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Partitioning a graph into a cycle and an anticycle, a proof of Lehel's conjecture

.

Many questions deal with the existence of monochromatic paths and cycles in edge-colored complete graphs. Erdős, Gyárfás and Pyber asked for instance in [START_REF] Erdős | Vertex coverings by monochromatic cycles and trees[END_REF] if every coloring with k colors of the edges of a complete graph admits a vertex partition into k monochromatic cycles. In a recent paper, Gyárfás, Ruszinkó, Sárközy and Szemerédi [START_REF] Gyárfás | An improved bound for the monochromatic cycle partition number[END_REF] proved that O(k log k) cycles suffice to partition the vertices. This question was also studied for other structures like complete bipartite graphs by Haxell [START_REF] Haxell | Partitioning complete bipartite graphs by monochromatic cycles[END_REF]. One case which received a particular attention was the case k = 2, where one would like to cover a complete graph which edges are colored blue and red by two monochromatic cycles. A conjecture of Lehel, first cited in [START_REF] Ayel | Sur l'existence de deux cycles supplémentaires unicolores, disjoints et de couleurs différentes dans un graphe complet bicolore[END_REF], asserts that a blue and a red cycle partition the vertices. This was proved for sufficiently large n by Luczak, Rödl and Szemerédi [START_REF] Luczak | Partitioning two-colored complete graphs into two monochromatic cycles[END_REF], and more recently by Allen [START_REF] Allen | Covering two-edge-coloured complete graphs with two disjoint monochromatic cycles[END_REF] with a better bound. Our goal is to completely answer Lehel's conjecture.

Our starting point is the proof of Gyárfás of the existence of two such cycles covering the vertices and intersecting on at most one vertex (see [START_REF] Gyárfás | Vertex coverings by monochromatic paths and cycles[END_REF]). For this, he considered a longest path consisting of a red path followed by a blue path. The nice fact is that such a path P is hamiltonian. Indeed, if a vertex v is not covered, it must be joined in blue to the origin a and in red to the end b of P . But then, one can cover the vertices of P and v using the edge ab. Consequently, there exists a hamiltonian cycle consisting of two monochromatic paths. Hence, there exists a monochromatic cycle C, of size at least two, and a monochromatic path P with different colors partitioning the vertex set. This is the key-structure for the proof of our main result:

Theorem 1 Every complete graph with red and blue edges has a vertex partition into a red cycle and a blue cycle.

Proof. Assume that C and P are chosen as above in such a way that C has maximum size and has color, say, blue. We will show that we can either increase the length of C or prove the existence of our two cycles. If P has size less than three, we are done. We denote by x and y the endvertices of P . Note that if x and y are joined by a red edge, we have our two cycles. We then assume that xy is a blue edge. A vertex of C is red if it is joined to both x and y by red edges. The other vertices of C are blue. Observe that C cannot have two consecutive blue vertices, otherwise we would extend C. Moreover, the two neighbors in C of a red vertex v cannot be joined by a blue edge, since we could add v to the path P to form a red cycle. Similarly, if C has two or three vertices, one of them is red and could be added to P to form a red cycle. So, in particular, C has at least four vertices. Observe also that |C| > |P | since we could give a red vertex to P to form a better partition into a cycle and a path. In this proof, removing a vertex x from a path P is denoted by P \ x, whereas removing an edge xy is denoted by P -xy.

Claim 1 There are no successive blue, red, blue, red, blue vertices in C.

Proof. Assume that b, r, b , r , b is such a sequence (with possibly b = b ) and that, say, xb is a blue edge. Let x be the successor of x on the red path P . We claim that x r is a blue edge. Otherwise, either bx is a blue edge in which case (C \ r) ∪ x is a blue cycle and (P \ x) ∪ r is a red cycle, or by is a blue edge and then (P \ {x, y}) ∪ r is a red path and (C \ r) ∪ {x, y} is a blue cycle longer than C, a contradiction. When acb are consecutive vertices of C and c is a red vertex, we call ab a special edge. Observe that special edges are red. We denote by G s the graph on the same vertex set as C and which edges are the special edges. Observe that the maximum degree of G s is two. It appears that the proof is easier if we have several blue vertices in C. Let us prove for a start that there exists at least one.

Claim 2 There exists a blue vertex in C.

Proof.

If not, G s is either a cycle or the union of two cycles, depending if C has an odd or an even number of vertices. If C contains a red hamilton path, we can form, with P , a hamilton red cycle of the whole graph. Therefore G s is the union of two red cycles W and Z with the same cardinality and no red edge between them. We denote by x and y the respective neighbors of x and y in P . There is no red edge from x to W , otherwise, (P \ x)W xZ form a hamilton red cycle. Similarly, there is no red edge from x to Z and from y to W ∪ Z. Now we assume that P has at least five vertices. We denote by x and y the respective neighbors of x and y on P . There is no red edge from x to W , otherwise (P \ {x , x})W xZ forms a red cycle and x forms a blue one. Similarly, there are all blue edges from x to Z and from y to W ∪ Z. Observe that xx is a blue edge, otherwise P \ x forms a red path and C ∪ x is spanned by a blue cycle longer than C, a contradiction. Similarly, yy is a blue edge.

• If |P | = 3, then W ∪ x ∪ Z ∪ y is
• Assume that |P | = 5, in particular y = x and |C| ≥ 6. Pick a vertex w in W and a vertex z in Z. Form the red cycle wxzy, a blue cycle covering the blue bipartite graph (W \ w) ∪ (Z \ z) and finally insert in this blue cycle, of length more than three, the vertices x , y and x .

• If |P | ≥ 6, we insert the three blue paths x , y and x xyy in C to form a blue cycle longer than C, a contradiction. Now, fix an orientation of the cycle C. We define the set L of left vertices as the (red) vertices which are left neighbors in C of some blue vertex. We define similarly the set R of right vertices. Note that L and R are not empty and may intersect.

Claim 3

The set of left (resp. right) vertices spans a red clique.

Proof. Assume for contradiction that there exists a blue edge joining two left red vertices u and v. We denote by u and v their respective right blue neighbors in C. There exists a path Q from u to v in {u , x, y, v } with length at least two. Now (C -{uu , vv }) ∪ Q ∪ uv is a blue cycle which is longer than C, a contradiction. Every component of G s which is a path has an endvertex in L and the other endvertex in R. Furthermore, if G s has a cycle Z, it is unique and it contains all the blue vertices of C. Indeed, Z is simply obtained by taking all the vertices of C at even distance of some blue vertex. Hence, the whole structure consists of a red clique L, a red clique R, a set S of |R| disjoint RL paths of red edges, the original path P , and (possibly) the cycle Z.

Claim 4 Starting from any vertex of R ∪ L, there is a red path which spans S ∪ R ∪ L.

Proof. An easy algorithm for this is simply: if you are the endvertex of a path of S which has not been visited, then follow it until the end. Otherwise, if you are in R (resp. L), go to another unvisited vertex of R (resp. L). This algorithm clearly terminates on a spanning red path.

A direct corollary of Claim 4 is that if Z does not exist, one can cover S ∪ R ∪ L by a red path P ending in two red vertices. Hence P ∪ P forms a red hamiltonian cycle. Thus we can assume that Z exists. Observe that by Claim 1, every blue vertex of Z is the neighbor in Z of a red vertex.

Claim 5 Every blue vertex is joined in blue to R ∪ L.

Proof. Indeed, assume for contradiction that br is a red edge where b is a blue vertex and r belongs to R. Let z be a red vertex which is consecutive to b in Z. By Claim 4, there exists a red path P starting at r and covering S ∪ R ∪ L. Now, (Z -zb) ∪ P ∪ P forms a hamiltonian red cycle.

Claim 6 There is a red cycle W spanning S ∪ R ∪ L.

Proof. If there is a unique blue vertex b in C, the graph G s consists of the union of Z and a unique path P which endvertices u and v are the neighbors of b in C. If uv is a red edge, we are done. So, assume that uv is a blue edge, in particular |C| > 4 otherwise uv would be a (red) edge of G s . Denote by u the second neighbor of u in C and by u the second neighbor of u in C (and thus the successor of u in P ). If bu is a blue edge, then replacing in C the path vbuu u by vubu forms a blue cycle and P ∪ u forms a red cycle. Thus bu is a red edge, in which case we form a red cycle (Z -bu ) ∪ (P \ u) ∪ P and the singleton u as a blue cycle.

Assume now that C has at least two blue vertices. Observe that we just have to prove that there exists a red edge between a vertex of R and a vertex of L which are not the endvertices of the same path of S. For this, we consider a subpath I of C containing two blue vertices forming the endvertices of I. By Claim 1 and the fact that there exists at least two blue vertices, there is such an I = br 1 . . . r k b , with k > 1. By Claim 5, br k and b r 1 are blue edges, we can replace I by br k r k-1 . . . r 1 b . Hence, r 1 becomes a left vertex. Thus by Claim 3, r 1 is joined in red to all the vertices of R∪L, except possibly r k . Now, if a blue vertex is joined in red to any vertex of S ∪ R ∪ L, we can conclude as in Claim 5.

Claim 7

There is no red edge between W and Z.

Proof. Assume that zw is a red edge with z ∈ Z and w ∈ W . Let z be the first vertex to the right of z in Z which is joined to S ∪ R ∪ L with at least a red edge (here z can be z). By the above remark, z is a red vertex. Let A be the set of vertices between z and z in Z. Let B be the set of |A| consecutive vertices to the right of w on the cycle W (recall that Z and W have the same size, hence B does not contain w). Now, A ∪ B is a complete bipartite blue graph hence it has a blue spanning cycle. Moreover, (Z \ A) ∪ (W \ B) is spanned by a path P starting at z and ending in W . Both endvertices of P are red, thus P ∪ P forms a red cycle.

We now achieve the proof of the theorem. Let W be the red cycle w 1 . . . w k and Z be the red cycle z 1 . . . z k , where z 1 is a blue vertex such that, say, the edge xz 1 is blue. Denote by y the neighbor of y on P . There is no red edge between y and a vertex of Z. Otherwise, letting z be this vertex and Q be a minimal path in Z from z to a red vertex of Z (Q has length zero or one). Denote by Q a red path of W with same length as Q. Then, P ∪ Q ∪ Q is spanned by a red cycle (by inserting Q between y and y and inserting Q between x and y) and C \ (Q ∪ Q ) is spanned by a blue one. Similarly, there is no red edge between y and W , otherwise denote by r a red neighbor of y on W and by r a red vertex on Z. Then, P ∪ r ∪ r is spanned by a red cycle and (Z \ r ) ∪ (W \ r) is spanned by a blue one. Hence y is linked in blue to W ∪ Z.

If |P | = 3, we choose two red vertices z and w respectively in Z and in W . Now, xzyw is a red cycle, and ((W ∪ Z) \ {w, z}) ∪ y is spanned by a blue cycle. Finally, if |P | ≥ 4, we denote by y the second neighbor of y on P . The edge yy is a blue one, otherwise, P \ y is a red path and C ∪ y is spanned by a blue cycle longer than C. The edge y w 1 is a blue one, otherwise for any red vertex z of Z, we would span (P \ y ) ∪ w 1 ∪ z by a red cycle and (C \ {w 1 , z}) ∪ y by a blue one. Now, starting with any blue cycle covering W ∪ Z which contains the subpath z 1 , w 1 , z 2 , we replace this path by z 1 , x, y, y , w 1 , y , z 2 , a contradiction to the maximality of C.

  Similarly, x r is a blue edge. Since b is blue, there exists a blue path P = b xb or P = b xyb . Replacing the path brb r b in C by brx r b P b would increase the length of C, a contradiction.

  spanned by a red cycle and x forms a blue one. • If |P | = 4, then pick a vertex w of W , a vertex z of Z, and form a red cycle wxzy, together with a blue cycle spanning the bipartite graph ((W \ w) ∪ x ) ∪ ((Z \ z) ∪ y ).