N
N

N

HAL

open science

Partitioning a Graph into a Cycle and an Anticycle: A
Proof of Lehel’s Conjecture

Stéphane Bessy, Stéphan Thomassé

» To cite this version:

Stéphane Bessy, Stéphan Thomassé. Partitioning a Graph into a Cycle and an Anticycle:

Proof of Lehel’s Conjecture. Journal of Combinatorial Theory, Series B, 2010, 100 (2), pp.176-180.
10.1016/j.jctb.2009.07.001 . lirmm-00512762

HAL Id: lirmm-00512762
https://hal-lirmm.ccsd.cnrs.fr /lirmm-00512762
Submitted on 31 Aug 2010

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.


https://hal-lirmm.ccsd.cnrs.fr/lirmm-00512762
https://hal.archives-ouvertes.fr

Partitioning a graph into a cycle and an anticycle, a
proof of Lehel’s conjecture

Stéphane Bessy and Stéphan Thomassé*

Abstract

We prove that every graph G has a vertex partition into a cycle and an anticyle (a cycle in the
complement of G). Emptyset, singletons and edges are considered as cycles. This problem was posed
by Lehel and shown to be true for very large graphs by Luczak, R6dl and Szemerédi [7], and more
recently for large graphs by Allen [1].

Many questions deal with the existence of monochromatic paths and cycles in edge-colored complete
graphs. Erdé8s, Gyérfds and Pyber asked for instance in [3] if every coloring with k colors of the edges
of a complete graph admits a vertex partition into & monochromatic cycles. In a recent paper, Gyarfas,
Ruszinkd, Sarkozy and Szemerédi [5] proved that O(klogk) cycles suffice to partition the vertices. This
question was also studied for other structures like complete bipartite graphs by Haxell [6]. One case
which received a particular attention was the case k£ = 2, where one would like to cover a complete graph
which edges are colored blue and red by two monochromatic cycles. A conjecture of Lehel, first cited
in [2], asserts that a blue and a red cycle partition the vertices. This was proved for sufficiently large n
by Luczak, Rédl and Szemerédi [7], and more recently by Allen [1] with a better bound. Our goal is to
completely answer Lehel’s conjecture.

Our starting point is the proof of Gyéarfas of the existence of two such cycles covering the vertices and
intersecting on at most one vertex (see [4]). For this, he considered a longest path consisting of a red
path followed by a blue path. The nice fact is that such a path P is hamiltonian. Indeed, if a vertex v
is not covered, it must be joined in blue to the origin a and in red to the end b of P. But then, one can
cover the vertices of P and v using the edge ab. Consequently, there exists a hamiltonian cycle consisting
of two monochromatic paths. Hence, there exists a monochromatic cycle C, of size at least two, and a
monochromatic path P with different colors partitioning the vertex set. This is the key-structure for the
proof of our main result:

Theorem 1 FEvery complete graph with red and blue edges has a verter partition into a red cycle and a
blue cycle.

Proof. Assume that C' and P are chosen as above in such a way that C' has maximum size and has
color, say, blue. We will show that we can either increase the length of C' or prove the existence of our
two cycles. If P has size less than three, we are done. We denote by = and y the endvertices of P. Note
that if z and y are joined by a red edge, we have our two cycles. We then assume that xy is a blue
edge. A vertex of C'is red if it is joined to both = and y by red edges. The other vertices of C' are blue.
Observe that C cannot have two consecutive blue vertices, otherwise we would extend C. Moreover, the
two neighbors in C' of a red vertex v cannot be joined by a blue edge, since we could add v to the path P
to form a red cycle. Similarly, if C has two or three vertices, one of them is red and could be added to P
to form a red cycle. So, in particular, C' has at least four vertices. Observe also that |C| > |P| since we
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could give a red vertex to P to form a better partition into a cycle and a path. In this proof, removing
a vertex z from a path P is denoted by P \ z, whereas removing an edge zy is denoted by P — zy.

Claim 1 There are no successive blue, red, blue, red, blue vertices in C.

Proof. Assume that b,r, b, 7', b is such a sequence (with possibly b = ") and that, say, b’ is a blue
edge. Let x’ be the successor of z on the red path P. We claim that z'r is a blue edge. Otherwise, either
bx is a blue edge in which case (C'\7) Uz is a blue cycle and (P\ z)Ur is a red cycle, or by is a blue edge
and then (P \ {x,y})Ur is a red path and (C'\ r) U {x,y} is a blue cycle longer than C, a contradiction.
Similarly, z’r’ is a blue edge. Since b” is blue, there exists a blue path P’ = b'zb” or P’ = bxyb”.
Replacing the path brbd'r’b” in C by brz’r't' P'b” would increase the length of C, a contradiction. [ |

When acb are consecutive vertices of C' and ¢ is a red vertex, we call ab a special edge. Observe that
special edges are red. We denote by G the graph on the same vertex set as C' and which edges are the
special edges. Observe that the maximum degree of G is two. It appears that the proof is easier if we
have several blue vertices in C. Let us prove for a start that there exists at least one.

Claim 2 There exists a blue vertex in C.

Proof. If not, G, is either a cycle or the union of two cycles, depending if C' has an odd or an even
number of vertices. If C contains a red hamilton path, we can form, with P, a hamilton red cycle of the
whole graph. Therefore G4 is the union of two red cycles W and Z with the same cardinality and no red
edge between them. We denote by x’ and y’ the respective neighbors of x and y in P. There is no red
edge from 2’ to W, otherwise, (P \ x)WzZ form a hamilton red cycle. Similarly, there is no red edge
from z’ to Z and from y’ to W U Z.

o If |P| =3, then WUz U Z Uy is spanned by a red cycle and z’ forms a blue one.

o If |P| = 4, then pick a vertex w of W, a vertex z of Z, and form a red cycle wzzy, together with a
blue cycle spanning the bipartite graph (W \ w) Ua") U ((Z \ z) Uy').

Now we assume that P has at least five vertices. We denote by x”” and y” the respective neighbors of
2’ and y' on P. There is no red edge from z” to W, otherwise (P \ {2/, 2})WzZ forms a red cycle and «’
forms a blue one. Similarly, there are all blue edges from z” to Z and from y” to W U Z. Observe that
xzz' is a blue edge, otherwise P\ 2’ forms a red path and C' U 2’ is spanned by a blue cycle longer than
C, a contradiction. Similarly, yy” is a blue edge.

e Assume that |P| = 5, in particular ¥ = 2’ and |C| > 6. Pick a vertex w in W and a vertex z in
Z. Form the red cycle wazy, a blue cycle covering the blue bipartite graph (W \ w) U (Z \ z) and
finally insert in this blue cycle, of length more than three, the vertices z’, v’ and z”.

e If |P| > 6, we insert the three blue paths 2/, ¥’ and z”zyy” in C to form a blue cycle longer than
C, a contradiction.

Now, fix an orientation of the cycle C. We define the set L of left vertices as the (red) vertices which
are left neighbors in C' of some blue vertex. We define similarly the set R of right vertices. Note that L
and R are not empty and may intersect.

Claim 3 The set of left (resp. right) vertices spans a red clique.



Proof. Assume for contradiction that there exists a blue edge joining two left red vertices u and v. We
denote by u' and v’ their respective right blue neighbors in C'. There exists a path @ from ' to v’ in
{v,z,y,v'} with length at least two. Now (C — {uw/,vv'}) UQ Uuw is a blue cycle which is longer than
C, a contradiction. |

Every component of G5 which is a path has an endvertex in L and the other endvertex in R. Fur-
thermore, if G4 has a cycle Z, it is unique and it contains all the blue vertices of C'. Indeed, Z is simply
obtained by taking all the vertices of C' at even distance of some blue vertex. Hence, the whole structure
consists of a red clique L, a red clique R, a set S of |R| disjoint RL paths of red edges, the original path
P, and (possibly) the cycle Z.

Claim 4 Starting from any vertex of RU L, there is a red path which spans S U RU L.

Proof. An easy algorithm for this is simply: if you are the endvertex of a path of S which has not been
visited, then follow it until the end. Otherwise, if you are in R (resp. L), go to another unvisited vertex
of R (resp. L). This algorithm clearly terminates on a spanning red path. [

A direct corollary of Claim 4 is that if Z does not exist, one can cover SU RU L by a red path P’
ending in two red vertices. Hence P U P’ forms a red hamiltonian cycle. Thus we can assume that Z
exists. Observe that by Claim 1, every blue vertex of Z is the neighbor in Z of a red vertex.

Claim 5 Every blue vertez is joined in blue to RU L.

Proof. Indeed, assume for contradiction that br is a red edge where b is a blue vertex and r belongs to
R. Let z be a red vertex which is consecutive to b in Z. By Claim 4, there exists a red path P’ starting
at r and covering SU RU L. Now, (Z — zb) U P U P’ forms a hamiltonian red cycle. |

Claim 6 There is a red cycle W spanning SU RU L.

Proof. If there is a unique blue vertex b in C, the graph G consists of the union of Z and a unique path
P’ which endvertices u and v are the neighbors of b in C. If uv is a red edge, we are done. So, assume
that uv is a blue edge, in particular |C| > 4 otherwise uv would be a (red) edge of Gs. Denote by u’ the
second neighbor of u in C' and by u” the second neighbor of v’ in C' (and thus the successor of u in P’).
If bu” is a blue edge, then replacing in C' the path vbuu'u” by vubu” forms a blue cycle and P U forms
a red cycle. Thus bu” is a red edge, in which case we form a red cycle (Z — bu’) U (P’ \ ) U P and the
singleton u as a blue cycle.

Assume now that C has at least two blue vertices. Observe that we just have to prove that there
exists a red edge between a vertex of R and a vertex of L which are not the endvertices of the same path
of S. For this, we consider a subpath I of C' containing two blue vertices forming the endvertices of I.
By Claim 1 and the fact that there exists at least two blue vertices, there is such an I = bry... 730,
with & > 1. By Claim 5, bry and b'r; are blue edges, we can replace I by brirg_1...r10'. Hence, r;
becomes a left vertex. Thus by Claim 3, r; is joined in red to all the vertices of RUL, except possibly r.H

Now, if a blue vertex is joined in red to any vertex of S U R U L, we can conclude as in Claim 5.
Claim 7 There is no red edge between W and Z.

Proof. Assume that zw is a red edge with z € Z and w € W. Let 2z’ be the first vertex to the right of z
in Z which is joined to S U RU L with at least a red edge (here 2’ can be z). By the above remark, 2’
is a red vertex. Let A be the set of vertices between z and 2’ in Z. Let B be the set of |A| consecutive



vertices to the right of w on the cycle W (recall that Z and W have the same size, hence B does not
contain w). Now, AU B is a complete bipartite blue graph hence it has a blue spanning cycle. Moreover,
(Z\ A) U (W \ B) is spanned by a path P’ starting at z’ and ending in W. Both endvertices of P’ are
red, thus P U P’ forms a red cycle. |

We now achieve the proof of the theorem. Let W be the red cycle wy ... w, and Z be the red cycle
21...2k, where 21 is a blue vertex such that, say, the edge x2; is blue. Denote by 3’ the neighbor of y
on P. There is no red edge between y’ and a vertex of Z. Otherwise, letting z be this vertex and @ be a
minimal path in Z from z to a red vertex of Z (@ has length zero or one). Denote by @’ a red path of
W with same length as @. Then, PUQ U Q' is spanned by a red cycle (by inserting @ between 3" and y
and inserting Q" between z and y) and C'\ (Q U Q') is spanned by a blue one. Similarly, there is no red
edge between 3’ and W, otherwise denote by r a red neighbor of 3’ on W and by r’ a red vertex on Z.
Then, P Ur U7’ is spanned by a red cycle and (Z \ /) U (W \ r) is spanned by a blue one. Hence y’ is
linked in blue to W U Z.

If |P| = 3, we choose two red vertices z and w respectively in Z and in W. Now, zzyw is a red cycle,
and (WU 2Z)\ {w,z}) Uy is spanned by a blue cycle. Finally, if |P| > 4, we denote by 3" the second
neighbor of ¢’ on P. The edge yy” is a blue one, otherwise, P\ ¢ is a red path and C Uy’ is spanned by
a blue cycle longer than C. The edge 3" w; is a blue one, otherwise for any red vertex z of Z, we would
span (P \ y') Uw; Uz by a red cycle and (C'\ {w1, 2}) Uy’ by a blue one. Now, starting with any blue
cycle covering W U Z which contains the subpath z1, w1, 22, we replace this path by z1,z,y, 3", w1,/ 22,
a contradiction to the maximality of C. |
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