness is introduced in Section 3 where it is proved that no k-overlap-free binary20

infinite word can be generated by morphism, except if k = 1. In Section 4 we introduce the concept of21

0-limited square property (a word has this property if the squares it contains have a particular form)22

to prove that, for every integer k, there exist k-overlap-free binary infinite words that are not (k − 1)-23

overlap-free. In Section 5 we consider the particular case of k-overlap-free words which do not contain24

cubes of some letters. Section 6 is then dedicated to an application to partial words1.25

2 Preliminaries26

Generalities on combinatorics on words can be found, e.g., in [7].27

Let A be a finite alphabet. The elements of A are called letters. A word w = a1a2 · · · an of length n28

over the alphabet A is a mapping w : {1, 2, . . . , n} → A such that w(i) = ai. The length of a word w is29

denoted by |w|, and ε is the empty word of length zero. For a word w and a letter a, |w|a denotes the30

number of occurrences of the letter a in the word w. By a (right) infinite word w = a1a2a3 · · · we mean31

a mapping w from the positive integers N+ to the alphabet A such that w(i) = ai. The set of all finite32

words is denoted by A∗, infinite words are denoted by Aω and A+ = A∗ \ {ε}. A finite word v is a factor33

∗Département Mathématiques Informatique et Applications, Université Paul Valéry, Route de Mende, 34199 Montpellier
Cedex 5, France

1A preliminary version of this paper was presented at JORCAD’08 [10]. Some results about the case k = 2 appeared in
[6]. But in these two papers, the 0-limited square property was replaced by the restricted square property, a much more
restrictive condition.
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of w ∈ A∗ ∪ Aω if w = xvy, where x ∈ A∗ and y ∈ A∗ ∪ Aω. Words xv and vy are respectively called a34

prefix and a suffix of w.35

A morphism on A∗ is a mapping f : A∗ → A∗ satisfying f(xy) = f(x)f(y) for all x, y ∈ A∗. The
morphism f is erasing if there exists a ∈ A such that f(a) = ε. Note that f is completely defined by
the values f(a) for every letter a on A. A morphism is called prolongable on a letter a if f(a) = aw for
some word w ∈ A+ such that fn(w) 6= ε for all integers n ≥ 1. This implies that fn(a) is a prefix of
fn+1(a) for all integers n ≥ 0 and a is a growing letter for f , that is, |fn(a)| < |fn+1(a)| for every n ∈ N.
Consequently, the sequence (fn(a))n≥0 converges to the unique infinite word generated by f from the
letter a,

fω(a) := lim
n→∞

fn(a) = awf(w)f2(w) · · · ,

which is a fixed point of f .36

A morphism f : A∗ → A∗ generates an infinite word w from a letter a ∈ A if there exists p ∈ N such37

that the morphism fp is prolongable on a. We say that the morphism f generates an infinite word if it38

generates an infinite word from at least one letter.39

A kth power of a word u 6= ε is the word uk prefix of length k · |u| of uω, where uω denotes the infinite40

catenation of the word u, and k is a rational number such that k · |u| is an integer. A word w is called41

k-free if there does not exist a word x such that xk is a factor of w. If k = 2 or k = 3, then we talk about42

square-free or cube-free words, respectively. An overlap is a word of the form xyxyx where x ∈ A+ and43

y ∈ A∗. A word is called overlap-free if it does not contain overlaps. Therefore, it can contain squares44

but it cannot contain any longer repetitions such as overlaps or cubes. For example, over the alphabet45

{a, b} the word abbabaa is overlap-free but it contains squares bb, aa, and baba. It is easy to verify that46

there does not exist a square-free infinite word over a binary alphabet, but as we recall in the next section47

there exist overlap-free binary infinite words.48

In all the paper we will use the two alphabets A = {a, b}, B = {0, 1, 2}.49

3 k-overlap-free binary words50

In [12], Thue introduced the morphism

µ : A∗ → A∗

a 7→ ab

b 7→ ba

The Thue-Morse word is the overlap-free binary infinite word

t := lim
n→∞

µn(a) = abbabaabbaababbaba · · ·

generated by µ from the letter a (see, e.g., [1] for other definitions and properties, see also [2] for a51

translation of the contribution of Thue to the combinatorics on words). Another overlap-free binary52

infinite word is t′, the word generated by the morphism µ from the letter b. Note that the word t′ can53

be obtained from the word t by exchanging all the a’s and b’s.54

We generalize the notion of overlap with the following definition.55

Definition 3.1 A k-overlap is a word of the form xyxyx where x and y are two words with |x| = k. A56

word is k-overlap-free2 if it does not contain k-overlaps.57

For example, the word baabaab is not overlap-free but it is 2-overlap-free while the word baabaaba is58

not.59

It is important to note that a k-overlap-free word can contain a3k−1 for each letter a. More generally,60

a k-overlap-free word can contain ℓ-powers uℓ where the value of ℓ, which can be greater than k, depends61

on the word u. For example, the word u = ababababab, which is a 5-power, is 3-overlap-free. On the62

contrary, the word v = abaabaaba, which is only a 3-power and which is also such that |v| < |u|, is a63

2While it is not exactly the same, this notion of k-overlap-freeness ressembles that of k-bounded overlaps introduced by
Thue in [12].
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3-overlap thus not being 3-overlap-free! This peculiarity is one reason for restraining the definition, for64

example to the case of cube-free words. However, such a restriction seems to be very drastic and it is65

generally enough to avoid the powers of letters. In the present paper, in Section 5, we study the change66

in our results when restraining to the case of words without a3 ... and we will see that the results are67

not very different.68

By definition, it is evident that every k-overlap-free word is also k′-overlap-free for k′ ≥ k. Note that69

a word is 1-overlap-free if and only if it is overlap-free. So, an overlap-free infinite word is a k-overlap-free70

infinite word for every positive integer k.71

It is a well-known important property that t and t′ are the only overlap-free binary infinite words72

which are generated by morphism (see, e.g., [5], [9]). Since k-overlap-freeness does not imply ℓ-overlap-73

freeness for ℓ < k, k-overlap-freeness is weaker than overlap-freeness when k ≥ 2. Therefore, we might74

suppose that there exist binary infinite words, generated by morphism, that are k-overlap-free for some75

k ≥ 2 but that are not overlap-free (therefore different from t and t′). In fact, rather surprisingly, for76

that property, k-overlap-freeness does not give more than only (1)-overlap-freeness.77

Theorem 3.2 Let k ∈ N+ and let w be a k-overlap-free binary infinite word. Then w is generated by a78

morphism if and only if w = t or w = t′.79

Proof. The only if part is obvious since t = µω(a) and t′ = µω(b) are k-overlap-free for every positive80

integer k.81

Conversely, as we have already seen, if an overlap-free (k = 1) binary infinite word is generated by a82

morphism then w = t or w = t′. Thus it remains to prove that an infinite word which contains an overlap83

but is k-overlap-free for some integer k ≥ 2 cannot be generated by a morphism.84

Assume, contrary to what we want to prove, that an infinite word w over A which contains an overlap85

but is k-overlap-free for some integer k ≥ 2, is generated by a morphism f . Then there exists a positive86

integer r such that fr is prolongable on the first letter of w. Without loss of generality we may assume87

that this first letter is the letter a. In particular, w begins with (fr)n(a) for every n ∈ N. Moreover,88

by definition a is a growing letter for fr, which implies that there exists a positive integer N0 such that89

|frN0(a)| ≥ k.90

If f(b) = ε or if |f(a)|b = 0 (which means f(a) = ap, p ≥ 2, because a is a growing letter for f), then91

w is the periodic word (f(a))ω which contains arbitrarily large powers of f(a).92

If f(b) = bp, p ≥ 2, or if fr(a) ends with b and f(b) = b (which implies that frn(a) ends with bn for93

every integer n), then w contains arbitrarily large powers of b.94

If f(a) ends with a and begins with abpa, p ≥ 1, and f(b) = b, then w, which begins with (fr)2(a),95

contains a factor auaua with u = bp.96

If w contains an overlap auaua as a factor, then frN0(auaua) is also a factor of w.97

The only remaining case is w contains an overlap bubub as a factor and f(b) = xay for some words98

x, y ∈ A∗. Then frN0(bubub) contains the factor frN0(a)frN0(yux)frN0(a)frN0(yux)frN0(a).99

Consequently, since frN0(w) = w (because w = (fr)ω(a)), in all cases w contains a k-overlap, which100

contradicts with the hypothesis.101

Remark. Although the case of alphabets with more than two letters is out of the scope of the present102

paper, one can notice that Theorem 3.2 is no more true if we consider larger alphabets. Indeed, over103

a 3-letter alphabet it is possible, for every integer k ≥ 2, to find k-overlap-free words that are not104

(k − 1)-overlap-free and that are generated by morphism.105

For example, let us consider the morphism

µc : (A ∪ {c})∗ → (A ∪ {c})∗

a 7→ ac3(k−1)b

b 7→ ba

c 7→ c

This morphism is obtained from the morphism µ by adding c3(k−1) at the middle of µ(a). Since µ is106

an overlap-free morphism, the only overlaps in the word µω
c (a) are powers of the letter c. Therefore the107

word µω
c (a) is k-overlap-free but not (k − 1)-overlap-free.108
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4 The 0-limited square property109

We have seen with Theorem 3.2 that the Thue-Morse words t and t′ are the only k-overlap-free binary110

infinite words generated by morphism, whatever be the value of k. So it is natural to ask about the111

existence of k-overlap-free binary infinite words with k ≥ 2 (then, of course, not generated by morphism),112

which are not ℓ-overlap-free for ℓ < k. The answer is given in the present section where a family of such113

words is characterized.114

Before this, we have to recall some works of Thue.115

In order to prove the existence of infinite cube-free words over a two-letter alphabet from square-free
words over three letters, Thue used in [11] the application

δ : B∗ → A∗

0 7→ a

1 7→ ab

2 7→ abb

Six years later he proved the following result.116

Proposition 4.1 [12] [2] Let u ∈ Aω and v ∈ Bω be such that δ(v) = u. The word u is overlap-free if117

and only if the word v is square-free and does not contain 010 nor 212 as a factor.118

Thue also remarked that if the word δ(w) is not overlap-free for a square-free word w (thus containing119

010 or 212) then every overlap xyxyx in δ(w) is such that x is a single letter. Therefore, it suffices to120

prove the existence of a square-free ternary infinite word containing either 010 or 212 over B to obtain a121

2-overlap-free binary infinite word that is not overlap-free. Here again such a word is found in [12].122

Let τ be the morphism
τ : B∗ → B∗

0 7→ 01201
1 7→ 020121
2 7→ 0212021

Proposition 4.2 [12] The word τω(0) is square-free and it contains 212 as a factor.123

Now, to prove the existence, for every integer k ≥ 2, of k-overlap-free binary infinite words that are124

not (k − 1)-overlap-free, we generalize Thue’s idea with the following notion.125

Definition 4.3 An infinite word v over B has the 0-limited square property if126

• the word v does not contain 00 as a factor,127

• whenever v contains a non-empty square rr as a factor, then, in v, the factor rr is preceded (if it128

is not a prefix of v) and followed by the letter 0.129

Note that if a word v ∈ Bω has the 0-limited square property then v is overlap-free and if v contains a130

non-empty square rr as a factor, the word r does not begin nor end with the letter 0.131

The following corollary is straightforward from Proposition 4.2 because each square-free word obvi-132

ously has the 0-limited square property.133

Corollary 4.4 The word τω(0) has the 0-limited square property.134

Now, let k, p be two integers with k ≥ 2 and 1 ≤ p ≤ k − 1. We associate to (k, p) the application

δk,p : B∗ → A∗

0 7→ ak−p

1 7→ ak−pbp

2 7→ ak−pbp+1

Of course, δ2,1 = δ thus our affirming that this is a generalization of Thue’s idea.135
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Theorem 4.5 Let u ∈ Aω and v ∈ Bω be such that δk,p(v) = u. If the word v has the 0-limited square136

property then the word u is k-overlap-free.137

Proof. Suppose that u is not k-overlap-free. Since u = δk,p(v), the following cases are possible:138

• u contains a factor akxakxak
139

If |x|b = 0, or if x = zx′ with |z| ≥ k − 2p + 1 and |z|b = 0 then u contains ak−pak−pa which means140

that v contains 00.141

Henceforth, u contains a factor anakamx′akamx′ak with n+m+k = 2(k−p), i.e., k−p = n+m+p,142

and x′ begins with the letter b. Therefore, u contains a factor an+m+pak−px′ap+mak−px′ap+map+n,143

which implies that v contains a factor 0yy where y is such that δk,p(y) = ak−px′ap+m (in particular,144

y 6= ε). But in this case, y necessarily ends with 0 because p + m ≥ p ≥ 1. Therefore, either yy is145

followed by the letter 0 implying that v contains 00 as a factor, or yy is not followed by the letter 0.146

• u contains a factor anbp+1amxanbp+1amxanbp+1am with n + m = k − p − 1 (this includes the case147

where u contains bkxbkxbk when p = k − 1)148

In this case, v contains a factor 2y2y2 with δk,p(y2) = amxanbp+1.149

• u contains a factor anbpamxanbpamxanbpam with n + m = k − p150

Here, two cases are possible.151

1. m 6= 0152

Then u contains a factor bpamxanbpamxanbpak−p, which implies that v contains a square yy,153

preceded by 1 or 2, with δk,p(y) = amxanbp.154

2. m = 0 (then n = k − p)155

Then u contains a factor ak−pbpxak−pbpxak−pbp, which implies that v contains a square yy,156

followed by 1 or 2, with δk,p(y) = ak−pbpx.157

• u contains a factor bnak−pbmxbnak−pbmxbnak−pbm with n + m = p158

Here again, two cases are possible.159

1. m 6= 0160

Then u contains a factor ak−pbmxbnak−pbmxbnak−pbp, which implies that v contains a square161

yy, followed by 1 or 2, with δk,p(y) = ak−pbmxbn.162

2. m = 0 (then n = p)163

Then u contains a factor bpak−pxbpak−pxbpak−p, which implies that v contains a square yy,164

preceded by 1 or 2, with δk,p(y) = ak−pxbp.165

In all the cases v has not the 0-limited square property.166

Conditions given in Definition 4.3 are not sufficient to guarantee that the word v has the 0-limited167

square property when u = δk,p(v) is k-overlap-free. For example, the word v = 0τω(0) contains only one168

square, the factor 00 which v begins with. But, since the word τω(0) has the 0-limited square property,169

the word δk,p(τ
ω(0)) is k-overlap-free which implies that δk,p(v) is also k-overlap-free (otherwise, δk,p(v)170

begins with a k-overlap whose prefix is ak−pak−pak−p, implying that δk,p(τ
ω(0)) contains an occurrence171

of this factor ak−pak−pak−p from which τω(0) contains 00, a contradiction). However, it is possible to172

obtain an equivalence by giving conditions on the words u and v.173

Corollary 4.6 Let u, an infinite word over A, which does not contain the factor a2(k−p)+1, and v,174

an infinite word over B which does not begin with a square, be such that δk,p(v) = u. The word u is175

k-overlap-free if and only if the word v has the 0-limited square property.176

Remark that here the word u is also [2(k − p) + 1]-free.177

Proof. Let u and v be as in the statement. It is of course equivalent that u does not contain the factor178

a2(k−p)+1 and v does not contain the factor 00, thus our assuming that 00 is not a factor of v.179

From Theorem 4.5, it suffices to prove the necessary condition.180

Let rr be a factor of v with r 6= ε. According to the hypothesis, rr is not at the beginning of v which181

means that in v, rr is preceded (and followed) by at least one letter.182
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• If r begins with the letter 0 then, since 00 is not a factor of v, r does not end with 0. Thus183

δk,p(r) = ak−psbp. For the same reason, rr is preceded by the letter 1 or by the letter 2, so δk,p(rr)184

is preceded by bp. Whatever be the letter following rr, δk,p(rr) is followed by ak−p. Consequently,185

u contains the factor bpδk,p(rr)a
k−p = bpak−psbpak−psbpak−p, a k-overlap. This implies that u is186

not k-overlap-free.187

• If r ends with the letter 0 then, since v does not contain 00 as a factor, r does not begin with 0,188

which implies that δk,p(r) begins with ak−pbp. Moreover, in v, the factor rr is followed either by189

1 or by 2. Then u contains the factor δk,p(rr)a
k−pbp = ak−pbpsak−pbpsak−pbp, a k-overlap. This190

implies that u is not k-overlap-free.191

• Now if r begins with 1 or 2, and rr is not followed by 0 then δk,p(r) begins with ak−pbp and δk,p(rr)192

is followed by ak−pbp, which means that u is not k-overlap-free.193

• Finally, if r ends with 1 or 2, and rr is not preceded by 0 then δk,p(r) begins with ak−p and ends194

with bp, and δk,p(rr) is preceded by bp. This implies that, since δk,p(rr) is followed by ak−p, u is195

not k-overlap-free.196

Consequently, if u is k-overlap-free then v has the 0-limited square property.197

Theorem 4.5 gives the first part of the answer to the question we asked at the beginning of this section198

by showing the existence of k-overlap-free binary infinite words for every integer k ≥ 2. It remains to199

prove that some words u satisfying Theorem 4.5 can effectively be constructed containing (k−1)-overlaps.200

This is done by using again Thue’s morphism τ .201

Proposition 4.7 For every integer k ≥ 2, the word δk,k−1(τ
ω(0)) is k-overlap-free but it contains (k−1)-202

overlaps.203

Proof. Since from Corollary 4.4 the word τω(0) has the 0-limited square property, the word δk,k−1(τ
ω(0))204

is k-overlap-free from Theorem 4.5.205

Now, we know from Proposition 4.2 that τω(0) contains 212 as a factor. Therefore, δk,k−1(τ
ω(0))206

contains the factor δk,k−1(212) = abkabk−1abk, which implies that the (k − 1)-overlap bk−1abk−1abk−1 is207

a factor of δk,k−1(τ
ω(0)).208

5 Strongly k-overlap-free binary words209

A k-overlap-free binary infinite word must contain occurrences of a2 or b2 (or both). For if it were not210

the case the word would be (ab)ω or (ba)ω which obviously contains k-overlaps for every k ∈ N.211

As mentioned after Definition 3.1, the particular case of k-overlap-free binary infinite words without212

x3 for some letter x ∈ A is of interest. We define such words as follows.213

Definition 5.1 A word over A is x-strongly k-overlap-free if it is k-overlap-free and if it does not214

contain x3, where x is a letter. A word is strongly k-overlap-free if it is x-strongly k-overlap-free for215

every letter x ∈ A.216

For example, the word a5 is 2-overlap-free; it is b-strongly 2-overlap-free, but it is not strongly 2-overlap-217

free because it is not a-strongly 2-overlap-free.218

Notice that there exists effectively strongly k-overlap-free words that are not (k − 1)-overlap-free: for219

example, from Proposition 4.2, the word δ(τω(0)) is strongly 2-overlap-free without being overlap-free.220

Since every strongly k-overlap-free binary infinite word is k-overlap-free and since the Thue-Morse221

words t and t′ are cube-free, Theorem 3.2 remains true in the present case.222

Theorem 5.2 Let k ∈ N+ and let w be a strongly k-overlap-free binary infinite word. Then w is generated223

by a morphism if and only if w = t or w = t′.224

It is obvious that µ(u) does not contain neither a3 nor b3, whatever be the value of u. This implies225

that if µ(u) is a k-overlap-free binary infinite word then it is indeed strongly k-overlap-free. Let us recall226

the two lemmas used by Thue to prove that the Thue-Morse word t is overlap-free.227
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Lemma 5.3 Let Σ = {ab, ba}. If u ∈ Σ∗ then aua 6∈ Σ∗ and bub 6∈ Σ∗.228

Lemma 5.4 A word u ∈ A∗ ∪ Aω is overlap-free if and only if the word µ(u) is overlap-free.229

The following result is an extension of Lemma 5.4.230

Proposition 5.5 Let w ∈ A∗ ∪Aω and let k ∈ N+. The word w is k-overlap-free if and only if the word231

µ(w) is strongly (2k − 1)-overlap-free.232

Proof. If k = 1, the equivalence is true from Lemma 5.4, thus our assuming that k ≥ 2.233

If the word w is not k-overlap-free then it contains a factor XY XY X with |X| = k. This implies that234

µ(w), which contains the factor µ(X)µ(Y )µ(X)µ(Y )µ(X) with |µ(X)| = 2k, is not (2k − 1)-overlap-free.235

Conversely, if the word µ(w) is not (2k−1)-overlap-free then it contains a factor XxY XxY Xx where236

X, Y ∈ A∗, |X| = 2k − 2, and x ∈ A.237

If |Y | is even then Y 6= ε. For if not µ(w) would contain XxXxXx which implies that both X and238

xXx are in Σ∗, a contradiction with Lemma 5.3. So, let Z ∈ A∗ and y, z ∈ A be such that Y = Zyz.239

Then XxY XxY Xx = XxZyzXxZyzXx which implies that both X, xZy, yz, zXx, and Z are elements240

of Σ∗.241

From Lemma 5.3, X ∈ Σ∗ and zXx ∈ Σ∗ imply x 6= z, and Z ∈ Σ∗ and xZy ∈ Σ∗ imply x 6= y.242

Therefore, y = z which contradicts with yz ∈ Σ∗.243

Consequently, |Y | is odd so |XxY XxY Xx| is odd, and two cases are possible depending on whether,244

in µ(w), the factor XxY XxY Xx appears at an even index or at an odd index.245

• µ(w) = µ(w1)XxY XxY Xxyµ(w2) for a letter y.246

In this case, by definition of µ, the letter y is also the first letter of Y . This implies that247

XxY XxY Xxy = µ(ZY ′ZY ′Z) with µ(Z) = Xxy. Since |Xxy| = 2k, |Z| = k and the word248

w is not k-overlap-free.249

• µ(w) = µ(w1)yXxY XxY Xxµ(w2) for a letter y.250

In this case, since k ≥ 2 one has X 6= ε, so let X = zX ′, z ∈ A, X ′ ∈ A+. Then yXxY XxY Xx =251

yzX ′xY zX ′xY zX ′x, and by definition of µ, the letter y is also the last letter of Y . This implies252

that yzX ′xY zX ′xY zX ′x = µ(ZY ′ZY ′Z) with µ(Z) = yzX ′x. Since |yzX ′x| = 2k, |Z| = k and253

the word w is not k-overlap-free.254

Now, we consider the application δk,k−1 (k ≥ 2) already used above. Since δk,k−1 is defined by255

δk,k−1(0) = a, δk,k−1(1) = abk−1, δk,k−1(2) = abk, it is straightforward that if u ∈ A∗ ∪ Aω is such256

that u = δk,k−1(v) for some v ∈ B∗ ∪ Bω then u contains a3 if and only if v contains 00. Consequently,257

from Theorem 4.5, if u ∈ Aω and v ∈ Bω are such that u = δk,k−1(v) then u is a-strongly k-overlap-free258

whenever v has the 0-limited square property. We have see above that if k = 2, i.e., in the case of Thue’s259

original application δ, the word u is strongly 2-overlap-free.260

Now we notice that, in the case of δk,k−1, the statement of Corollary 4.6 can be simplified because261

2(k − p) + 1 = 3 when p = k − 1.262

Corollary 5.6 Let u ∈ Aω, and v, an infinite word over B which does not begin with a square, be such263

that δk,k−1(v) = u. The word u is a-strongly k-overlap-free if and only if the word v has the 0-limited264

square property.265

In this section we have seen that the results given in Section 4 remain the same when adding the266

condition that words over A do not contain cubes of some single letter, in particular in using the appli-267

cation δk,k−1. In the next section we give another interesting use of this application.268

6 k-overlap-free binary partial words269

A partial word u of length n over an alphabet A is a partial function u : {1, 2, . . . , n} → A. This means270

that in some positions the word u contains holes, i.e., “do not know”-letters. The holes are represented271

by ⋄, a symbol that does not belong to A. Classical words (called full words) are only partial words272

without holes. Partial words were first introduced by Berstel and Boasson [3] (see also [4]).273
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Similarly to finite words, we define infinite partial words to be partial functions from N+ to A. We274

denote by A∗
⋄ and Aω

⋄ the sets of finite and infinite partial words, respectively.275

A partial word u ∈ A∗
⋄ is a factor of a partial word v ∈ A∗

⋄ ∪ Aω
⋄ if there exist words x, u′ ∈ A∗

⋄ and276

y ∈ A∗
⋄ ∪ Aω

⋄ such that v = xu′y with u′(i) = u(i) whenever neither u(i) nor u′(i) is a hole ⋄. Prefixes277

and suffixes are defined in the same way.278

For example, let u = ab⋄bba⋄a. The length of u is |u| = 8, and u contains two holes in positions 3279

and 7. Let v = aa⋄bb⋄ba⋄abbaa⋄. The word v contains the word u as a factor in positions 3 and 8. The280

word u is a suffix of the word v.281

Note that a partial word is a factor of all the (full) words of the same length in which each ⋄ is replaced282

by any letter of A. We call these (full) words the completions of the partial word. In the previous example,283

if A = {a, b}, the partial word u has four completions: ababbaaa, ababbaba, abbbbaaa, and abbbbaba.284

Let k be a rational number. A partial word u is k-free if all its completions are k-free. Overlaps,285

k-overlaps, overlap-freeness, and k-overlap-freeness of partial words are defined in the same manner.286

In [6] it is proved that overlap-free binary infinite partial words cannot contain more than one hole,287

when 2-overlap-free binary infinite partial words can contain infinitely many holes. Here we complete288

this last result by the following theorem.289

Theorem 6.1 For every integer k ≥ 2 and for every non-negative integer n, there exist infinitely many290

k-overlap-free binary infinite partial words containing n holes, and being not (k − 1)-overlap-free.291

Proof of Theorem 6.1 is constructive and needs some preliminaries.292

The word τω(0) contains an infinite number of occurrences of τ(01):

τω(0) = τ(01)u1τ(01)u2 · · ·uℓτ(01)uℓ+1 · · · , ui ∈ B+

=
∏∞

ℓ=1 τ(01)uℓ

=
∏∞

ℓ=1 01201020121uℓ.

For every integer n ≥ 0, let Yn be the word obtained from τω(0) by replacing 102 by 22 in n (not293

necessarily consecutive) occurrences of τ(01). Of course Y0 = τω(0).294

Proposition 6.2 For every n ∈ N, the word Yn has the 0-limited square property.295

Proof. In [6], it is proved that the occurrences of 22 are the only squares in the word Yn. Consequently,296

Yn does not contain 00 as a factor. Moreover, Yn contains no squares but those 22 obtained from τω(0)297

by replacing the factor 102 by 22 in n occurrences of τ(01), that is in n factors 01020. This implies298

that each of these 22 is preceded and followed by the letter 0. Therefore, since the word Yn fulfills the299

conditions of Definition 4.3 it has the 0-limited square property.300

Corollary 6.3 For every integers k ≥ 2 and p, 1 ≤ p ≤ k − 1, and for every integer n ≥ 0, the word301

δk,p(Yn) is k-overlap-free.302

Proof. By Proposition 6.2, the word Yn has the 0-limited square property which implies, by Theorem 4.5,303

that δk,p(Yn) is k-overlap-free.304

In particular, for every integer n ≥ 0, the words δk,k−1(τ
ω(0)) and δk,k−1(Yn) are k-overlap-free.305

Proof of Theorem 6.1.306

δk,k−1(τ(01)) = δk,k−1(0120)δk,k−1(102)δk,k−1(0121)
= δk,k−1(0120)abk−1aabkδk,k−1(0121)

(1)

and307

δk,k−1(0120 22 0121) = δk,k−1(0120)δk,k−1(22)δk,k−1(0121)
= δk,k−1(0120)abk−1babkδk,k−1(0121)

(2)

Let us define Zn to be the word obtained from δk,k−1(τ
ω(0)) by replacing n (not necessarily consec-308

utive) occurrences of δk,k−1(τ(01)) by δk,k−1(0120)abk−1 ⋄ abkδk,k−1(0121).309

From Corollary 6.3, and equations (1) and (2) above, for every integer n ≥ 0, the word Zn is k-310

overlap-free. Moreover, from Proposition 4.7, Zn is not (k − 1)-overlap-free.311
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Corollary 6.4 For every integer k ≥ 2, there exist infinitely many k-overlap-free binary infinite partial312

words containing infinitely many holes, and being not (k − 1)-overlap-free.313

Proof. Considering the words Zn defined in the proof of Theorem 6.1, and making n tend to infinity, we314

deduce that the word
∏∞

ℓ=1 δk,k−1(0120)abk−1 ⋄ abkδk,k−1(0121)uℓ has the required property.315

Now, we can choose to leave out a finite number of substitutions of the factor 102 by 22. Since the316

number of such choices is infinite, the result follows.317
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I am greatly indebted to Professor Gwénaël Richomme whose comments and suggestions on a prelim-319

inary version of this paper were very useful.320

References321

[1] J.-P. Allouche, J. Shallit, The ubiquitous Prouhet-Thue-Morse sequence, in: C. Ding. T. Helle-322

seth, H. Niederreiter (Eds.), Sequences and Their Applications, Proceedings of SETA’98, Springer-323

Verlag (1999), 1–16.324

[2] J. Berstel, Axel Thue’s work on repetitions in words, in: Leroux, Reutenauer (eds), Séries formelles325
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